next up previous
Next: Summary Up: GBT IF System Non-Linearity Previous: DCR-AFR Spectrometer Comparison

A Possible Non-Linear Calibration Scheme

From Figure 4 we see that the DCR counts are tending to approach an asymptotic value as the source strength increases. The gain curve can then be approximated as

\begin{displaymath}
P_{\rm out}(\rm counts) \sim {1 \over {\epsilon + \beta \left[ P_{\rm in}(\rm K)
\right]^{-\delta}} }
\end{displaymath} (6)

or
\begin{displaymath}
P_{\rm in}(\rm K) \sim {1 \over {B \left[ P_{\rm out}(\rm counts)
\right]^{-\gamma} - A } }
\end{displaymath} (7)

where $\epsilon$,$\beta$,$\delta$,$A$,$B$,and $\gamma$ are assumed to be greater than or equal to zero. Normal Sig/Ref observations are reduced - assuming a constant gain - using
$\displaystyle T_{src}(K)$ $\textstyle =$ $\displaystyle \left({{G Sig^{cal off}(counts) - G Ref^{cal off}(counts)}
\over G Ref^{cal off}(counts)} \right) T_{sys}^{Ref}(K)$  
  $\textstyle =$ $\displaystyle \left( {{Sig^{cal off}(K) - Ref^{cal off}(K)} \over
Ref^{cal off}(K)}\right) T_{sys}^{Ref}(K)$ (8)

where
$\displaystyle T_{sys}^{Ref}(K)$ $\textstyle =$ $\displaystyle {T_{cal} \over 2} \left(
{ G Ref^{cal on}(counts) + G Ref^{cal off}(counts) \over
G Ref^{cal on}(counts) + G Ref^{cal off}(counts) } \right)$  
  $\textstyle =$ $\displaystyle {T_{cal} \over 2} \left(
{ Ref^{cal on}(K) + Ref^{cal off}(K)
\over Ref^{cal on}(K) + Ref^{cal off}(K) } \right).$ (9)

Equations 8 and 9 assume $Sig(counts)=G T_{Sig}(K)$ and $Ref(counts)=G T_{Ref}(K)$ with $G=$ constant.

If we use Equation 7 then Equation 8 becomes

\begin{displaymath}
T_{src}(K) = \left({ {
{1 \over {B \left[ Sig^{cal off}(\rm ...
...(\rm counts)\right]^{-\gamma} - A}} }
\right) T_{sys}^{Ref}(K)
\end{displaymath} (10)

which with a little algebra can be shown to be
\begin{displaymath}
T_{src}(K) = \left(
{ { \left[ Ref^{cal off}(\rm counts)\rig...
...}(\rm counts)\right]^{-\gamma} - C} }
\right) T_{sys}^{Ref}(K)
\end{displaymath} (11)

where $C = A / B$. Putting Equation 7 into Equation 9 and doing little algebra results in
\begin{displaymath}
T_{sys}^{Ref}(K) = \left( {{ \left[Ref^{cal off}(counts)\rig...
...f^{cal on}(counts)\right]^{-\gamma}}}\right) {T_{cal} \over 2}
\end{displaymath} (12)

A fit could be done to Equations 11 and 12 to determine $C$ and $\gamma$ while allowing the source strength to be $T_{src}(K) = T_o \nu^\alpha$.

This scheme has the potential to provide calibrated data on a known temperature scale if $\gamma$ and $C$ are stable or slowly varying. The data could then be further processed using the ``Solomon scheme'' to provide good baselines.

If $\gamma$ and $C$ are stable or slowly varying then it may be possible to periodically observe well known calibration sources - with well defined $T_o \nu^\alpha$ to determine $\gamma$ and $C$. The values for $\gamma$ and $C$ determined from the calibrators could then be ``blindly'' applied to the target observations.


next up previous
Next: Summary Up: GBT IF System Non-Linearity Previous: DCR-AFR Spectrometer Comparison
Toney Minter 2004-04-19