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What is a Spectrometer and How Does 
it Work?

● A spectrometer measures intensity of electromagnetic radiation 
at different frequencies / wavelengths

– In practical applications spectrometers have a finite 
frequency / wavelength resolution and a finite range of 
frequencies / wavelengths over which they operate

● Most astronomers are introduced to spectrometers at optical 
wavelengths

– Use gratings (or prisms) to disperse light, i.e. physically 
separate different wavelengths

– Measure intensity of dispersed light using a CCD
● Position on CCD maps to wavelength

● This is not how radio-frequency spectrometers work

● Why not?



  

Spectrometers in Other Contexts

● Physical properties of the spectrometer often scale with 
wavelength (or it’s inverse)

● Radio-wavelengths span ~10 m – 1 mm

● Consider diffraction angle

– A radio-frequency diffraction
grating would have to be impractically large

θm=sin−1 (mλ

d ) ,m=1 ,2 ,…



  

Spectrometers in Other Contexts

● Physical properties of the spectrometer often scale with 
wavelength (or it’s inverse)

● Or consider a refractive prism

● Index of refraction usually approaches 1 as wavelength increases

● Fractional change in wavelength Δλ/λ is small

● Angle of refraction will be very small and not much separation of 
different wavelengths, leading to almost no dispersion

n1

n2

=
sin (θ2 )

sin (θ1 )



  

Spectrometers in Other Contexts

● Properties of a radio-CCD are also impractical

● Pixel size has to be > λ

● Band-gap energy of semiconductor needs to be < radio-
photon energy

– At radio frequencies photons have energies ~ μeV – meV

– Most semiconductors have band-gap energies ~ 1 eV

– Thermal noise will swamp signal unless detectors are 
cooled to extremely low temperatures



  

Analog Radio Spectrometer

● Quantum devices like CCDs don’t operate well at radio 
wavelengths, but analog electronic circuits do

● It is fairly easy to create electronic filters that attenuate power 
above/below/within certain radio frequencies

● We can envision sending copies of a signal through multiple 
bandpass filters, each with different frequency cutoffs, and then 
detecting power that passes through each filter

● A bank of filters → a filterbank



  

Analog Radio Spectrometer

● Each signal path is known as a channel

● Each channel has some some narrow channel bandwidth 
over which it is sensitive

– Analogous to resolution of an optical spectrometer
● In practical applications, channels are adjacent, with small 

gaps between them

● Difference between lowest and highest frequency channels 
defines total bandwidth



  

Analog Radio Spectrometer

● This setup is intuitively simple and illustrates basic concepts, 
but is not very practical

● What if you need a narrower channel bandwidth?

– Need to duplicate the entire filterbank with a different set 
of filters

● What if you need a large total bandwidth and narrow channel 
bandwidth?

– Need lots and lots of filters
● Can we do better?

● Yes!  We can create a spectrometer using math…

● But first, what are we actually measuring?



  

Radio Telescopes Sample Electric 
Fields

● EM radiation is a time-varying electromagnetic field

● Radiation incident on a radio receiver causes a change in electric 
potential, i.e. a change in voltage

● For a monochromatic wave

● Real-world signals have non-zero amplitude at many frequencies 
(i.e. polychromatic) 

V⃗ (x , t )=V 0 sin(2π f t+
2π
λ
x⃗+ϕ0)

Amplitude

Frequency
Wavelength

c=λ⋅f

Direction Initial Phase
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Radio Telescopes Sample Electric 
Fields

● EM radiation is a time-varying electromagnetic field

● Radiation incident on a radio receiver causes a change in electric 
potential, i.e. a change in voltage

● For a monochromatic wave

● Real-world signals have non-zero amplitude at many frequencies 
(i.e. polychromatic) 
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Complex Voltage and Power

● Because incoming radiation is described by both an electric 
field amplitude and phase, it is convenient to represent it as 
a phasor

● This lends itself to using complex numbers to describe the 
voltage (recall Euler’s formula)

A eiθ x=A [cos(θ x)+i sin (θ x)]



  

Complex Voltage and Power

● The cosine and sine terms are often referred to as I(t) and 
Q(t) (i.e. I/Q values)

– I corresponds to the real part of the complex voltage, and 
Q to the imaginary part

– Don’t confuse these with the I and Q of Stokes 
parameters!



  

Complex Voltage and Power

● This allows us to represent the signal with a real and 
imaginary part

– Retains full amplitude and phase information so can be 
used for coherent processing

● In the final analysis we are usually interested in the power 
(which has non-zero mean), rather than the amplitude

● This step is usually referred to as detection

– If we sample two polarization states, we can form Stokes 
parameters or other polarization products prior to detection

– Note that we lose phase information at this stage!

P=|A eiθ x|2



  

More Realistic Signals

Evenly Spaced Frequencies

Random Frequencies w/ Noies



  

Fourier Transform Spectrometer

● We measure V(t) but want to measure power vs frequency

● We can harness the Fourier Transform to do this 
mathematically.  Recall that for a continuous signal

X ( f )=∫
−∞

+∞

x(t)e−2π i f t dt



  

Fourier Transform Spectrometer

● We measure V(t) but want to measure power vs frequency

● We can harness the Fourier Transform to do this 
mathematically.  For a discrete signal

X k=∑
0

N−1

xne
−2π i k n/N



  

Fourier Transform Spectrometer

● FT spectrometers are highly flexible and can be implemented 
on computers if we can fully digitally sample the voltage 
time series

● To do this we have to measure amplitude and phase

● We also have to sample quickly enough to detect rapidly 
varying (i.e. high-frequency) signals



  

Continuous vs Discrete Signals

● Incoming radiation is a continuous change in electric field 
over a continuous range of frequencies

● Digital systems work on discrete values that can be 
represented with some finite number of bits

● 1 bit = 2
1
 values (0,1)

● 2 bit = 22 values (0 – 3)

● 8 bit = 28 = 256 values (0 – 255)



  

● The number of bits used to sample the signal defines the 
dynamic range

– Smaller bit depth / resolution provides less granularity (1 
bit = high or low)

– Higher bit depth captures both weak and strong inputs
● This introduces some error, as perfect reconstruction is not 

possible with a finite number of bits

– Bit depth chosen to keep quantization errors at or below 
an acceptable level



  

Analog to Digital Converters

● An analog-to-digital converter (ADC) is a device for 
converting continuous signal to discrete, digital signal

● ADCs are characterized (in part) by the number of bits they 
use and the maximum sampling rate

● The sampling rate determines the bandwidth of the sampler



  

Nyquist-Shannon Sampling 
Theorem

● To perfectly reconstruct a time varying signal, we must 
sample at a critical rate, fN, that is twice the highest 
frequency contained in the signal

– A signal at a frequency f > fN will be aliased into our 
sampling band at a lower apparent frequency

● fN is known as the Nyquist frequency



  

Nyquist-Shannon Sampling 
Theorem

● This is not just a time/frequency phenomenon

● Spatial variations can be decomposed into spatial 
frequencies

– Sharp features contain higher frequency components
● Nyquist sampling in spatial domain is important in mapping 

Image credit: Wikipedia



  

Sampling Rate and Bandwidth

● To avoid aliasing, we must apply an analog filter to suppress 
power outside some desired bandwidth B

● We then use our ADC to sample at a frequency fs = 2 x B

– Example: We want to sample 800 MHz bandwidth

– Downcovert to baseband and apply low-pass filter

– Sample at 1.6 Gsps
● Remember: filters are not perfectly

 sharp

– Filter roll-off needs to start 
below fs/2 to ensure aliasing is 
kept below an acceptable level



  

Why Don’t Optical Spectrometers Work 
This Way?

● If a FT spectrometer is so useful, why not use them at shorter 
wavelengths / higher frequencies?

● Radio frequencies have to advantages for this approach

– Signals can be down-converted from high to low 
frequency via mixing

–  Down-converted signals have frequencies that are low 
enough to sample with modern electronics

● Optical-frequency mixing is much harder, and electronics 
can’t sample at the native optical frequencies



  

Dynamic Range for Wideband Systems

● Note that ADCs are total power devices

– We have not yet sampled the power contributed at 
individual frequencies

● As the bandwidth goes up, so to do does the total power 
contributed by noise, RFI, and signal of interest

● Resolution / bit depth becomes increasingly important for 
wideband systems

– Strong signals can push ADCs into non-linear regime



  

Types of Spectrometers

● There are different ways of implementing these general 
principles

● We will talk more about two examples

– Auto-correlation spectrometer (ACS)

– Polyphase filterbank (PFB)



  

Weiner-Kinchin Theorem

● Relates the power spectrum to the autocorrelation of the 
incoming time series

● rxx is the autocorrelation, defined as

– t is known as the lag, and * denotes the complex conjugate
● In words, the power spectrum is the Fourier transform of the 

integral of the input signal multiplied point-wise by a time-delayed 
version of itself 

r xx=∫
−∞

∞

f (u) f ∗(u−t)du



  

Autocorrelation Spectrometer

● An autocorrelation spectrometer is highly flexible in 
terms of total bandwidth and channel bandwidth

– The sampling interval Δτ and total number of lags N 
completely determine these parameters

The factor of 1.2 comes from the windowing function, 
which is simply a hard cutoff at t > ΔτN (i.e. w(t) = 1 for t 
<= ΔτN, else 0)

– The observed power spectrum is a convolution of the true 
spectrum with the Fourier transform of w

B=
1

2Δ t
;Δ f=1.2

B
N

~S ( f )=S (f )∘W (f )



  

Autocorrelation Spectrometer

● Because the Fourier transform of a top-hat is a sinc function, 
the channel shape of an ACS is itself a sinc, defined by it’s 
FWHM

– This is where the factor of 1.2 comes from
● While an ACS is flexible and easy to implement, this frequency 

response is undesirable

– Power can leak into adjacent channels

– For very strong signals, 
leakage can impact
significant part of band

● Can we do better?

– Yes!



  

Polyphase Filterbank

● In a direct discrete Fourier transform (DFT) we start with a 
rectangular windowing function (in time) and end with a sinc 
response (in frequency)

● We prefer to have a rectangular (i.e. flat) response in 
frequency across a channel

– Use the Fourier inverse as the time-domain window, i.e. a 
sinc filter

● In practice, to obtain an N-point spectrum, use M = N x P 
points

– P is the number of phases in the polyphase filterbank, 
also referred to as the number of taps



  

Polyphase Filterbank

● After multiplication by an M-point filter, each phase is added 
to produce an N-point input to the DFT

● The DFT can now be taken, the result squared, and then 
accumulated to produce a power spectrum

Image credit: Dale Gary



  

Polyphase Filterbank

● Caveats

– In pratice, the sinc window 
must be truncated so the 
frequency response is not 
perfectly flat

– We typically multiply the sinc 
window by an finite impulse 
response (FIR) filter to 
improve frequency response

– Using more taps also 
improves response

● PFB is more computationally intensive (~1.5x) than direct DFT 
but improved spectral response is usually worth the trade-off

Image credit: Jayanth Chennamangalam



  

Astronomical Spectrometers

● Note that the frequency resolution we obtain is determined 
by the number of points in the FFT

– The sampling theorem is also relevant here: we need 2N 
time samples for N frequency channels

● This creates an inverse relationship between time and 
frequency resolution

● In typical spectral line observing, we are more concerned 
with frequency resolution than time resolution

● In pulsar observing we are usually more concerned with time 
resolution that frequency resolution



  

Astronomical Spectrometers

● The last* step is typically to detect and accumulate power 
spectra for some integration time

– The choice of integration time depends on the stability of 
the instrument and scientific goals

– Typically use ~0.1 – 10 s for spectral line observing to 
allow efficient excising of RFI

– Typically use 10s ms in pulsar observing to retain 
sensitivity to fast pulsars

*Additional signal processing often performed in pulsar 
observing (e.g. dedispersion, folding)



  

Polarization Products

● Most receivers sample two polarization states (typically 
linear [X/Y] or circular [L/R])

● Everything described above must be duplicated for each 
polarization channel

– 2x ADCs, 2x spectrometer engines
● The polarization products that one records depends on 

science goals

– Typically sufficient to record each channel’s self-products 
independently (e.g. |X|2 and |Y|2 )

● For strongly polarized sources, typically record Stokes 
parameters or self and cross terms



  

Polarization Products

● Stokes parameters allow complete recovery of polarized 
signal

– For a linear basis:

I   = |X|2 + |Y|2 (total intensity)
Q = |X|2 - |Y|2

U = 2 Re(X* Y)
V = 2 Im(X* Y)

– |V| = circular polarization
|L| = √(Q2 + U2) = linear polarization

● We may also record the self and cross terms directly, [i.e. 
|A|2, |B|2, Re(A* B), Im(A* B)]



  

A Note on Complex Voltages

● There are some applications in which it is 
desirable/necessary to record pre-detection complex 
voltages

– Very long baseline interferometry requires phase 
information for correlation

– Offline analysis may be needed to form spectra with 
different resolutions for different applications

● This comes at the expense of very high data rates, requiring 
lots of storage



  

Hardware for Modern Digital Backends

● Modern systems are typically implemented with a 
combination of field programmable gate arrays (FPGAs) and 
GPU-equipped high performance computers running 
specialized digital signal processing software

● GBT currently uses five primary backends

– Digital continuum receiver

– Mark VI VLBI baseband recorder

– VEGAS (spectral line/pulsar observing)

– JPL Radar Backend

– Breakthrough Listen (baseband recording for SETI, etc.)



  

Hardware for Digital Backends

● VEGAS, BTL developed through CASPER (Collaboration for 
Astronomical Signal Processing and Electronics Research)

● VEGAS uses 8x ROACH2 boards and NVIDIA GPUs

– Integrated ADCs, FPGAs, 10 gigabit ethernet, serial 
communication ports, onboard flash memory perform 
initial conditioning, supply channelized data or I/Q values

– Additional spectral line / pulsar processing performed on 
GPUs/CPUs

– Data stored on beeg-fs distributed filesystem

– 8 independent spectrometer banks for maximum 
frequency coverage/flexibility



  

Hardware for Digital Backends



  

Questions?



greenbankobservatory.org

The Green Bank Observatory is a facility of the National Science Foundation
operated under cooperative agreement by Associated Universities, Inc.
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