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Radio Telescope – the Single Dish

● The simplest radio telescope (other than elemental 
devices such as a dipole or horn) is a parabolic 
reflector – a ‘single dish’.

● We discuss characteristics of single dish 
– Reflector 
– Angular response – beam
– Angular resolution 
– ‘sidelobes’ – finite response at large angles.



Radio Astronomy – Some Reference Books



Jansky commissioned an antenna to determine the radio interference and 
detected radio waves coming from outer space (1932, Bell Telephone 
Laboratories)     “A new kind of telescope opened a new window!”

Karl Jansky

 Bell Labs showed little interest:“so faint not even interesting as a source 
of radio interference!”

 Not accepted  by the astronomical community

 Jansky died in 1950 before the importance of his discovery was 
appreciated
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Grote Reber continued and detected 
cosmic radiation by going to longer 
wavelengths (1939)

✗ 3300 MHz
✗ 900 MHz
✔ 160 MHz 

 Radiation had to be non-thermal
 No theoretical basis at the time
 1949 Anomalous solar emission
 1950 Synchrotron radiation theory

 ~10 years after Reber

Discovery of the non-thermal Universe

Reber’s ~9.6 m parabolic radio telescope (originally 
constructed in Wheaton, Illinois, NSF/AUI)



● Similar to optical reflecting telescopes

● Due to long wavelength, less sensitive to surface 
imperfections

● Large reflecting surfaces (e.g., single dish)

● A single dish can have a good potential sensitivity

Radio Telescopes
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Kraus, 1966. Fig.1-6, p. 14.

Basic Radio Telescope



Components of a radio telescope



Typical Radio Telescope Antennas

● Parabolic: The primary mirror is a parabola
● Steerable: The antenna can move in 2 angular directions 

to track a source across the sky.
● Alt-Az Mount: The antenna tracks in altitude (elevation) 

and azimuth
● Cassegrain focus: A secondary mirror (subreflector) is 

placed in front of the prime focus of the primary 
reflector and focuses the radio waves to a receiver 
located behind the main reflector.

● On-axis: The antenna axis is the same as the optical axis, 
resulting in a symmetric antenna.



Optical Design of Radio Telescopes

● Prime focus

● Off-axis (or offset feed)

● Cassegrain

● Gregorian

Axial or  
Front feed

Off-axis or 
Offset feed

Cassegrain

Gregorian

Convex 
secondary 
reflector

https://en.wikipedia.org/wiki/Cassegrain_antenna



Parkes 64-m Radio Telescope (CSIRO)

Arecibo 305-m Radio Telescope (NSF/UCF)

Green Bank 100-m Telescope (NRAO)

Examples of radio telescope 

Ooty Radio Telescope 530m x30m (NCRA/TIFR)
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η=(1− Ablock /A total)
2

In a reflecting telescope, the 
presence of a secondary 
mirror and its supports can 
causes considerable changes 
in the diffraction pattern



100 x 110 m section of a parent parabola 208 m in diameter

Cantilevered feed arm is at focus of the parent parabola

Unblocked Aperture – GBT
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GBT Main Features

• Telescope diameter: 100 m

•   Fully steerable antenna 
– Elevation Limits: Lower limit: 5 degrees; Upper limit: ~ 90 degrees; 

85% coverage of the celestial sphere. 

• Unblocked aperture

– Optics:  110 m x 100 m unblocked section of a 208 m parent 
paraboloid; offaxis feed arm

• Active surface 
– Allows for compensation for gravitational and thermal distortions. 

• Frequency coverage of 0.1 to 120 GHz (3m – 2.6mm) 

• Location in the National Radio Quiet Zone 



Cylindrical Reflector – Offset Parabola 

Ooty Radio Telescope (327 MHz)



Arecibo Telescope 

Fixed spherical reflector of size 305 m



Gregorian
● The dome is referred to as the “Gregorian”.

● Gregorian – the secondary reflector is placed behind the focal 
point of the primary reflector.

● Advantages
– Gregorian dome protects the receivers from RFI and weather
– For example, a line feed can cover only a narrow frequency 

band and a limited number of line feeds can be used at one 
time 

– With Gregorian optics, an array of receivers covering the 
whole 1-10 GHz range can be easily moved onto the single 
focal point where the incoming signal is focused.







Radio Telescope – Resolution

Resolution of a single dish antenna of diameter D,

 Θ ~ 1.22 λ/D 

  (i.e., width of the field of view or beam of the antenna )

Unresolved (point) Source: Θsource <  Θ 

The telescope measures the brightness integrated over 
the entire source (i.e., total flux density of the source).  

Extended Source: Θsource >  Θ 

The telescope pointing will measure only the flux 
from the source within the beam and the integral is 
to be taken over the beam size. 

D

Beams of most radio telescopes are nearly Gaussian, 
and their beamwidths are usually specified by the angle 

θHPBW between the half-power points.

Parabolic antenna 
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Convolution with the Beam and Smoothing by the beam 

Beams of most radio telescopes are nearly Gaussian, and their beamwidths 
are usually specified by the angle ΘFWHM

The scan across a point source will 
yield exactly the beam pattern.

When the source is extended, the 
true brightness distribution is 
convolved with the beam pattern.

Smoothing: The antenna pattern is not sensitive to 
small scale structures present within the source. 



Antenna power and Gain

Power collected by an antenna is

P = S × A × β    (flux density = power/area/bandwidth)

S = flux at Earth, A = antenna area, 
β = bandwidth of measured radiation

Gain of an antenna is G = 4πA/λ2

Aperture efficiency is the ratio of the 
effective collecting area to the actual 
collecting area!          (ηaperture = Aeff/A) 

“Jansky” is the unit of flux density (S), 1 Jy = HzmWatts //10 226



Antenna Beam Pattern (power pattern)

(Pn = normalized power pattern)

Kraus, 1966. Fig.6-1, p. 153.

Beam Solid Angle
(steradians)

Main Beam 
Solid Angle

  

qHPBW =
l

D

òò W=W
p

fq
4

),( dPnA

òò W=W

lobe
main

nM dP ),( fq

ηmainbeam=
WM

WA
l

2
= AeWM



Primary Beam

   

 l = sin(q), D = antenna diameter in λ                    (contours:3,6,10,15,20,25,-30,-35,-40)
 
dB = 10 log(power ratio) = 20 log(voltage ratio)

For VLA: q3dB = 1.02/D, First null = 1.22/D
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Observing 
Frequency

Scan angle (arbitrary)

3328 MHz

1408 MHz

Parkes 64-m Antenna – Beam FWHM at different subbands



Useful to determine Spectral 

Index α, S ~ ν-α

Scan angle (arbitrary)

3328 MHz

1408 MHz

Parkes 64-m Antenna – Beam FWHM at different subbands



Solar Radio Measurements

1934-63 (Kellermann 1966)

Pulsar profile broadening as  
a function of frequency gives 
scattering of the medium. 



Non Ideal Parabolic Surface

Not-quite-perfect parabola σ = rms surface error

Antenna surface accuracy (efficiency) can be affected by various factors.



 

Aperture Efficiency

A0 = ηA, η = ηsf  ηbl  ηs  ηt  ηmisc 

ηsf = reflector surface efficiency

ηbl = blockage efficiency 

ηs = feed spillover efficiency

ηt = feed illumination efficiency

ηmisc= diffraction, phase, match, loss

ηsf = exp((4p/l)2)

e.g.,   = l/16 , ηsf = 0.5

rms error 

Antenna Performance Parameters

Surface roughness affects the antenna efficiency, 
which is a strong function of frequency.



Surface efficiency – Ruze formula

John Ruze of MIT -- Proc. IEEE vol 54, no. 4, p.633, April 1966.

σ = rms surface error

Antennas rapidly lose performance at higher frequencies.

ηsf = exp((4p/l)2)



Detectable Signal and System Temperature

Thermal noise T
(minimum detectable signal)

total noise power detected, a result of many contributions

int
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T
kT sys


=
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Tsys = Tant + TRx + TCMB + Tspill + Tatm  . . . .

Telescope Gain is the antenna temperature, TA, 

due to a point source of flux density 1 Jy at the 
peak of the telescope beam (G expressed in K/Jy).

System Equivalent Flux Density, SEFD = Tsys/G

(system noise given as flux density)

S JyS Jy

TcalTcal



Thank You


