

RFI and How to Deal with It
Toney Minter

Spectrum Management

US Government has set aside parts of the spectrum for astronomy....

But the parts of the spectrum are few and far between.

The Spectrum and Radio Astronomy

- Observations often use wide-bandwidths
- Sources can be red-shifted
- May be observing spectral lines that are "not protected"
- A majority of the spectrum radio astronomy uses is "shared"

Why care about spectrum management?

- There are three ways to handle unwanted radio frequency signals:
 - Legal Protection
 - Community agreement
 - Excision

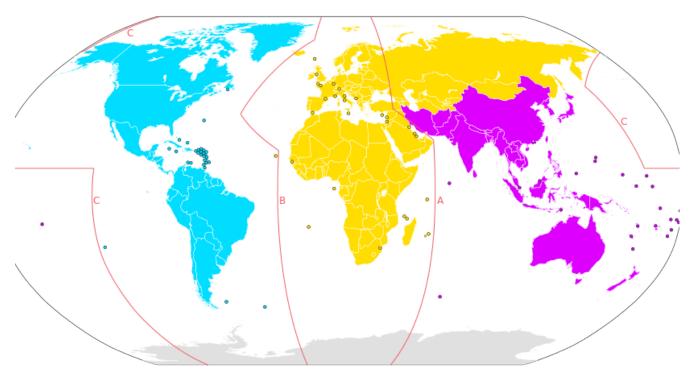
Why care about spectrum management?

- There are three ways to handle unwanted radio frequency signals:
 - Legal Protection
 - Community agreement
 - Excision

- Spectrum
 management
 includes:
 - Legal Protection
 - Community agreement

Spectrum Management

- Legal Protection
 - International/Federal agreements regarding spectrum allocation
 - Federal protection for geographic regions
 - Local protection for geographic regions


Spectrum Allocation

- Spectrum bands are allocated to 'services'
 - Service = purpose or application
 - Most services are 'active' they transmit
- Radio astronomy and Earth-sensing are 'passive'
 - RAS and EE-SS (passive) only listen
 - Radar astronomy and EE-SS (active) also transmit but are distinct
 - Concept of 'use' elusive for passive services
- Examples of 'services'
 - Radiolocation = radar
 - Radionavigation/Radio Navigation Satellite Service = GPS
 - Fixed-satellite service (space-earth, earth-space)
 - Fixed service (terrestrial point to point)
 - Cellular service

 Three ITU-R regions (International Telecommunications Union - Radiocommunications)

- Three ITU-R regions (International Telecommunications Union – Radiocommunications)
 - All countries are sovereign inside their border
 - Assumes radio waves stop at borders
 - No country can operate a satellite transmitter without ITU-R permission
 - Border issues are often important
 - Not all countries participate in ITU-R regulations
 - Most general set of rules
 - Renegotiated every 4-5 years through the UN http://www.itu.int/ITU-R/

- Radio Astronomy and Space Sciences represented through IUCAF:
 - (Scientific Committee on Frequency Allocations for Radio Astronomy and Space Science)
- Chartered for International Astronomical Union (IAU), Committee on Space Research (COSPAR), International Union of Radio Science (URSI)

- Within the United States:
 - Federal Communications Commission (FCC)
 - businesses
 - National Telecommunications and Information Administration (NTIA)
 - Federal government's use of spectrum
 - Includes NSF

Legal Protection

- Radio Quiet Zones
 - Legal protection against some/all forms of radio frequency interference
 - Located around a geographic region

Puerto Rico Coordination Zone

- Established in late 1990s
- Entire territory of Puerto Rico
- All new and upgraded transmitters

National Radio Quiet Zone

- Established in 1957
- 13,000 square miles
- All new fixed, license transmitters

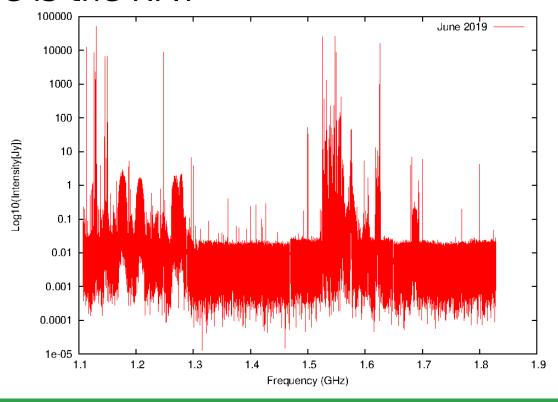


WV Radio Astronomy Zone

- Established in 1956
- 10 mile radius
- All transmitters
 - Intentional
 - Unintentional

Legal Protection

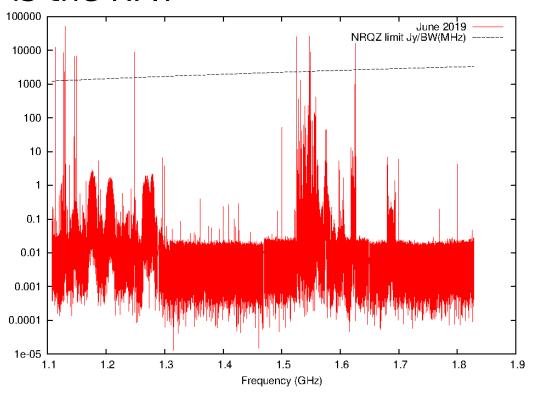
- Radio Quiet Zones
 - Legal protection against some/all forms of radio frequency interference
 - Located around a geographic region
- Enforcement is a major challenge
 - Must balance law and radio astronomy needs against community opinion


Community Agreement

- Even with legal agreement community agreement is vital
 - Radio Astronomy must work with the community and not against it
- Continuous challenge with outreach, education and help
 - Teach the community who you are why you need the protection
 - Show the community the value of radio astronomy locally and scientifically
 - Help the community to mitigate the effects of Quiet Zones
- This is a difficult challenge that is never finished and must always be considered

Radio Frequency Interference (RFI)

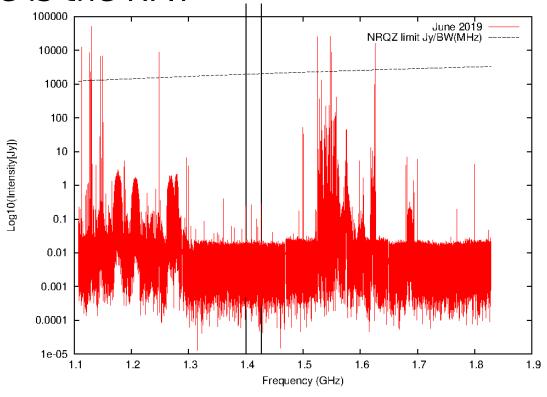
Where is the RFI?


The RFI "Myth" - a legal viewpoint

- Interference is:
 - <u>not</u> any unwanted signal
- Interference is:
 - Emission out of designated frequency band
 - If applicable: intensity above allowed limits

Radio Frequency Interference (RFI)

Where is the RFI?



Radio Frequency Interference (RFI)

Where is the RFI?

RFI excision

- Prior to observing
- During the observation
- Post observation

Planning prior to observing

- Understand the RFI environment
 - RFI plots

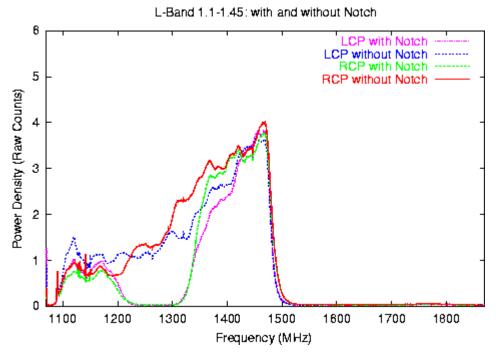
Planning prior to observing

- Understand the RFI environment
 - RFI plots
 - A bandpass shift can save an observation
 - How often does RFI appear
 - Post observing flagging produces better results if data sampled faster than RFI changes
- Can a mitigation solution be found?

RFI excision during observing

- Adaptive Cancellation
- Filters/spectral channel suppression
- Blanking
- Future
 - Non-Guassian statistics, e.g. Spectral Kurtosis
 - Al/Deep Learning

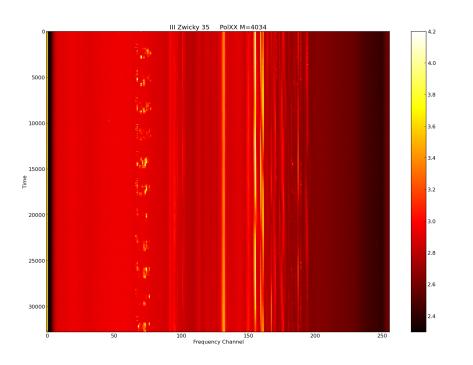
Adaptive Cancellation

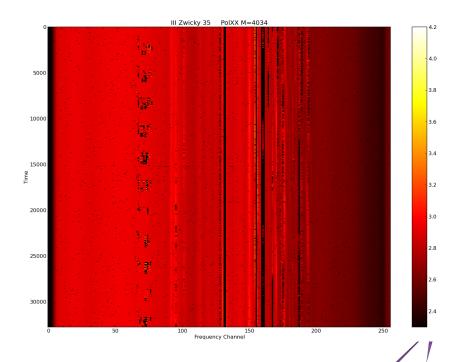

- Uses 2nd antenna to measure RFI
- "Matches phases" between antennas to cancel RFI signal
- Works well in cases of single strong RFI signal
 - ATNF has canceled signal from TV repeater
- Multiple interferes and multi-path are issues

Filters/spectral channel suppression

- GBT has a notch filter
 - 1250-1350 MHz
 - Covers FAA radar and Aeronautical Nav. Signals

Blanking


- Former Arecibo radar pulse blanker
 - Known time of arrival
 - Known frequency
 - Known phase
- Can avoid integrating when radar signal present
- Radar is now frequency agile so blanking no longer works



- Non-Guassian Statistics
 - Signals from space are random and have Gaussian profiles
 - RFI is not random or Guassian
 - Spectral Kurtosis
 - Kurtosis measures how Gaussian data are
 - Can blank time series of raw voltages above a given threshold
 - Cyclic Spectroscopy
 - Filters "repeating" patterns

- Spectral Kurtosis
 - Signals from space have Gaussian profiles
 - RFI does not
 - Kurtosis measures how Gaussian data are
 - Can blank time series of raw voltages above a given threshold
- Expect problems once >50% of signals are RFI

- Artificial Intelligence/Deep Learning
 - Research into this method has begun
 - Shows promise

Flagging

- Time domain
 - Looks for anomalously bright voltages
 - Replaces values above a threshold
- Spectral domain
 - Flag specific spectral channels vs time

RFI excision Pros/Cons

- Prior to observing
 - 100% efficiency in observing
 - May rely on kindness of other
- During the observation
 - Self contained
 - > 50% of data may need to be flagged in 5-10 years, depending on frequency
- Post observation
 - Less data volume
 - Greatest amount of flagged observing time

State of RFI

- Automobile Collision Avoidance Radar
 - Sep 1, 2021 required on 99% of new cars in US
 - 76-81 GHz
- Space based internet
 - Some companies cooperating, some are not
 - Many bands 12-50 GHz will be used
- 5G
 - Many bands ~700 MHz to 50 GHz
- Communication companies want to move to 70-120 GHz
- Many "clean" observing bands will begin to have RFI over the next few years

State of RFI

"Shared Spectrum"

- expected to become the new normal
- Radio Astronomy bands above 60 GHz are shared with other users
- National Radio Dynamic Zones
 - Investigating how different (industry) users can share spectrum
 - Requires monitoring of spectrum to know how it is being used
 - Technologies have strong overlap with Radio Astronomy

What can you do?

- Spectrum management is a challenging issue which must be tackled for radio astronomy to flourish
- Crowding of the spectrum is increasing and will continue to do so
 - Space for radio astronomy is shrinking
- How you can help:
 - Report RFI as soon as possible
 - Be conscious of using electronic devices near radio telescopes
 - Take an active role in spectrum management
 - Without action the spectrum will disappear

RFI and How to Deal with It

