Cryogenic Receiver Technology

Steven White Green Bank Observatory

- GBT Optics
- Feeds
- GBT Receivers
- Focal Plane Array
- Phase Array Feed Receivers
- Ultra Wide Band Feeds

Specify diameter: 100m Set focal distance: 60 m Specify dish center: 54 m

> Cone: $\theta_{\rm H}$ = 39.005° Cone: $\theta_{\rm o}$ = 42.825°

Specify Optics: Gregorian Specify ellipse: e = 0.528Specify focal distance: 11 m (7.55x7.95 m) Feed Half Angle: 15 °

- 100 meter <u>Offset</u> design from a 600 meter paraboloid
- Weight: 17,000,000 lbs.
- Focal Length 60 meters.
- Surface Accuracy: < 240 μ meters
- Track Flatness: +/- 125 μ meters
- Delta height of track: 0.1 mm

Losses:

- Blockage efficiency:
- illumination efficiency:
- Spillover efficiency: η_s
- Phase efficiency: η_p
- xPolarization efficiency: η_x

Real telescope: $\eta_a = \eta_b \eta_i \eta_s \eta_p \eta_x$

Single Dish 2021.09.14

(GBT =0)

 η_{b}

 η_t

Fourier transform relationship

Far-field beam pattern is Fourier transform of aperture plane electric field distribution

Corrugated Horns

Analytical Expressions are closed form.

Defined Edge Taper

Good Impedance Match

Diameter ~ 3 λ GBT Optics

Corrugated Feed Horn Fields

Design and Measurement of Conical Corrugated Feed Horns for the BIMA Array, Xiaolei Zhang, 1991, Memo 17

Prime Focus Feed

Cross Dipole 290-395 MHz

S, Ku (2x), L

Gregorian Feeds

W band feed

Receiver Noise Power

 $N_{RX} = k T_{eq} B$ [Watts] Raleigh Jeans Law

- k: Boltzmann's Constant
- T: Temperature
- B: Bandwidth

Amplifier Equivalent Noise

 $P_o = GkBT_s + K$

Define K = GkBT_e

```
Then, P_o = GkB(T_s + T_e)
```

T_e is the amplifier Equivalent Input Noise Temperature

Input Losses 0.1 dB ~ 7K at room temperature (290 K)

Linear Polarization

Orthomode Transducer

Circular Polarization

Typical Heterodyne Receiver

Radio Source Properties

- Total Power (continuum: cmb, dust)
 - Correlation Radiometer Receivers (Ka Band)
 - Bolometers Receivers (MUSTANG)
- Frequency Spectrum (Spectroscopy: HI, Astrochemistry, Pulsars)
 - Heterodyne
 - Prime 1 & 2, L, S, C, X, Ku, K, Ka, Q, W
- Dual Polarization (magnetic fields, stokes parameters)
 - Requires OMT
 - Circular requires OMT & Phase Shifter, Septum Polarizer, or Hybrid.
 - Limits bandwidth raises T_{RX}
- Very Long Baseline Interferometry (VLBI)
 - Phase Calibration

Prime Focus Receivers

Receiver Frequency		T _{sys}
• PF1.1	0.290 - 0.395	46 K
• PF1.2	0.385 - 0.520	43 K
• PF1.3	0.510 - 0.690	30 K
• PF1.4	0.680 - 0.920	22 K
• PF2	0.910 - 1.230	20 K

Frequency [GHz]	WG Band	Temperature [ºK]
1.3-1.8 $2-3$ $4-6$ $8-10$ $12-15$ $18-26.5$ $26-40$ $40-52$ $68-92$ $75-115$ $80-100$	L S C X Ku K Ka Q ~E W W	20 22 23 27 30 30-40 35-45 67-134 30-90 >100 NEP: ~ 10 ⁻³¹ [W ² /Hz]

GBT Receivers

Ka Band

W Band (2 Pixel)

Q band

Inside Receiver Room

Focal Plane Arrays

K Band Focal Plane Array

7 Pixel K band Receiver

Star Formation in a Filament in Taurus

ARGUS 16-pixel W-band Feed Array; 75-116 GHz

- 16 InP MMIC RF amplifiers cooled to 15 K
- Noise temperature < 50-60 K
- Open for general use
- A collaborative effort: S. Church [PI], M. Sieth, K. Devaraj, P. Voll (Stanford); A. Readhead, K. Cleary, R. Gawande (Caltech);
 L. Samoska, P. Kangaslahti, T. Gaier, P. Goldsmith (JPL), A. Harris (U. Maryland); J. Gunderson (U. Florida)
- Receiver described in Seith et al. 2014, Proc. SPIE 9153

ARGUS

Component	Physical Temp. (K)	Gain (dB)	Contrib. to Rec. Noise Temp (K)
Cryostat window	300	-0.07	4.9
Entrance feedhorns	20	-0.04	0.2
MMIC module	20	25.0	33.9
Module to 20K board	20	-1.0	< 0.1
20 K board	20	-3.3	< 0.1
IF flex line	20-77	-1.4	0.1
77 K Board	77	-1.8	0.4
IF Amplifier	77	15	1.8
77 K Board	77	-1.8	< 0.1
IF flex line	77-300	-5.5	0.4
Projected Receiver Gain/	Temperature	25.1 dB	42 K

ARGUS

HCO+ 10 min snapshot; 8" <-> 0.005 pc at

MUSTANG-2

223 Feedhorn Bolometer Array

4' FoV; 10" beam 63 μ Jy; 0.062 mK (T_A*) across a 5'× 5 ' field in 1 hour Sunyaev–Zel'dovich effect

Orion Molecular Cloud complex: GBT+MUSTANG image of dust (orange) against the visible light (purple).

Collaboration: University of Pennsylvania (M. Devlin, PI), National Institute of Standards, Green Bank Observatory, National Radio Astronomy Observatory, University of Michigan, Cardiff University

Phased Array Feed

Cryogenic PAF

$$SurveySpeed \propto N\left(\frac{\eta}{T_{sys}}\right)^2$$

Sample aperture: $\frac{f \lambda}{D}$

Performance of a Highly Sensitive, 19-element, Dual-polarization, Cryogenic L-band Phased-array Feed on the Green Bank Telescope

Authors:

Anish Roshi, D.; Shillue, W.; Simon, B.; Warnick, K. F.; Jeffs, B.; Pisano, D. J.; Prestage, R.; White, S.; Fisher, J. R.; Morgan, M.; Black, R.; Burnett, M.; Diao, J.; Ruzindana, M.; van Tonder, V.; Hawkins, L.; Marganian, P.; Chamberlin, T.; Ray, J.; Pingel, N. M.; Rajwade, K.; Lorimer, D. R.; Rane, A.; Castro, J.; Groves, W.; Jensen, L.; Nelson, J. D.; Boyd, T.; Beasley, A. J.

• 2018, AJ, 155, 202

- <u>Formed L</u> Band Phased <u>Array</u> <u>GBT</u> Feed
- The March 2017 GBT test was successful, demonstrating:
 - Seven low-noise beams on sky
 - Tsys/eff of central beam <30K
 - Close correspondence between measured result and model
- Digital Data Links (DDL)
- BeamFormer Backend.

Sensitive Phased Array Feed

NRAO and Green Bank Observatory break the record for the coldest, most sensitive phased array feed system on Earth!

Ultrawideband Receiver

Ahmed Akgiray Thesis

New Technologies Driving Decade-Bandwidth Radio Astronomy:

Quad-Ridged Flared Horn & Compound-Semiconductor LNAs

> Thesis by Ahmed Halid Akgiray

In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

Figure 4.11: Three-dimensional CAD drawings of the high-gain quad-ridge horn. Feed diameter is 82 cm $(1.9\lambda_{lo})$ and length is 73.2 cm $(1.7\lambda_{lo})$ with $f_{lo} = 0.7$ GHz

4.3 High-Gain QRFH

• Wideband Feed Development

- 0.7 to 4 GHz
- Corrugation
- Quartz Spear
- Quartz Vacuum Window

UWBR Photographs

