Combining Single Dish & Interferometer Data

--- Tapasi Ghosh, with many thanks to Natalie Butterfield and Snezana Stanimirovich

SDSS-2021

Imaging SD vs Interferometer Data

"Single Dish data" <= extrapolated from to 3mm from 500-micron Herschel data (33" beam) using a "greybody" spectrum. Dust continuum and molecular line emission in a particular region of the CMZ

The fundamental idea behind Interferometry :

There exists a Fourier Transform relation between the sky brightness distribution, I and the response of a radio interferometer.

If the distance between two antennas (the baseline) is **d**, then the so-called visibility function, $V(\mathbf{d})$, is given by:

$$V(\mathbf{d}) = \int_{\text{source}} A(\boldsymbol{\sigma}) I(\boldsymbol{\sigma}) \exp\left[-2\pi i \ \mathbf{d} \cdot \boldsymbol{\sigma}/\lambda\right] d\Omega \ . \tag{1}$$

Here, $A(\boldsymbol{\sigma})$ is an antenna reception pattern, or **primary beam**, and $\boldsymbol{\sigma}$ is the vector difference between a given celestial position and the central position of the field of view. The **aperture synthesis technique** is a method of solving Equation 1 for $I(\boldsymbol{\sigma})$ by measuring V at suitable values of **d**.

$$V(u,v) = \int \int A(l,m)I(l,m) \exp[-2\pi i(ul+vm)] \frac{dldm}{\sqrt{1-l^2-m^2}} .$$
 (2)

Therefore, the visibility function V(u, v) can be expressed as the Fourier transform of a modified brightness distribution A(l,m)I(l,m). Coordinates u and v(w = 0) are measured in units of wavelength and the u - v plane is called **the spatial frequency domain**. These are effectively projections of a terrestrial baseline onto a plane perpendicular to the source direction. The l - m plane is referred to as **the image domain**.

Hence, if V(u, v) is a true (ideal) visibility function, the measured (observed) visibilities (V'_{int}) can be expressed as:

$$V'_{\rm int}(u,v) = V(u,v)b_{\rm int}(u,v) .$$
(3)

 b_{int} is usually representable by a set of δ -functions, between the lowest and the highest spatial frequency sampled by the interferometer (corresponding to the shortest and the longest baselines, respectively). The Fourier transform of Equation 3 gives the observed sky brightness distribution $I_{\text{int}}^{\text{D}}$ (so called 'dirty' image):

$$I_{\rm int}^{\rm D}(l,m) = I(l,m) * B_{\rm int}(l',m') , \qquad (4)$$

where B_{int} is **the synthesized or 'dirty' beam**, which is the point source response of the interferometer. As usually, asterisks (*) are used to denote convolution. When imaging, incomplete u - v coverage leads to severe artifacts.

For imaging larger objects, with angular sizes > λ / d_{min} , mosaic technique can help filling the u-v coverage, but the central ($d_{min} - D/2$) region can not be filled. This is often referred to as the "short-spacing problem".

Single Dish as an Interferometer

A Single Dish can be thought of to be a collection of many small panels, acting as interferometer elements with their signals being combined at the focus.

The observed sky brightness distribution $I_{\rm sd}^{\rm D}$ in the case of single-dish observations is then given by:

$$I_{\rm sd}^{\rm D}(l,m) = I(l,m) * B_{\rm sd}(l',m'),$$
(5)

with $B_{\rm sd}$ being the **single-dish beam** pattern. The Fourier transform of Equation 5 gives the observed single-dish 'visibilities', $V'_{\rm sd}$:

$$V'_{\rm sd}(u,v) = V(u,v) \times b_{\rm sd}(u,v) \tag{6}$$

where $b_{\rm sd}$ is the Fourier transform of the single-dish beam pattern which, unlike $b_{\rm int}$, is a continuous function between zero and the highest spatial frequency sampled by the single-dish. Determination of I from $I_{\rm sd}^{\rm D}$ requires deconvolution,

• Before adding single dish data in any manner ,one needs a relative calibration factor $f_{cal} = \frac{S_{int}}{S_{sd}}$ by which the single

dish data should be multiplied

- If the calibration is perfect
- If $D_{sd} > b_{min}$ one can compare the fluxes in the overlap region to determine I_{int}

Method 1:

Adding the SD & Intf. Data in the UV plane.

(a) FT each images
(b) Add –with Scaling
Factor
(c) Inverse FT to the image plane

Method 2:

Adding the SD & Interferometer data in the Image plane.

(a) Add the images with
Scaing Factor
(b) Add the beams
(c) Deconvolve
combined dirty beam
From the combined
dirty image

Measuring Visibilities

Mathod 1 : Feathering in CASA

- Combination of SD+IF data is 'feathering'
 - Fill in short UV-spacing information
- To maximize flux recovery and image quality you want a single dish size of D>1.5x B_{min}
 - For the GBT: VLA arrays D & C; ALMA arrays C43-1 C43-7
 - For Arecibo: VLA array D, C, & B
- CASA task: 'Feather'
- Valid Flux Measurements
 - Need single-dish data to get valid flux measurements

Valid Flux Measurements

Missing flux from large scale structures can effect measurements!

The Astrophysical Journal, 805:72 (25pp), 2015 May 20

Continuum Regions												
		Measured Flux (mJy) ^a						Spectral Index				
	Area	Cont.	24.1	25.4	27.5	36.4	90.0 ^b	90.0 ^e	(24–90 GHz)		$\log N_{1.yc}$	
	(sq'')	Level	(GHz)	(GHz)	(GHz)	(GHz)	(GHz)	(GHz)	Uncorrectedb	Corrected ^c	$(\text{phot } \text{s}^{-1})$	
C1	35.7	10σ	4.6 ± 0.1	4.6 ± 0.2	4.2 ± 0.2	2.6 ± 0.1	3.1 ± 0.1	6.6 ± 0.3	-0.29 ± 0.01	0.27 ± 0.03	46.5	
C2	279.1	6σ	18.8 ± 0.1	18.7 ± 0.1	15.6 ± 0.1	8.2 ± 0.2	10.5 ± 0.1	27.3 ± 0.3	-0.43 ± 0.01	0.28 ± 0.03	47.2	
C3	27.6	10σ	2.3 ± 0.1	2.4 ± 0.1	2.1 ± 0.1	2.6 ± 0.2	5.9 ± 0.1	11.3 ± 0.6	0.68 ± 0.01	1.17 ± 0.05	45.9	
C4	14.8	6σ	1.0 ± 0.1	0.9 ± 0.1	0.9 ± 0.1	0.5 ± 0.1	1.9 ± 0.1	4.2 ± 0.5	0.52 ± 0.09	1.1 ± 0.1	45.9	
C5	16.1	10σ	6.3 ± 0.1	5.6 ± 0.2	4.0 ± 0.1	NA	1.0 ± 0.2	1.9 ± 0.4	-1.31 ± 0.03	-0.86 ± 0.05		
C6	81.6	6σ	4.5 ± 0.1	4.2 ± 0.1	5.5 ± 0.1	6.1 ± 0.1	11.8 ± 0.1	26.6 ± 0.5	0.74 ± 0.07	1.34 ± 0.09	46.5	
C7	161.9	6σ	10.7 ± 0.1	8.4 ± 0.2	10.1 ± 0.2	5.9 ± 0.2	8.3 ± 0.1	28.4 ± 0.4	-0.1 ± 0.15	0.8 ± 0.18	46.9	
C8	164.2	6σ	8.4 ± 0.1	5.7 ± 0.1	6.3 ± 0.1	2.8 ± 0.1	6.4 ± 0.1	32.3 ± 0.5	-0.1 ± 0.17	1.1 ± 0.14	46.8	
C9	521.8	6σ	43.4 ± 0.1	34.1 ± 0.2	37.7 ± 0.2	35.8 ± 0.2	24.4 ± 0.3	80.9 ± 0.3	-0.3 ± 0.25	0.6 ± 0.3	47.5	
C10	7.7	10σ	1.6 ± 0.1	1.6 ± 0.2	NA	NA	0.6 ± 0.1	1.0 ± 0.1	-0.73 ± 0.03	-0.35 ± 0.01		

Table 3

^a "NA" indicates this region was outside or near the edge of the field of view.

^b Values from 3 mm ALMA-only image of Rathborne et al. (2014b).

^c Values from single-dish-corrected ALMA image of Rathborne et al. (2014b).

Mills et al. (2015)

Example of Feathering

EVLA NH₃ (multi-scale CLEANed)

Summary

- Interferometers can produce higher resolution images than Single Dish telescopes, but are not sensitive to emission on size scales greater than the largest angular scale defined by its shortest baseline.
- The characteristic signs of missing extended flux-density in an image are negative bowls surrounding the main emission region.
- Single dish and <u>interferometer</u> data can be combined to get high resolution images that are also sensitive to diffuse emission.
- Several techniques to combine data are possible :
 - Image domain
 - Fourier domain ("Feathering")
 - During deconvolution
 - <u>GBT</u> can be used with <u>JVLA-C</u> and -D configurations & with ALMA
- Feathering is the default image combination method in <u>CASA</u>

"Give Me Back My Short Spacings!"

