

Spectral line data reduction

Pedro Salas

GBO postdoc

GBT observer training workshop, May 24th, 2021

Outline

- Introduction to single dish calibration.
- Tracking observations:
 - Data reduction in GBTIDL.
- Mapping observations:
 - Data reduction with the gbtpipeline.
- High-frequency calibration.

A single dish telescope measures power:

$$P^{[ext{cal}]}(
u) = G(
u) \left[T_{ ext{sou}}(
u) + T^{[ext{cal}]}_{ ext{sys}}(
u)
ight]$$

with

$$T_{
m sys}^{
m [cal]}(
u) = T_{
m atm} + T_{
m spill} + T_{
m sw} + T_{
m rx}\left[+T_{
m cal}
ight]$$

we are after

$$T_{
m sou}(
u)$$

How do we get to $T_{sou}(\nu)$ from $P^{[cal]}(\nu)$?

From $P(\nu)$ to $T_{
m sou}(
u)$

$$T_{
m sou} + \Delta T_{
m sys} = T_{
m sys, off}^{[
m cal]} rac{P_{
m on}^{[
m cal]} - P_{
m off}^{[
m cal]}}{P_{
m off}^{[
m cal]}}$$

we also need to know $T_{
m sys, off}^{
m [cal]}$

$$T_{
m sys, off} = T_{
m cal} \left[rac{P_{
m off}^{
m cal}}{P_{
m off}} - 1
ight]^{-1}$$

All quantities are frequency dependent

From P(
u) to $T_{
m sou}(
u)$

$$T_{
m sou} + \Delta T_{
m sys} = T_{
m cal} \left[rac{P_{
m off}^{
m cal}}{P_{
m off}} - 1
ight]^{-1} rac{P_{
m on} - P_{
m off}}{P_{
m off}}$$

Changes to T_{cal} are linear in T_{sou}

Observing strategies

Position switching:

- 1. On-Off
- 2. Beam nodding
- 3. Sub-beam nodding

Frequency switching: 1. In band 2. Out of band

Strategy will depend on source properties and science goals. (See Dave Frayer's talk).

There are other options, and you can mix these alternatives.

Position switching

*It is better to keep the elevation constant

• The science target is the "On" position.

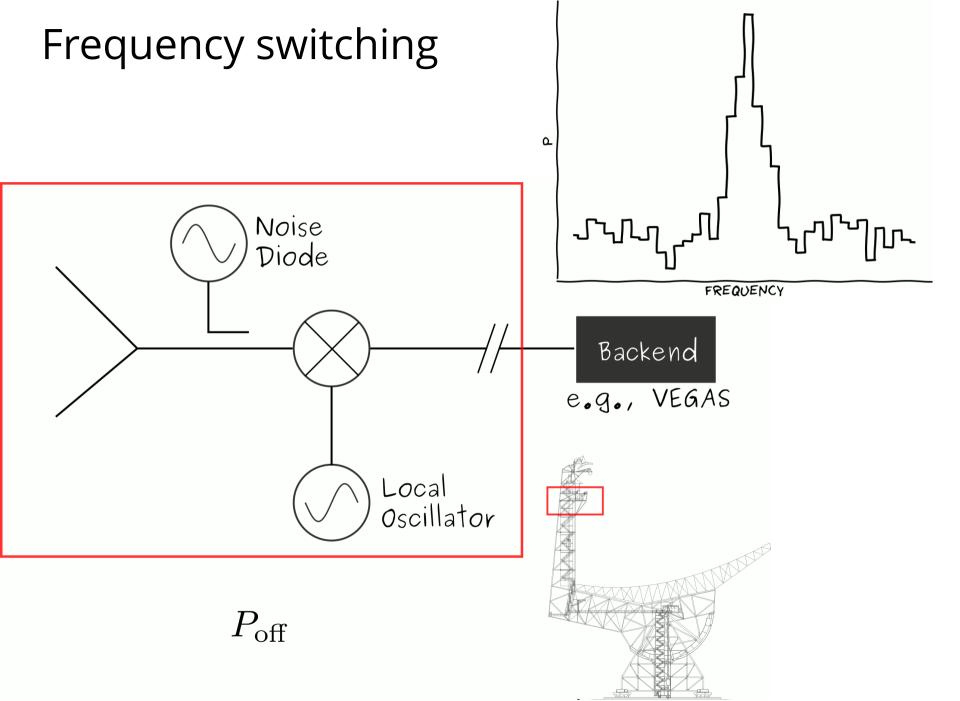
$$P_{\mathrm{On}}^{\mathrm{[cal]}}(
u) = G(
u) \left[T_{\mathrm{sou}}(
u) + T_{\mathrm{sys}}^{\mathrm{[cal]}}(
u)
ight]$$

• An "empty" region is the "Off" position.

$$P_{ ext{Off}}^{ ext{[cal]}}(
u) = G(
u) \left[T_{ ext{sys}}^{ ext{[cal]}}(
u)
ight]$$

1 # In AstrID: 2 OnOff(location, referenceOffset, scanDuration, beamName)

Position switching


The Off region should not have emission/absorption (the Off region should be more than a beam away from your source). The On-Off cycle should be faster than fluctuations in the telescope's gain (for narrow features ~few minutes <10 GHz, faster above).

Useful for:

- Observations of broad (>100 km s⁻¹) spectral lines.
- Observations of sources with crowded spectrum.

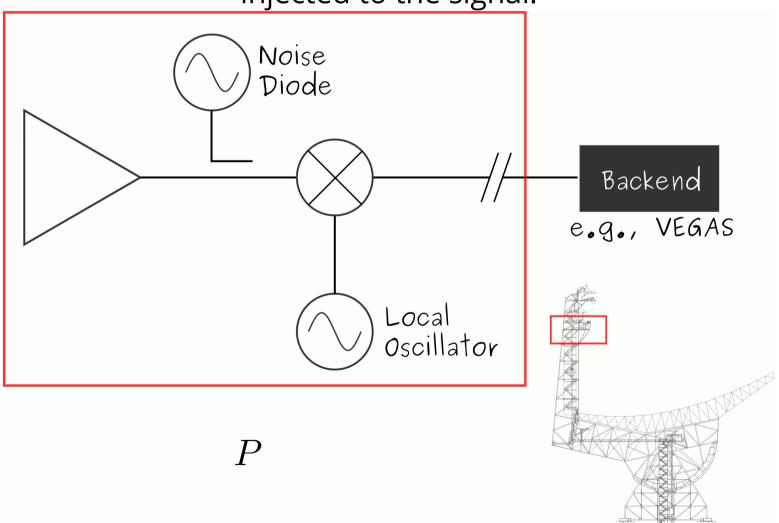
Drawbacks:

- Lost time slewing.
- Differences in $P_{\rm on}$ and $P_{\rm off}$ produce residual baselines.

Frequency switching

The Off region should not have emission/absorption. Be aware of the RFI environment (you do not want to switch to a region with RFI).

Useful for:

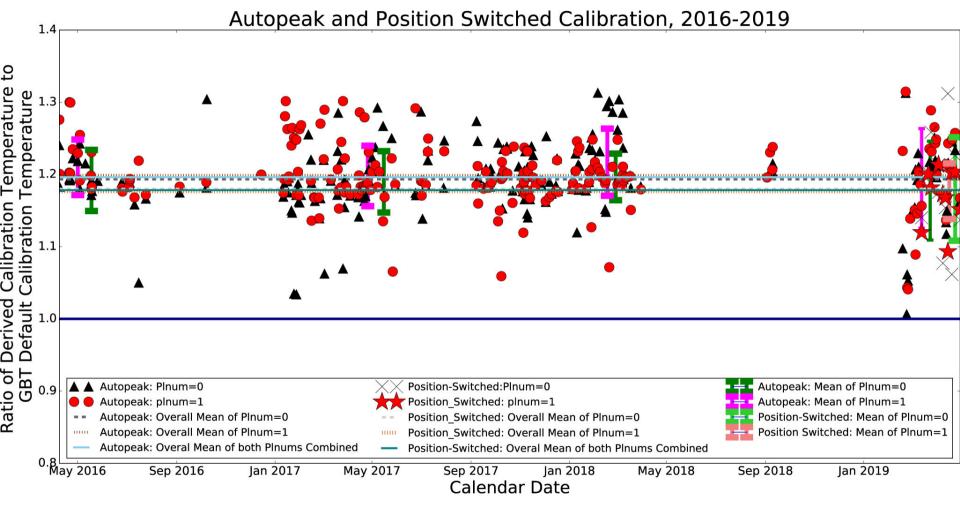

• Observations of narrow (\leq 10 km s⁻¹) spectral lines.

Drawbacks:

- Need to know source velocity *a priori*.
- For larger $\Delta \nu$, larger residual baseline.
- No continuum measurements.

What is T_{cal} ?

Is the equivalent temperature of a noise source injected to the signal.


A note on $T_{ m cal}$

By default the metadata includes a scalar value for $T_{\rm cal}$. However,

- It is a scalar (good approximation for some receivers).
- You don't know when it was measured (the temperature of the noise diodes drifts).

→ Perform observations of a calibrator source!

A note on $T_{ m cal}$

Goddy+2020

→ Perform observations of a calibrator source!

A note on $T_{ m cal}$

Calibrators should:

- Have a known flux density at your observing frequency.
- Be stable in time (or you should know its flux density at the time of your observation).
- Be point-like.

Standard calibration sources and their properties:

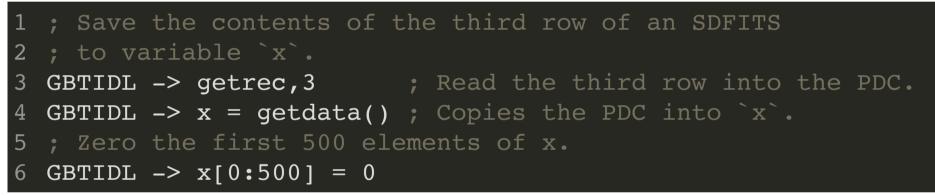
- Perley & Butler 2017
- Ott et al. 1994

GBTIDL

- GBO supported data reduction software.
- Written in IDL.
- Locally available: user@planck\$ gbtidl
- Supports spectral line data reduction.
- Knows about most spectral line observing modes, e.g., On-Off, Track, frequency switching, beam nodding.
 GBTIDL -> getps, 1 GBTIDL -> getfs, 10

Code & documentation: http://gbtidl.nrao.edu/

GBTIDL: getting help


1 GBTIDL -> usage, 'show'	; Lists optional arguments.
2 GBTIDL -> usage, 'show', /verbose	; Describes the command.
3 GBTIDL -> usage,'show', /source	; Show source code.

GBTIDL: data access

1 GBTIDL -> online	; To access the active project.
2 GBTIDL -> offline, 'AGBT16B_037_04'	; To access a project in /home/sdfits.
3 GBTIDL -> filein, 'mySDFITS.fits'	; To access an SDFITS file in
4	; another location.

GBTIDL: data containers

GBTIDL stores the data in containers (array like structures). There are 16 of them, and the first (0) is called the primary data container (PDC).

Container arithmetic

- 1 ; Add data containers 10 and 11 and save into 12
- 2 GBTIDL -> add,10,11,12
- 3 ; Subtract data containers 10 and 11 and save into 12
- 4 GBTIDL -> subtract, 10, 11, 12
- 5 ; Divide data containers 10 and 11 and save into 12
- 6 GBTIDL -> divide, 10, 11, 12

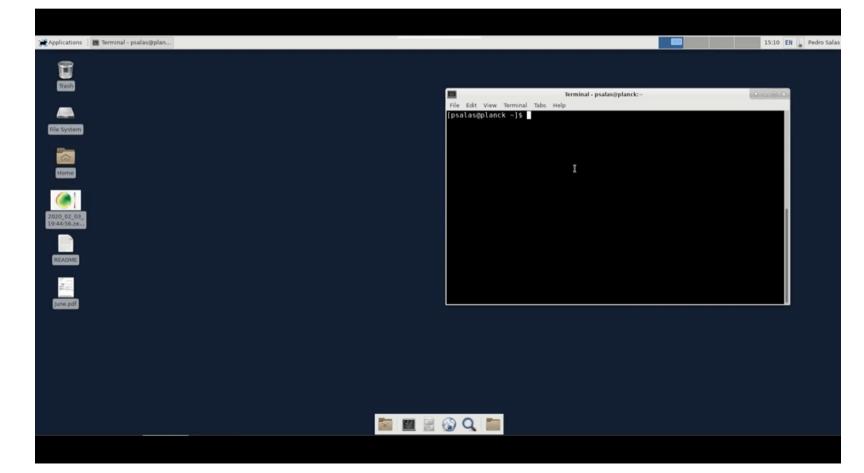
GBTIDL: observation information

1	GBTIDL ->	summary	;	Summary of loaded session.
2	GBTIDL ->	header	;	Metadata of container 0
3	GBTIDL ->	list	;	List the contents of each
4			;	row in the SDFITS.

GBTIDL: baseline fitting

1	GBTIDL ->	setregion	;	Define region for baseline fitting.
2	GBTIDL ->	nfit,3	;	Set polynomial order.
3	GBTIDL ->	bshape	;	Fit polynomials to selected ranges.
4	GBTIDL ->	baseline	;	Subtract baseline.

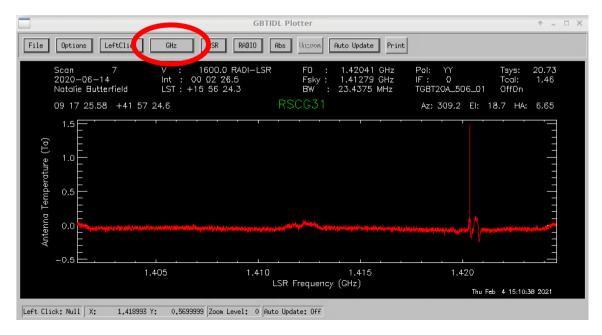
GBTIDL: smoothing


1 ; Smooth spectrum in PDC by 5
2 ; channels, keeping every 5th
3 ; channel.
4

- 5 ; Using a Gaussian kernel.
- 6 GBTIDL -> gsmooth,5,/decimate
- 7 ; Using a boxcar kernel.
- 8 GBTIDL -> boxcar,5,/decimate

GBTIDL: Gaussian fitting

1 ; Fit a Gaussian to the spectrum 2 ; on display. You will specify the 3 ; region to be fitted and starting 4 ; guesses using the GUI. 5 GBTIDL -> fitgauss

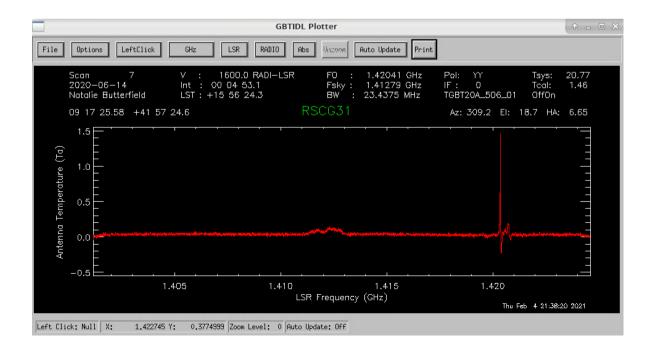

offline, 'TGBT20A_506_01'	Connect to project TGBT20A_506 session 01.
summary	List the contents of the sdfits file.
getps,6	Get position switched data for scan 6.
gsmooth,10	Smooth the data using a Gaussian kernel 10 channels wide.

Data courtesy of A. Bonsal & N. Butterfield

Try it yourself:

- Open GBTIDL, load the data for this example, TGBT20A_506_01, and plot the spectrum.
- Convert the frequency axis into velocity.
- What is the velocity of the object?
- Does it agree with the optically derived velocity? (see Barton+1996)

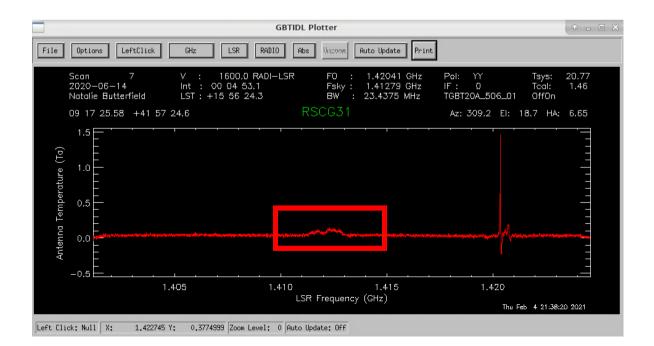
average_RSCG.pro

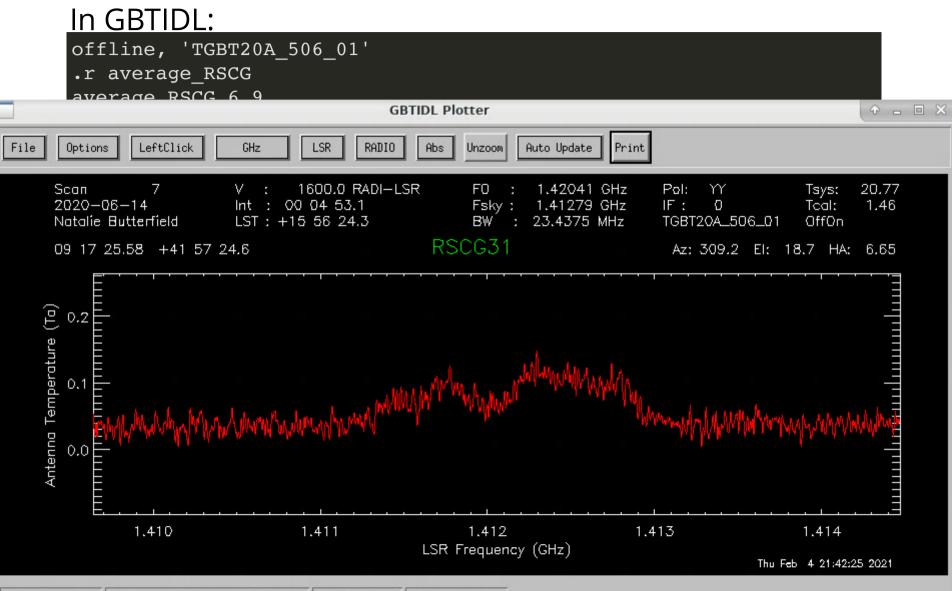

```
pro average RSCG, scan start, scan end
    sclear ; Clears the default global accumulator.
    freeze ; Turn off the plotter's auto-update feature.
    for i=scan start, scan end, 2 do begin
        getps, i
        accum
    endfor
    ave
    show
    return
end
```

Save as a text file in \${HOME}/gbtidlpro

In GBTIDL:

offline, 'TGBT20A 506 01' .r average RSCG average RSCG, 6, 9 show gsmooth,12 show fileout, 'rscg31 spec.fits' ; Save to this fits file. keep

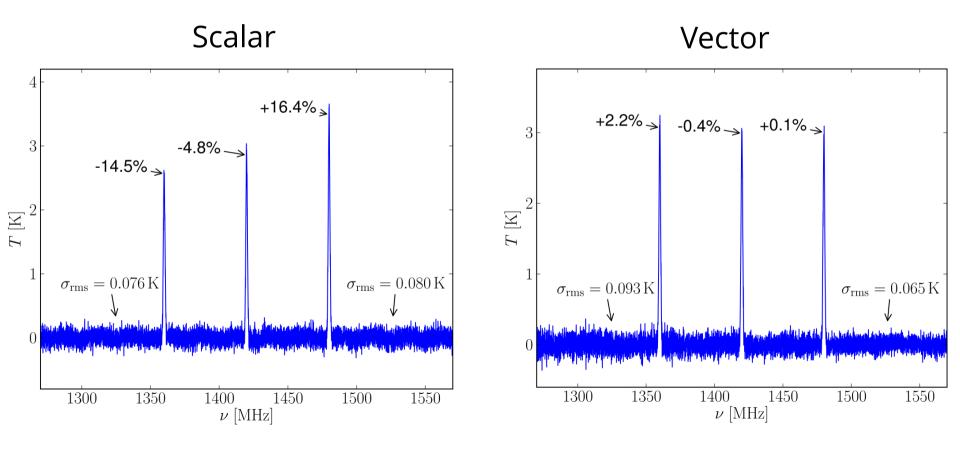

Display the averaged spectrum. Smooth using a Gaussian kernel. Show the smoothed spectrum. Save the primary data container (PDC) to the fits file.



In GBTIDL:

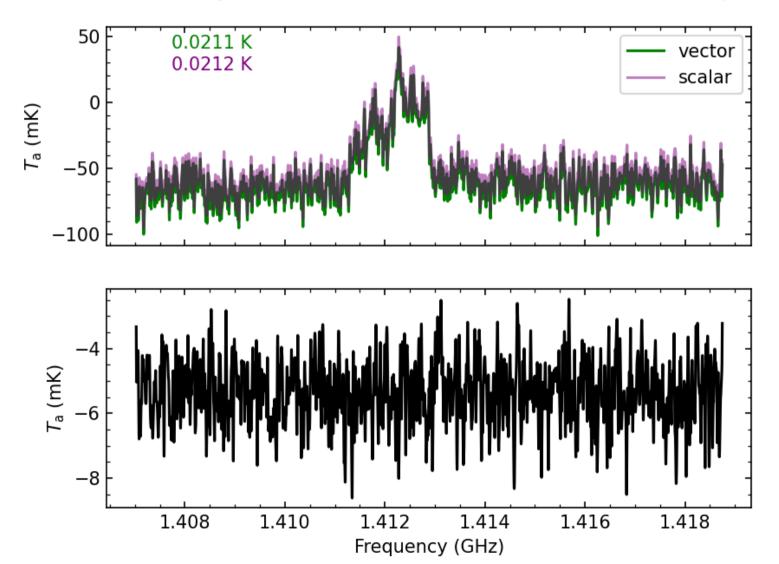
offline, 'TGBT20A 506 01' .r average RSCG average RSCG, 6, 9 show gsmooth,12 show fileout, 'rscg31 spec.fits' ; Save to this fits file. keep

Display the averaged spectrum. Smooth using a Gaussian kernel. Show the smoothed spectrum. Save the primary data container (PDC) to the fits file.

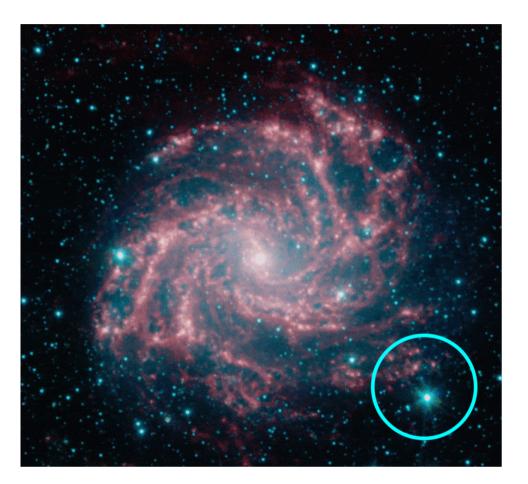


Left Click: Null X: 1,413447 Y: -0,1443027 Zoom Level: 2 Auto Update: Off

Scalar vs vector calibration


Using averages while calibrating introduces biases, particularly if there are standing waves and/or a non-flat frequency response (e.g., power law in T_{cal}).

Winkel+2012

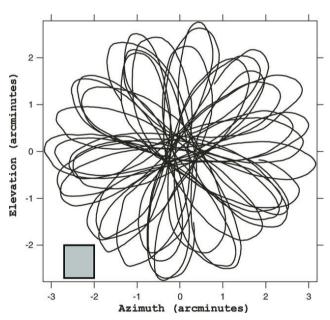

Scalar vs vector calibration

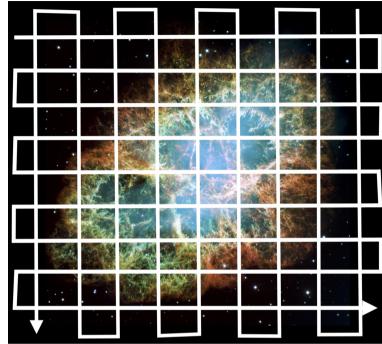
GBTIDL uses averages, but the GBT has an unblocked aperture :)

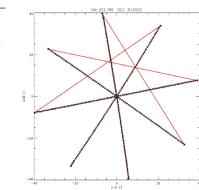
Mapping

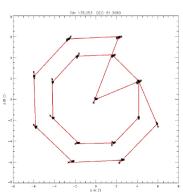
The telescope "scans" an area while tracking the map center.

Mapping

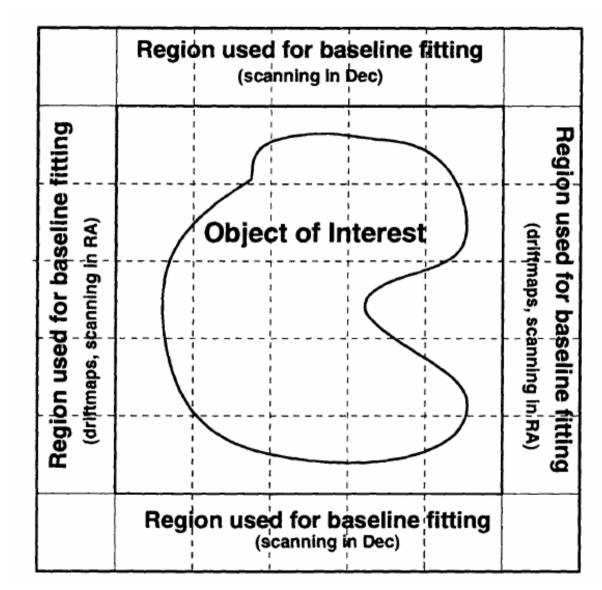

There a re different mapping patterns.


On-the-fly (see e.g., Mangum+2000):


- RaLongMap, DecLatMap
- Daisy


Grid:

- PointMap Others:
 - Spider
 - Z17



Mapping

If there are regions free of emission in the mapped area, you can use these as Off positions.

O'Neil 2002

to_ta.pro

```
pro to ta, file out, scan ref, scan start, scan end, int start, int end, if num
    ; Process mapping scans and save them to file out.
    ; It uses scan ref as reference scan.
    ; Starts with scan start scan and ends at scan end scan, inclusive.
    ; Process each integration individually, starting at int start and
    ; ending at int end, inclusive.
    ; Only process data for spectral window if num.
    freeze ; Turn off the plotter's auto-update feature.
    fileout, file out
    ; Loop over scans, converting to antenna temperature
    ; using the reference position. It saves each integration
    ; into a new fits file.
    for i=scan start, scan end, 1 do begin
        for j=int start, int end, 1 do begin
            getsigref, i, scan ref, intnum=j, ifnum=if num
            keep
        endfor
    endfor
    return
end
```

Save as a text file in \${HOME}/gbtidlpro

Once the data is calibrated use the *gbtgridder* to produce a data cube.

gbtgridder -c 11000:11251 -a 7 --noline --nocont -o output input.fits

This will produce a data cube *output_cube.fits* with channels 11000 to 11251 averaged by a factor of 7. Also, a map of weights *output_weight.fits*.

Source code at: https://github.com/GreenBankObservatory/gbtgridder

(No documentation available)

gbtgridder -h ; get help on input options.

GBT pipeline

Calibrates and grids the data. It uses the gbtgridder for gridding.

Works for receivers with noise diodes.

Designed for processing KFPA observations (it has been tested with L band data as well).

Default values suitable for KFPA observations.

Documentation:

https://safe.nrao.edu/wiki/bin/view/GB/Gbtpipeline/PipelineRe lease

Source code:

https://gbt-pipeline.readthedocs.io/en/latest/#

GBT pipeline

Some options:

-i	# Input SDFITS.
-m	# Mapping scans.
refscan	# Scans to use as reference.
-W	<pre># Spectral window to process.</pre>
-C	# Channels to grid.
beam-scaling	<pre># Multiply Tcal by this value.</pre>
imaging-off	# If you do not want to grid.

Example:

gbtpipeline -i my.sdfits.raw.vegas -m 14:24 --refscan 13,26

Map scans: 14 to 24, reference scans 13 and 26

Continuum

Pick receiver, integration time and slew rate to minimize $\frac{1}{f}$ noise (timescale ~1.4 s at C and K band, see e.g., Harper+2015).

There is no observatory supported continuum data reduction package.

Contact your project friend if you are interested in doing continuum science.

Continuum: example

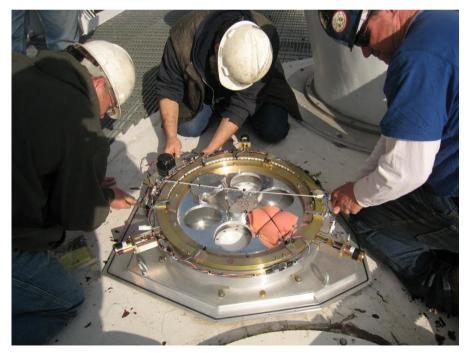
How to fill continuum data?

See: https://github.com/GreenBankObservatory/gbtcalnb/blob/master/gbtcal.ipynb

Contact your project friend if you are interested in doing continuum science.

Questions?

Send feedback to: warmentr@nrao.edu psalas@nrao.edu


The Green Bank Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

Hot & cold loads

ARGUS and the W-band receiver do not use noise diodes, they use hot and cold loads.

The W band receiver can see two loads: $T_{\rm amb}$ & $T_{\rm cold}$.

ARGUS can see one load : $T_{\rm amb}$

W band receiver calibration wheel.

Hot & cold loads

W-band

$$G = rac{(T_{
m amb} - T_{
m cold})}{(P_{
m amb} - P_{
m cold})}$$

$$T_{
m sys} = GP_{
m off}$$

$$T_{\mathrm{a}} = T_{\mathrm{sys}} rac{P_{\mathrm{on}} - P_{\mathrm{off}}}{P_{\mathrm{off}}}$$

Frayer 2019, GBT memo #302

Hot & cold loads

ARGUS

$$egin{aligned} T_{
m a}^* &= T_{
m sys}^* rac{P_{
m on} - P_{
m off}}{P_{
m off}} \ T_{
m sys}^*(t) &= rac{T_{
m cal}}{\left(rac{P_{
m amb}}{P_{
m off}} - 1
ight)} \end{aligned}$$

 $T_{
m cal}\simeq (T_{
m atm}-T_{
m bg})+(T_{
m amb}-T_{
m atm})e^{ au_0A}$

$$T_{
m cal}pprox T_{
m amb}$$

Frayer 2019, GBT memo #302

Temperature scales

- $T_{\rm a}$: Antenna temperature.
- $T'_{a}=T_{a}e^{\tau_{0}A}$: Antenna temperature corrected for atmosphere.
- $T_{a}^{*} = \frac{T_{a}'}{n}$: Forward beam brightness temperature.
- $T_{\rm mb} = \frac{T'_{\rm a}}{\eta_{mb}}$: Main beam antenna temperature.

For the GBT:

- $\eta_l\simeq 0.99$, GBT memo #16 & #19
- $\eta_{mb} = 0.44 \pm 0.04$ @ 86 GHz, GBT memo #302 $\eta_{mb} = 0.94$ @ 5 GHz

SDFITS

Single Dish FITS files. Default data i/o for GBTIDL and gbtgridder. VEGAS and DCR data stored as SDFITS. Definition: https://fits.gsfc.nasa.gov/registry/sdfits.html Details: https://safe.nrao.edu/wiki/bin/view/Main/SdfitsDetails

Community developed data reduction tools

- GAS: KFPA ammonia survey (https://gas.readthedocs.io/en/latest/)
- DEGAS: ARGUS survey (https://github.com/GBTSpectroscopy/degas)
- TMBIDL: general use (https://github.com/tvwenger/tmbidl)
- groundhog: general use (https://github.com/astrofle/groundhog)
- SDgridder: gridder (https://github.com/tvwenger/sdgridder)
- HCGrid: gridder (https://github.com/HWang-Summit/HCGrid)
- sdpy: ??? (https://github.com/keflavich/sdpy)

Questions?

Send feedback to: warmentr@nrao.edu psalas@nrao.edu

The Green Bank Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.