Pulsar Data Reduction
Andrew Seymour
Overview

- PSRFITS format used for all standard pulsar observing modes
 - Slightly different data structure depending on online processing mode (“search” vs “fold” vs “cal” modes)
 - Baseband recording modes available upon special request and coordination; we will not cover these here
- GBO does not maintain an independent pulsar data reduction package
- All GBO pulsar data can be analyzed using community-supported packages
 - PRESTO (especially good for searching for pulsars)
 - PSRCHIVE (especially good for fold-mode data)
 - PSRFITS UTILS (useful for search mode → fold mode)
 - DSPSR (useful for search mode → fold mode; also for processing baseband data)
PSRFITS Overview

• Conforms to FITS standard; compatible with astropy (though other packages provide more functionality)

• “Search” mode, aka filterbank mode
 – High time resolution spectra
 – Can record 1 (summed) or 4 (self/cross product) polarizations
 – Organized into “sub-integrations”

• “Fold” mode
 – Use a pulsar ephemeris to calculate precise rotational phase for each sample
 – Results in data cube of pulse phase vs freq. vs time
 – Must record 4 polarization products

• “Cal” mode
 – Specialized fold-mode for observing pulsed noise diode
Merging VEGAS Data

- Depending on observing mode, data from VEGAS may need to be “merged”

- In coherent dedispersion modes, one sampler is connected to 1, 2, or 8 processing computers (depending on bandwidth)
 - Each computer processes full, \(\frac{1}{2} \), 1/8th total bandwidth
 - Data written to subdirectories by bank (A, B, C, D, E, F, G H)
Merging VEGAS Data

- Depending on observing mode, data from VEGAS may need to be “merged”
- In incoherent dedispersion mode, multiple samplers can be used to cover up to 6 GHz (depends on receiver and IF system limits)
 - Data still written to sub-directories by bank
Merging VEGAS Data

- Depending on observing mode, data from VEGAS may need to be “merged”

- Data will be merged for you within ~24 hours
 - You can still do spot-checks of data from each bank (they are all valid PSRFITS files in and of themselves, just with a fraction of the total bandwidth)

- Search-mode data merged manually
 - Data volumes are large, so per-bank data needs to be deleted after manual checks for data integrity
 - Only fully merged data will be left
 - If you don’t see it within 24 hours, email your project friend
GBO Pulsar Data

- All data are written to a mass file store (/lustre/gbtdata)
- Data further organized by project code and session number
 - e.g. /lustre/gbtdata/TGT21A_501_05
- Data further organized by mode (VEGAS for incoherent dedispersion, VEGAS_CODD for coherent dedispersion)
 - e.g. /lustre/gbtdata/TGBT21A_501_05/VEGAS_CODD

- Please do not analyze your data in these directories!!
 - These areas are archived
 - Create symlinks to files in /home/scratch/<username> or /lustre/pulsar/<username>
Getting Set Up

• To access pulsar data analysis tools, run the following command

  ```
  source /home/pulsar_rhel7/pulsar.presto3.bash
  ```

• You can wrap this in a function in your .bash_profile. Just add the following lines

  ```
  psrenv() {
      source /home/pulsar_rhel7/pulsar.presto3.bash
  }
  ```

• Then just type ‘psrenv’ when you open a new terminal
 – Must be done every time you open a new Linux terminal
• Wrapping in a function is necessary to prevent problems with VNC (remote desktop viewer)
PRESTO

• C and Python-based data reduction package
• Lots of functionality for searching for, finding, folding, and timing pulsars
 - Limited flux calibration routines
 - No polarization calibration
• Lots of additional Python utilities for pulsar astronomy
• https://www.cv.nrao.edu/~sransom/presto/
• Help menus for tools are fairly complete
• Tutorial available from Scott Ransom
 • https://www.cv.nrao.edu/~sransom/PRESTO_search_tutorial.pdf
• Another tutorial available from Ryan Lynch
 - Just ask!
Common PRESTO Commands

- rfifind – Identify and “mask” RFI based on statistical outliers
- prepdata – Dedisperse, sum frequencies, and create time series
- prepsubband – Similar to prepdata; make lots of time series at once
- accelsearch – Find pulsars (including binaries)
- single_pulse_search.py – Find pulsars, RRATs, FRBs through single pulses
- prepfold – Fold a candidate or known pulsar
- get_TOAs.py – Get pulse times of arrival
PSRCHIVE

• C++ tools for working with fold-mode data
• Tools for viewing, editing, RFI-zapping, flux/polarization calibration, extracting TOAs
• http://psrchive.sourceforge.net/
• Online documentation is only partially complete
• Help menus for each program can answer common questions
• Some user-generated recipes for things like calibration
• Python wrapper available for some basic analysis
Common PSRCHIVE Commands

- pav – Lots of different ways to plot data
- paz and pazi – Automatic and interactive RFI removal
- pam – Lots of ways to manipulate data (e.g. downsample)
- psredit – View/edit header information
- vap – Another way to view header information
- fluxcal – Make flux calibration solutions
- pac – Flux/polarization calibration
- pat – Extract TOAs
- pas – Work with standard timing templates
- psrsmooth – De-noise standard timing templates
- psrplot – Advanced plotting
PSRFITS UTILS

- Mostly used to fold or reduce search-mode data
- https://github.com/demorest/psrfits_utils
- Two main useful commands
 - `fold_psrfits` – Folding search-mode data (then it can be analyzed with PSRCHIVE)
 - `psrfits_subband` – Reduce time/frequency/polarization resolution (useful for decreasing data volume)
DSPSR

- Useful for folding search-mode data and working with baseband data
 - Can also make search-mode data in PSRFITS and SIGPROC filterbank format from baseband data
 - Can also connect to data buffer for online observing (e.g. VLA)
- http://dspsr.sourceforge.net/
- Help menu is pretty descriptive
- After folding, use PSRCHIVE
Support

- GBT pulsar support scientists have many years of experience working with pulsar data
- We can answer most questions about data reduction, and the third-party packages
- Can answer some questions about installing on your own computer
- Package-maintainers are also very helpful and responsive
The Green Bank Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.