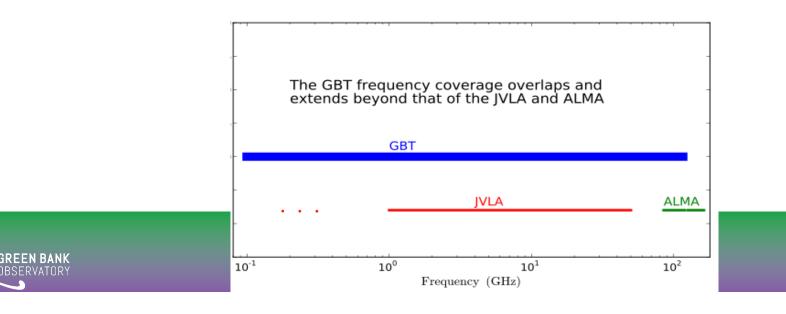


GBT Overview

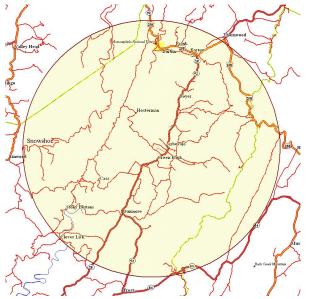
David Frayer

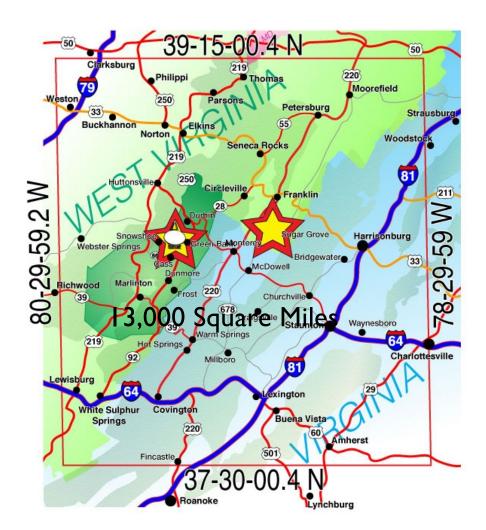
Outline

- Basic overview of the GBT
- GBT Science
- Capabilities and Performance of the GBT
- Observing strategies



Key Capabilities of the GBT


- 100 meter diameter unblocked
- Receivers cover 0.1 to 116 GHz
- Excellent point-source sensitivity
- Unsurpassed sensitivity for extended objects
- >85% of total sky covered ($\delta \ge -46^\circ$)
- Location in the National Radio Quiet Zone

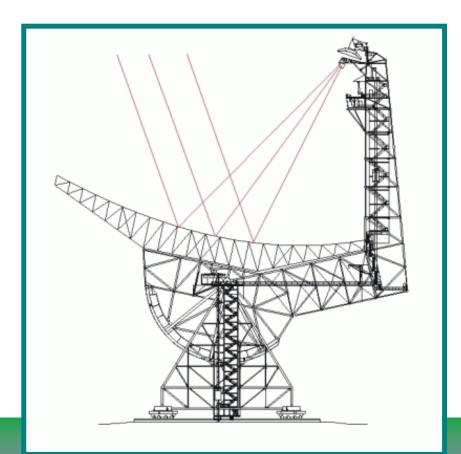

Site protected from Radio Interference

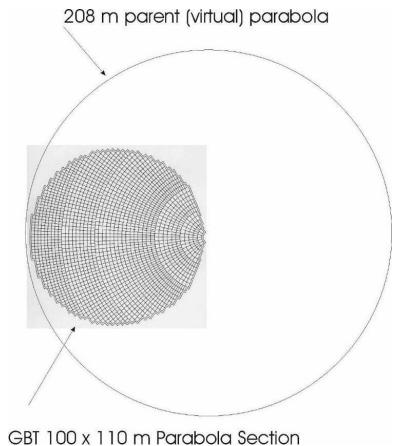
WV Radio Astronomy Zone Established by the West Virginia Legislature (1956)

Protection within ten miles of the Observatory

National Radio Quiet Zone Established by the FCC and NTIA (1957)

The Active Surface 2209 actuators


Currently rms ~230µm at night, the goal is ~200µm


Makes the GBT the largest single-dish operating efficiently at 3mm in the world

Telescope	Surface RMS/Diameter
GBT	2.3e-6
ALMA	2.0e-6
VLA VLBA NGVLA	2.0e-5 1.4e-5 ~1.0e-5

GBT Telescope Optics

- > 110 m x 100 m of a 208 m parent paraboloid
 - Effective diameter: 100 m
 - Off axis Clear/Unblocked Aperture

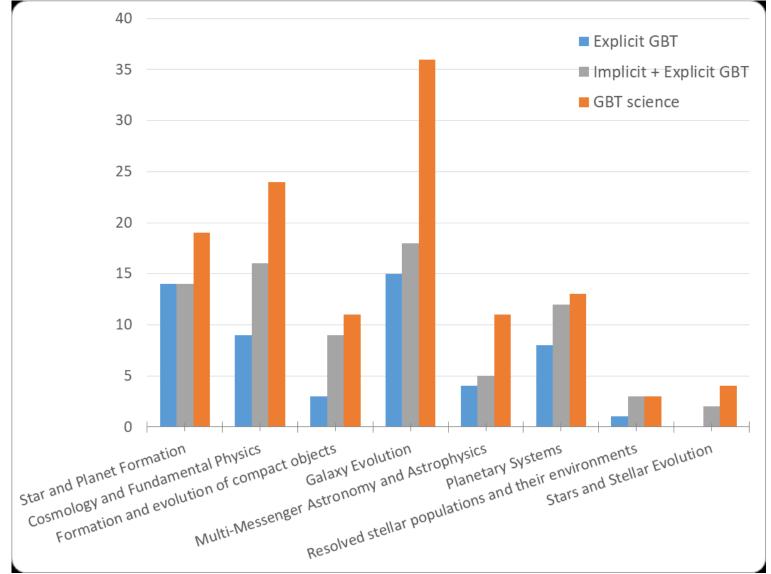
Prime Focus: Retractable boom Gregorian Focus: 8-m subreflector - 6-degrees of freedom

Rotating Turret with 8 receiver bays

Fully Steerable

- ➢ Elevation Limit: 5°
- Can observe 85% of the entire Celestial Sphere

Slew Rates: Azimuth - 40°/min; Elevation - 20°/min


Wide Range of GBT Science Areas:

- Pulsars: Discovery of new pulsars, the most massive pulsar, gravity waves via pulsar timing
- Neutral Hydrogen HI: Masses of local galaxies, Kinematics of galaxy and local group/dark matter
- High-redshift/Cosmology: Galaxy clusters, CO in the early universe, HI intensity mapping at high-redshift
- Interstellar Organic Molecules/Astro-chemisty
- Masers: black hole masses, distances via proper motions and independent measurement of Ho
- Star Formation: NH3 mapping, cold and dense gas tracers at 3-4mm
- Basic Physics: The search for Gravitational Radiation, Limits on Fundamental "constants"
- Solar system astronomy -- planetary radar
- SETI Breakthrough Listen

Astro-2020 White Papers

Green Bank Telescope Surveys

Green Bank Ammonia Survey (GAS)

Galactic Hydrogen Surveys (coming soon)

HI-MaNGA

Drift Scan Survey for Pulsars, FRBs, Radio Transients, and Gas in Galaxies

The GBT Diffuse Ionized Gas Survey (GDIGS)

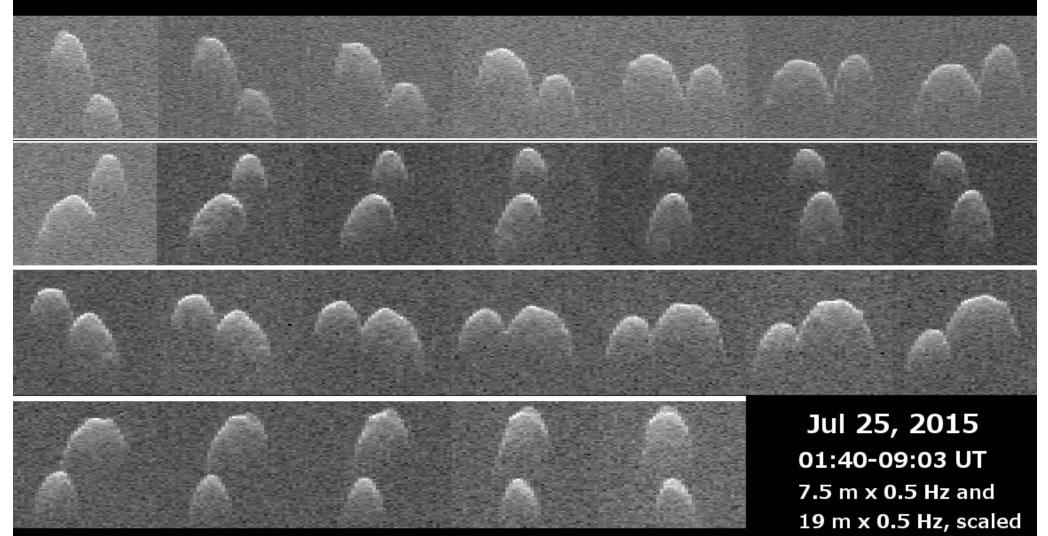
Dense Extragalactic GBT+Argus Survey (DEGAS)

GBT Observations of TMC-1: Hunting Aromatic Molecules (GOTHAM)

North American Nanohertz Observatory for Gravitational Waves (NANOGrav)

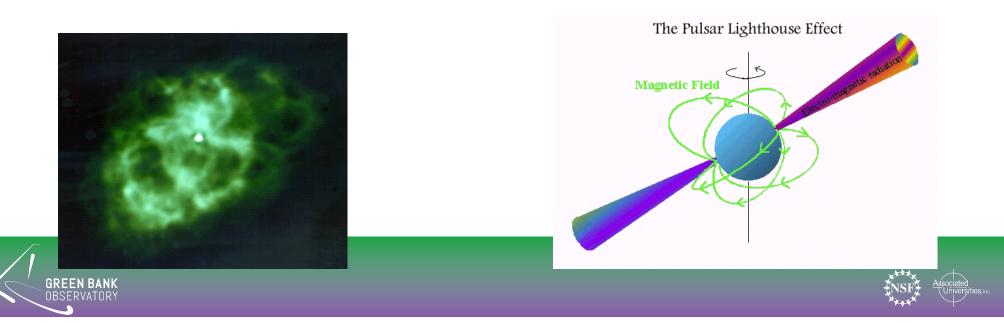
Green Bank North Celestial Cap (GBNCC) Survey

Dynamics in Star-forming Cores: a GBT-Argus Survey (DiSCo GAS)

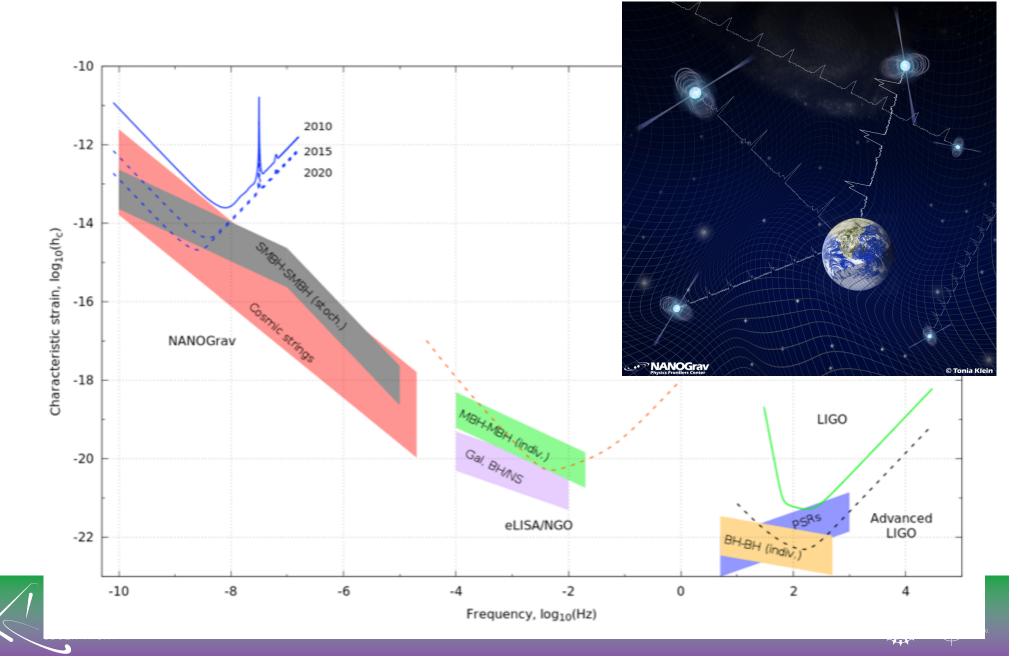


Radar: Protecting Planet Earth -- Chelyabinsk, Russia -- Feb. 15, 2013

Goldstone-GBT bistatic radar images ~18x the distance to the Moon

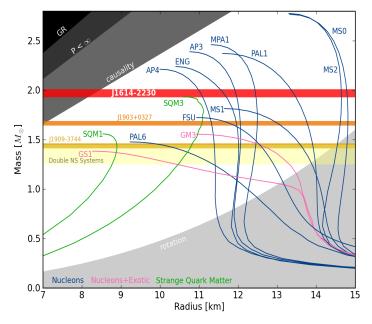


The GBT remains the world's premier pulsar observatory


(Quiet Zone, collecting area, receivers, detectors, sky coverage)

The Pulsar Renaissance:

- Fastest Pulsar
- Most Massive Pulsar (constrains equation of state of matter)
- Pulsars in Globular Clusters
- Tests of General Relativity
- Relativistic Spin Precession
- Pulsar in a three-body system
- Coolest white dwarf star (carbon diamond star)



Searching for a detection of Gravitational Waves via Pulsar timing (NANOGrav)

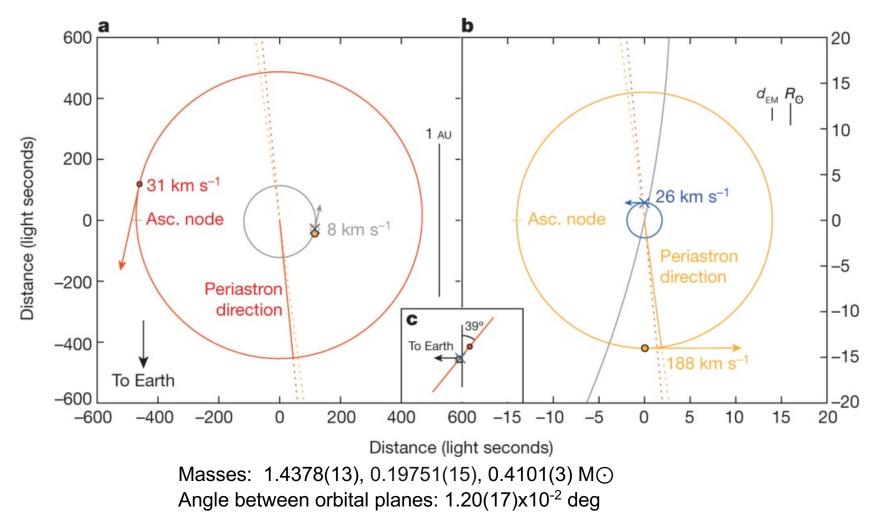
Massive pulsars, $M\sim 2M_{\odot}$

J1614-2230

PSR J0348+0432

The new mass determination for PSG J1614-2230 makes it the most massive pulsar known, and rules out a number of soft equations of state for nuclear matter including many "exotic" hyperon, kaon models.

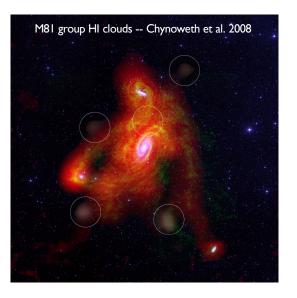
(Demorest et al. 2010)

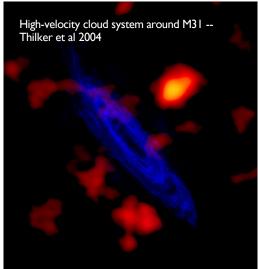

PSR J0348+0432 (2.01+/-0.04 Msun) Lynch+2013; Antoniadis+2013 {artist impression of pulsar with WD companion}

Fundamental Physics: Constraining Gravity

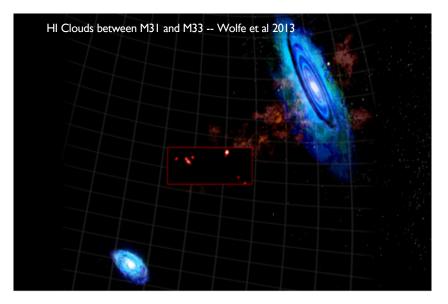
Ransom et al. Nature (2014)

Testing the Equivalence Principle (gravitational and inertial mass) F=ma = GMm/r²

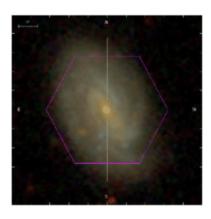


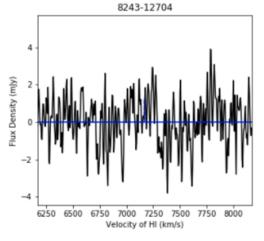


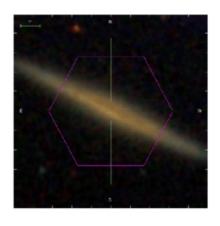
GBT Studies of faint HI -- unequalled sensitivity

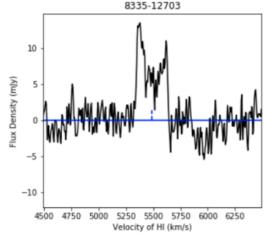

GBT offers ability to detect HI to $N_{HI} \sim 10^{17} \text{ cm}^{-2}$

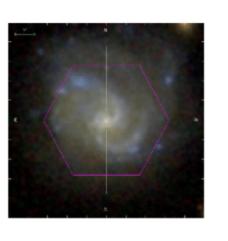
- Interactions
- Outflows from winds and fountains
- Cool gas accretion

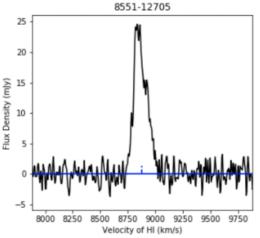




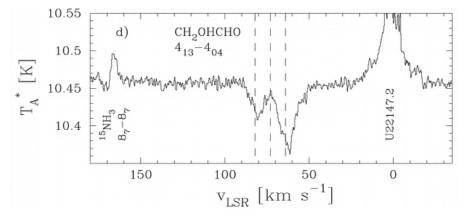


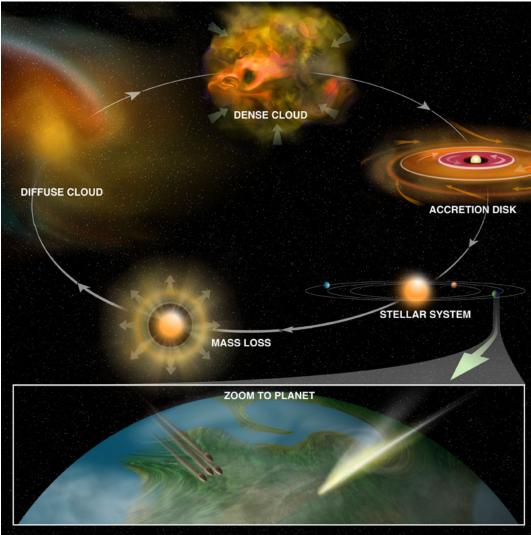

HI MaNGA Survey





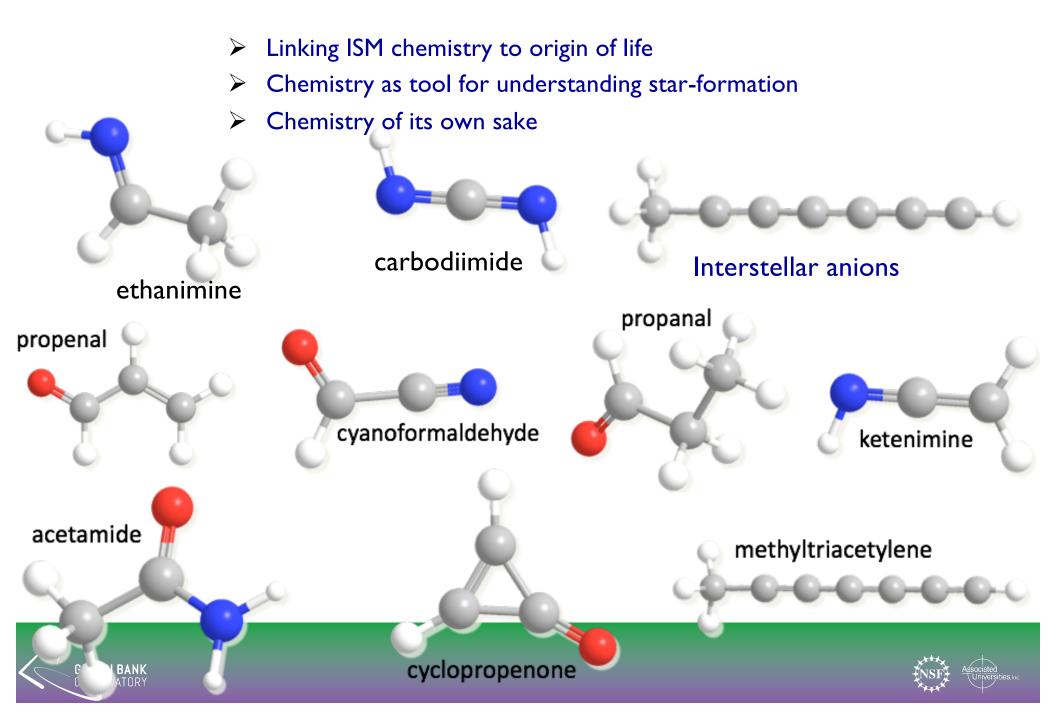
HI gas survey of 2000+ low-z galaxies; PI: Karen Masters

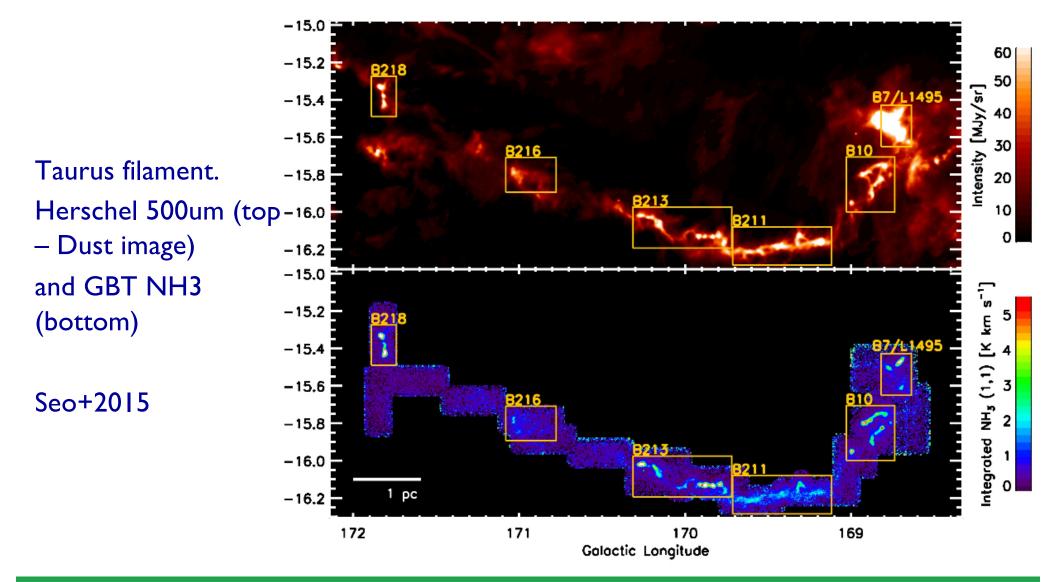




There are several GBT projects studying the chemistry of the ISM and solar system and the connections with life on Earth

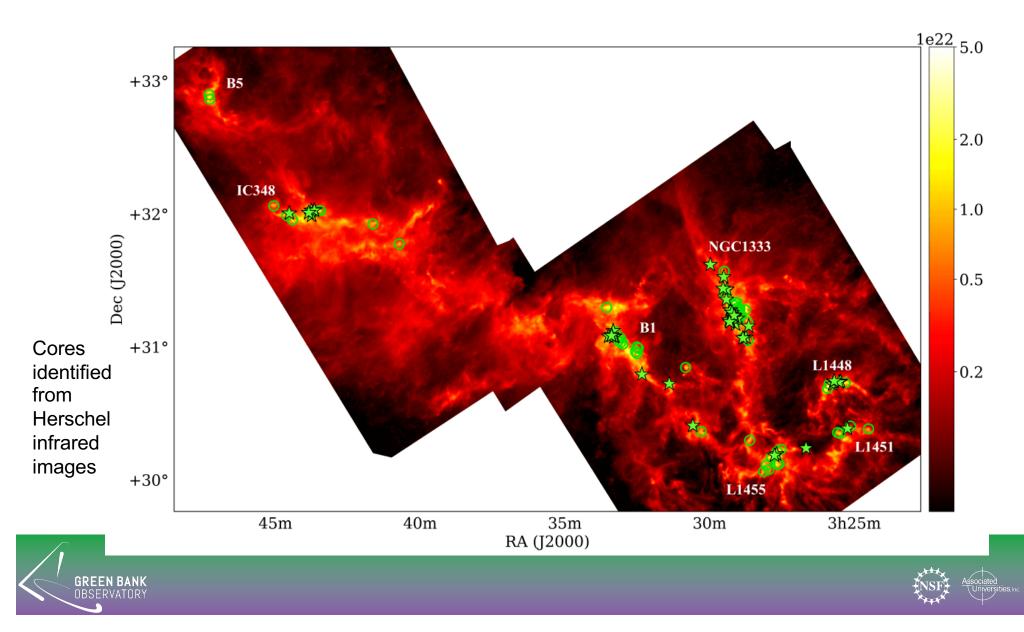
Measure interstellar chemical processes to determine the characteristics of pre-biotic chemistry in star-forming regions


Low temperature sugar-related molecule Courtesy Hollis, Jewell, Lovas, Remijan

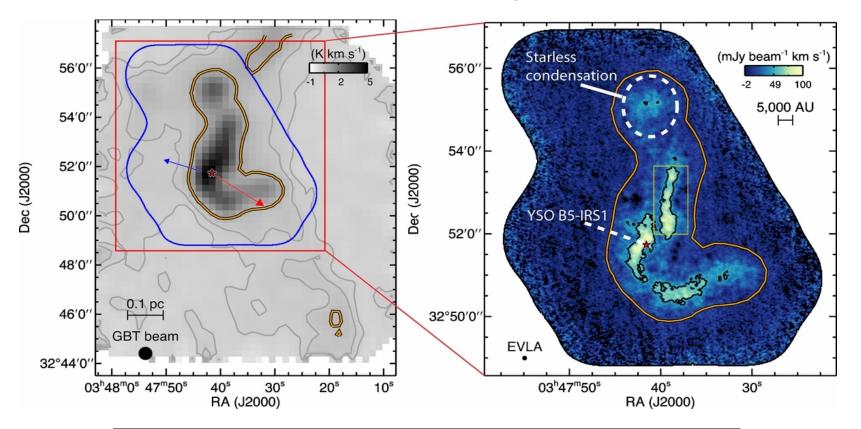


Some (of the ~20+) new molecules found by the GBT

Studies of Star-Forming Filaments via NH₃


GBT NH3 image of Orion molecular cloud (red, 1.5deg) with WISE infrared image in blue showing warm dust

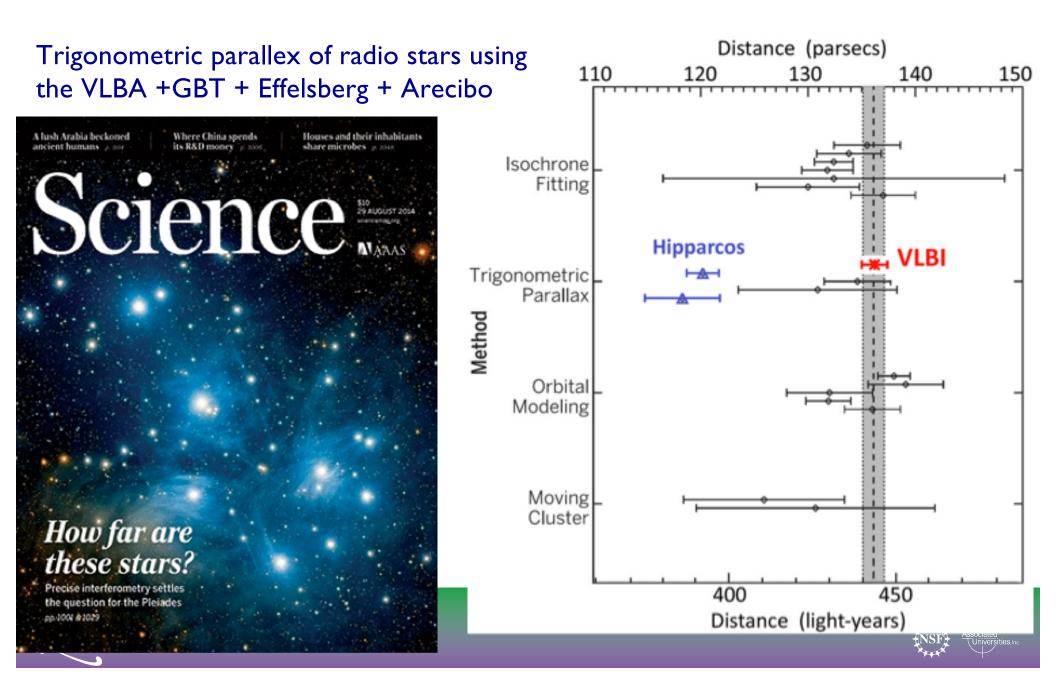
GAS Survey

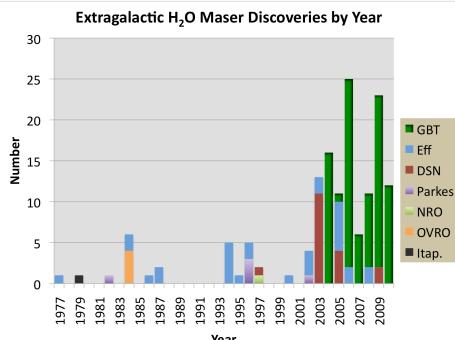

Friesen et al. 2017

DiSCo GAS

Dynamics in Star-forming Cores: a GBT-Argus Survey; 100+ cores in Perseus; PI Che-Yu Chen

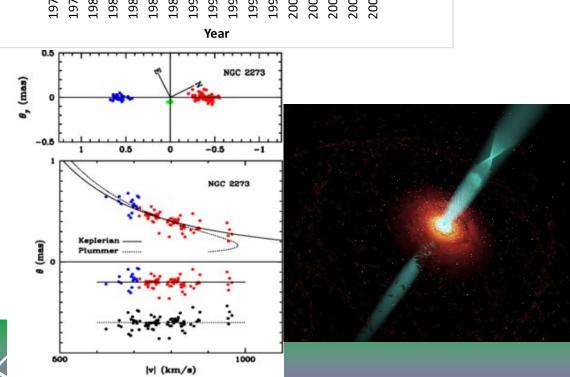
Yellow contour from the GBT (left) shows where the molecular gas has a subsonic velocity dispersion undergoing large-scale collapse/fragmentation. GBT combined with VLA shows (right) shows starless core and YSO outflow regions


 NH_3 intensity of Baranard5 with the GBT (left) and GBT+EVLA (right) Courtesy Pineda, et al

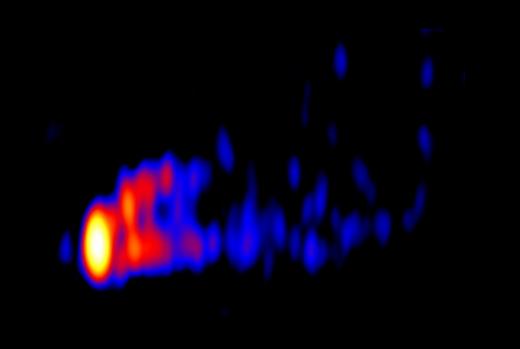


GBT used with VLBA/HSA/GMVA

e.g., VLBI Resolution of the Pleiades Distance Controversy (Melis et al. 2014)


Over 80 masers discovered with the GBT (K-band 22GHz)

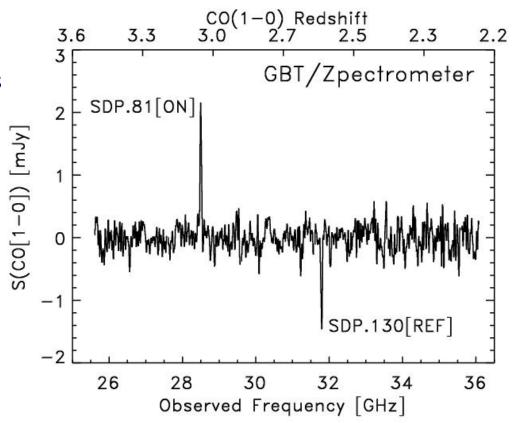
Measuring H₀ within 3% precision by obtaining geometric distances to water masers in other galaxies*


Measuring precise masses of the black holes in megamaser disk galaxies*

*GBT used both for Maser discovery and providing necessary sensitivity to VLBA

M87 3mm VLBI Jet

The M87 jet at an angular resolution of 0.25x0.08 mas (~10 Schwarzchild radii) in 3mm VLBI (Hada et al 2016)



GBT High-Redshift Molecular Gas

Measurements of molecular gas from young galaxies in formation (Frayer+2011).

About 30 Herschel sources with GBT CO(1-0) redshifts.

Groups also pursuing CO(3-2) searches at $z\sim7$ with the GBT in Q-band (40-45GHz) as well as confirming high-redshift sources from the LMT with CO(1-0) on the GBT.

ALMA image of SDP.81 ("ALMA's ring of fire")

Mustang 3mm Observations of Clusters

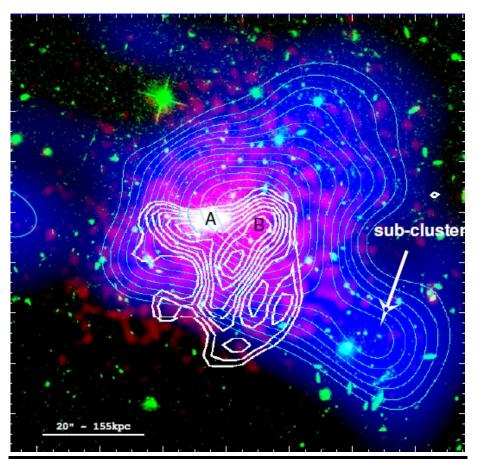
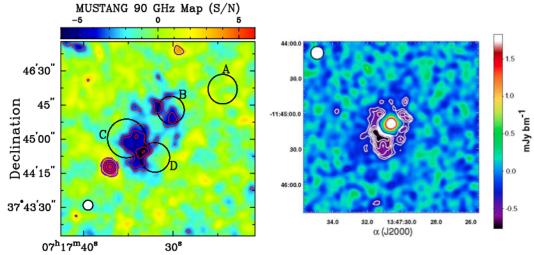



Image of CL1226.9+3332 (z = 0.89); White is MUSTANG; Green is optical (HST); Red is X-ray (Chandra); Blue is mass density (HST) Courtesy Korngut, et al.

(Left) Mustang SZE image of the triple merger MACSJ0717+3745 (Mroczkowski 2012). (Right) Mustang image of RXJ1347-1145 which shows deviations from equilibrium first shown by high angular resolution SZE measurements (Mason et al. 2010).

Capabilities and Performance of the GBT

Available GBT receivers

Receiver	Band	Frequency	Focus	Polarization	Beams	Polarizations
		Range				\mathbf{per}
		(GHz)				Beam
PF1	342 MHz	.290395	Prime	Lin/Circ	1	2
	450 MHz^*	.385520	Prime	Lin/Circ	1	2
	600 MHz^*	.510690	Prime	Lin/Circ	1	2
	$800 \mathrm{~MHz}$.680920	Prime	Lin/Circ	1	2
PF2*		.910-1.23	Prime	Lin/Circ	1	2
L-Band		1.15 - 1.73	Greg.	Lin/Circ	1	2
S-Band		1.73-2.60	Greg.	Lin/Circ	1	2
C-Band		3.95-8.0	Greg.	Lin/Circ	1	2
X-Band		8.00-11.6	Greg.	Circ	1	2
Ku-Band		12.0-15.4	Greg.	Circ	2	2
KFPA		18.0-27.5	Greg.	Circ	7	2
Ka-Band	MM-F1	26.0-31.0	Greg.	Circ	2	1
	MM-F2	30.5 - 37.0				
	MM-F3	36.0-39.5				
Q-Band		38.2-49.8	Greg.	Circ	2	2
W-Band 4mm	MM-F1	67-74	Greg.	Circ	2	2
	MM-F2	73-80	Greg.	Circ	2	2
	MM-F3	79-86	Greg.	Circ	2	2
	MM-F4	85-93.3	Greg.	Circ	2	2
Mustang2		80-100	Greg.	— - -	200	—-
ARGUS		80-115.3	Greg.	Circ	16	1

Performance and Bandwidth

Receiver	Band	Beam	FWHM	Gain	Aperture	Maximum
		Separation		(K/Jy)	Efficiency	Instantaneous
						Bandwidth
						(MHz)
PF1	342 MHz		36'	2.0	72%	240
	450 MHz^*		27'	2.0	72%	
	600 MHz^*		21'	2.0	72%	
	$800 \mathrm{~MHz}$		15'	2.0	72%	
$PF2^*$			12'	2.0	72%	240
L-Band			9'	2.0	72%	650
S-Band			5.8'	2.0	72%	970
C-Band			2.5'	2.0	72%	3800
X-Band			1.4'	2.0	71%	2400
Ku-Band		330"	54"	1.9	70%	3500
KFPA		96"	32"	1.9	68%	1800,8000
Ka-Band	MM-F1	78"	26.8"	1.8	63-67%	4000
	MM-F2		22.6"			
	MM-F3		19.5"			
Q-Band		58"	16"	1.7	58-64%	4000
W-Band 4mm	MM-F1	286"	10"	1.0	30-48%	6000
	MM-F2					4000
	MM-F3					4000
	MM-F4					4000
Mustang2			10"		35%	20000
ARGUS		30.4"	8"		20-35%	1500

Available GBT Backends

- VEGAS Spectral-Line
- VEGAS Pulsar
- Digital Continuum Receiver (DCR)
- Caltech Continuum Backend (CCB, Ka-band only)
- Mark 6 VLBA Disk Recorder
- JPL Radar Backend

VEGAS Spectral-line Modes:

16 separate spectrometer channels (8 dual polarization channels) that can be divided between beams and different frequencies as needed and can support up to 8 spectral sub-windows per spectrometer.

Maximum data rate ~160GB/s, but most projects at <1MB/s

Table 4:	VEGAS	modes.
----------	-------	--------

Mode	Spectral Windows per Spectrometer	Bandwidth per Spectrometer (MHz)	Number of Channels per Spectrometer	Approximate Spectral Resolution (kHz)
1	1	1500 ^a	1024	1465
2	1	1500 ^a	16384	92
3	1	1080^{b}	16384	66
4	1	187.5	32768	5.7
5	1	187.5	65536	2.9
6	1	187.5	131072	1.4
7	1	100	32768	3.1
8	1	100	65536	1.5
9	1	100	131072	0.8
10	1	23.44	32768	0.7
11	1	23.44	65536	0.4
12	1	23.44	131072	0.2
13	1	23.44	262144	0.1
14	1	23.44	524288	0.05
15	1	11.72	32768	0.4
16	1	11.72	65536	0.2
17	1	11.72	131072	0.1
18	1	11.72	262144	0.05
19	1	11.72	524288	0.02
20	8 ^c	23.44	4096	5.7
21	8 ^c	23.44	8192	2.9
22	8 ^c	23.44	16384	1.4
23	8 c	23.44	32768	0.7
24	8 ^c	23.44	65536	0.4
25	8 c	16.875	4096	4.1
26	8 ^c	16.875	8192	2.0
27	8 ^c	16.875	16384	1.0
28	8 c	16.875	32768	0.5
29	8 ^c	16.875	65536	0.26

^a The useable bandwidth for this mode is 1250 MHz.

^b The useable bandwidth for this mode is 850 MHz.

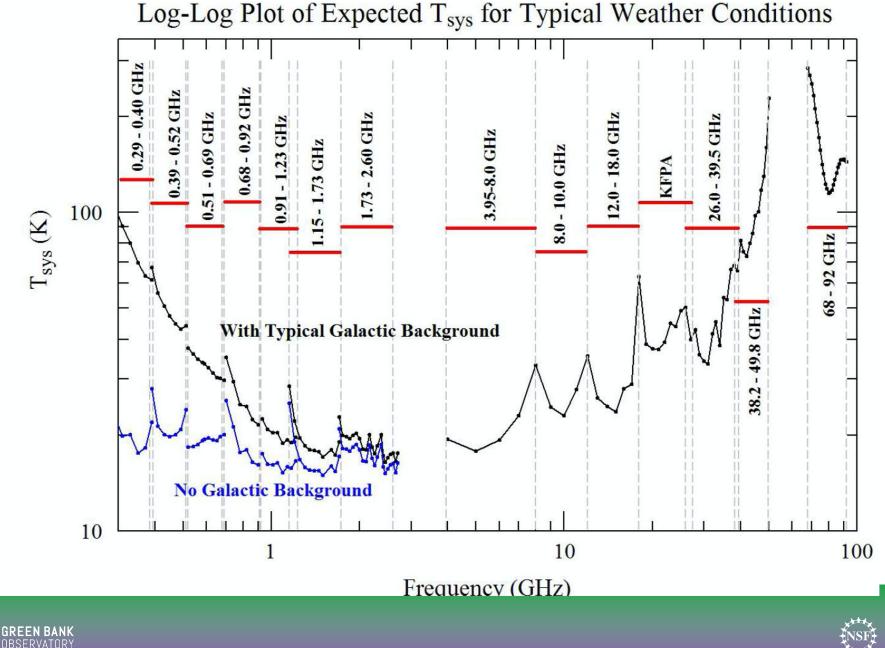
^c For modes 20-24, the spectral windows must be placed within 1500 MHz with a useable frequency range of 150 to 1400 MHz. For modes 25-29, the spectral windows must be placed within 1000 MHz with a useable frequency range of 150 to 950 MHz.

VEGAS Pulsar Modes:

Coherent and Incoherent Bandwidth: 100-1500MHz Nchannels: 64-4096

1
GREEN BANK
OBSERVATORY

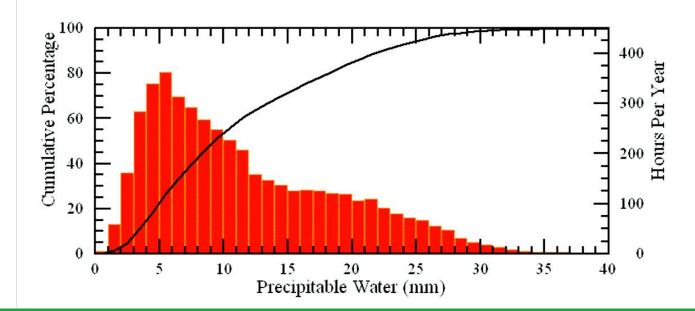
Name	Dedispersion Mode	Bandwidth (MHz)	nchan	Notes		
c0100x0064	Coherent	100	64	Full Stokes only		
c0100x0128	Coherent	100	128	Full Stokes only		
c0100x0256	Coherent	100	256	Full Stokes only		
c0100x0512	Coherent	100	512	Full Stokes only		
c0200x0064	Coherent	200	64	Full Stokes only		
c0200x0128	Coherent	200	128	Full Stokes only		
c0200x0256	Coherent	200	256	Full Stokes only		
c0200x0512	Coherent	200	512	Full Stokes only		
c0200x1024	Coherent	200	1024	Full Stokes only		
c0800x0128	Coherent	800	128	Full Stokes only		
c0800x0256	Coherent	800	256	Full Stokes only		
c0800x0512	Coherent	800	512	Full Stokes only		
c0800x1024	Coherent	800	1024	Full Stokes only		
c0800x2048	Coherent	800	2048	Full Stokes only		
c0800x4096	Coherent	800	4096	Full Stokes only		
c1500x0128	Coherent	1500	128	Full Stokes only		
c1500x0256	Coherent	1500	256	Full Stokes only		
c1500x0512	Coherent	1500	512	Full Stokes only		
c1500x1024	Coherent	1500	1024	Full Stokes only		
c1500x2048	Coherent	1500	2048	Full Stokes only		
c1500x4096	Coherent	1500	4096	Full Stokes only		
i0100x0512	Incoherent	100	512	Total intensity available in search-mode		
i0100x1024	Incoherent	100	1024	Total intensity available in search-mode		
i0100x2048	Incoherent	100	2048	Total intensity only		
i0100x4096	Incoherent	100	4096	Total intensity only		
i0100x8192	Incoherent	100	8192	Total intensity available in search-mode		
i0200x1024	Incoherent	200	1024	Total intensity available in search-mode		
i0200x2048	Incoherent	200	2048	Total intensity only		
i0200x4096	Incoherent	200	4096	Total intensity only		
i0200x8192	Incoherent	200	8192	Total intensity only		
i0800x0128	Incoherent	800	128	Total intensity available in search-mode		
i0800x0256	Incoherent	800	256	Total intensity available in search-mode		
i0800x0512	Incoherent	800	512	Total intensity available in search-mode		
i0800x1024	Incoherent	800	1024	Total intensity available in search-mode		
i0800x2048	Incoherent	800	2048	Total intensity available in search-mode		
i0800x4096	Incoherent	800	4096	Total intensity available in search-mode		
i1500x0128	Incoherent	1500	128	Total intensity available in search-mode		
i1500x0256	Incoherent	1500	256	Total intensity available in search-mode		
i1500x0512	Incoherent	1500	512	Total intensity available in search-mode		
i1500x1024	Incoherent	1500	1024	Total intensity available in search-mode		
i1500x2048	Incoherent	1500	2048	Total intensity available in search-mode		
i1500x4096	Incoherent	1500	4096	Total intensity available in search-mode		



GBT Specs:

Location	Green Bank, West Virginia, USA				
Coordinates	Longitude: 79°50′23.406″ West (NAD83)				
	Latitude: 38°25′59.236″ North (NAD83)				
	Track Elevation: 807.43 m (NAVD88)				
Optics	110 m x 100 m unblocked section of a 208 m parent paraboloid				
	Offaxis feed arm				
Telescope Diameter	100 m (effective)				
Available Foci	Prime and Gregorian				
	f/D (prime) = 0.29 (referred to 208 m parent parabola)				
	f/D (prime) = 0.6 (referred to 100 m effective parabola)				
	f/D (Gregorian) = 1.9 (referred to 100 m effective aperture)				
Receiver mounts	Prime: Retractable boom with				
	Focus-Rotation Mount				
	Gregorian: Rotating turnet with				
	8 receiver bays				
Subreflector	8-m reflector with Stewart Platform (6 degrees of freedom)				
Main reflector	2004 actuated panels (2209 actuators)				
	Average intra-panel RMS 68 μm				
FWHM Beamwidth	Gregorian Feed: $\sim 12.60/f_{GHz}$ arcmin				
ALL AND DECEMBER 11 HOUSE AND DECEMBER 11 HOUSE A	Prime Focus: $\sim 13.01/f_{GHz}$ arcmin (see Section 3.1.1)				
Elevation Limits	Lower limit: 5 degrees				
	Upper limit: ~ 90 degrees				
Declination Range	Lower limit: ~ -46 degrees				
ter and hidden and hidden at 1995 and 1995 and	Upper limit: 90 degrees				
Slew Rates	Azimuth: 35.2 degrees/min				
	Elevation: 17.6 degrees/min				
Surface RMS	Passive surface: 450 μ m at 45° elevation, worse elsewhere				
	Active surface: $\sim 250 \ \mu m$, under benign night-time conditions				
Pointing accuracy	1σ values from 2-D data				
	5" blind				
	2.7'' offset				
J					

Noise Levels (Tsys) for Typical Weather


The atmosphere is important at high frequency (>10 GHz)

Opacity attenuates the signal and adds to the Tsys:
 Tsys = Trcvr + Tspill +Tbg * exp(-tau*A) + Tatm * [exp(-tau*A) – 1]
 Air Mass A~ 1/sin(Elev) (for Elev > 15°)

Stability

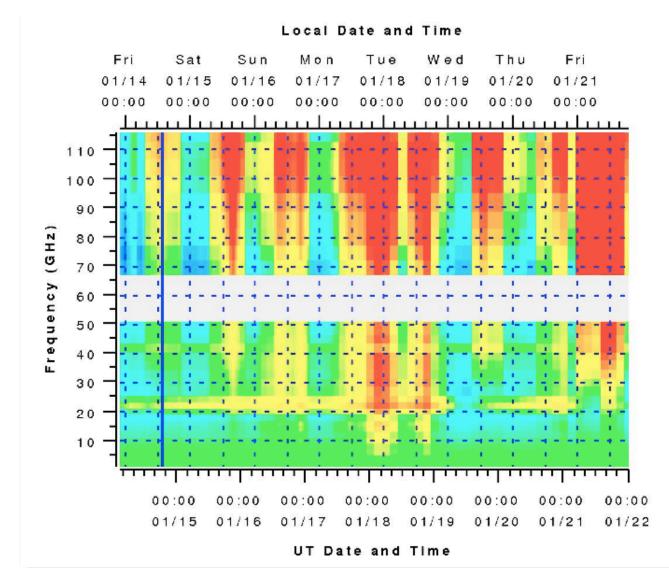
Tsys can vary quickly with time Worse when tau is high

 Atmosphere is in the near-field so the tau observed is similar for all beams for multi-beam receivers

~50% of time in Green Bank during the highfrequency season (Oct thru April) has less than 10mm of H2O (acceptable for 3mm observations) GBT Memo#267

Effects of Winds

$$\sigma_{tr}^2 = \sigma_0^2 + \left(\frac{s}{3.5}\right)^4$$

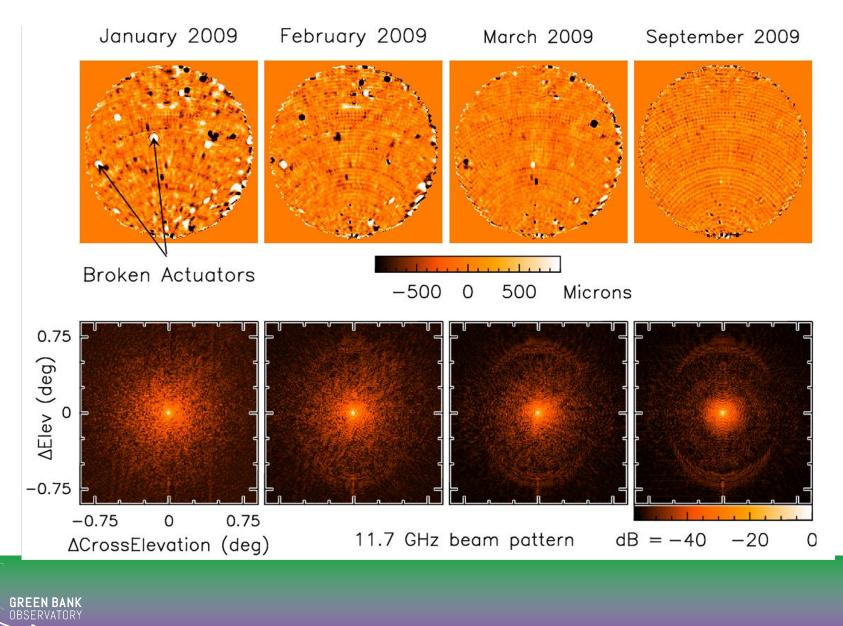

where s is wind speed in m/s. sigma_o ~1" during night sigma_o~2" during day

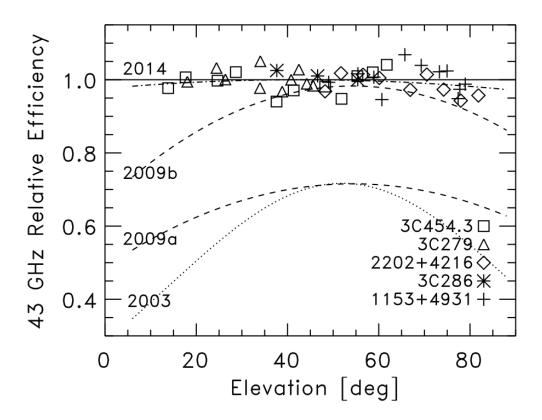
Frequency	Beam Size	Wind speed limit to track within 1/10 beam size ; sigma_tr=(s/3.5)^2
1 GHz	740"	30 m/s (67 mph, but telescope in survival at 35 mph)
10 GHz	74"	9.5 m/s (20 mph)
100 GHz	7.4"	3 m/s (6 mph)

Dynamical Scheduling System allows efficient use of telescope at high frequency – based on weather model predictions that are updated every 6 hrs.

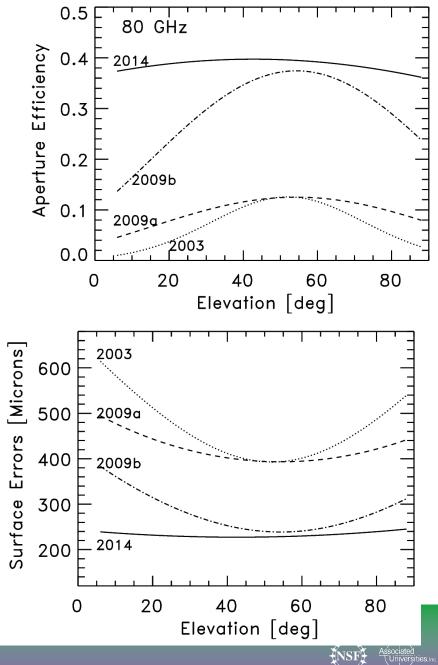
Telescope dynamically scheduled daily based on weather conditions and receiver and observer availability. Dynamic Scheduling matches the project to the weather

There are about 450 hrs per semester for highfrequency observations (factoring in all constraints, i.e., opacity, winds, NSF open skies time).

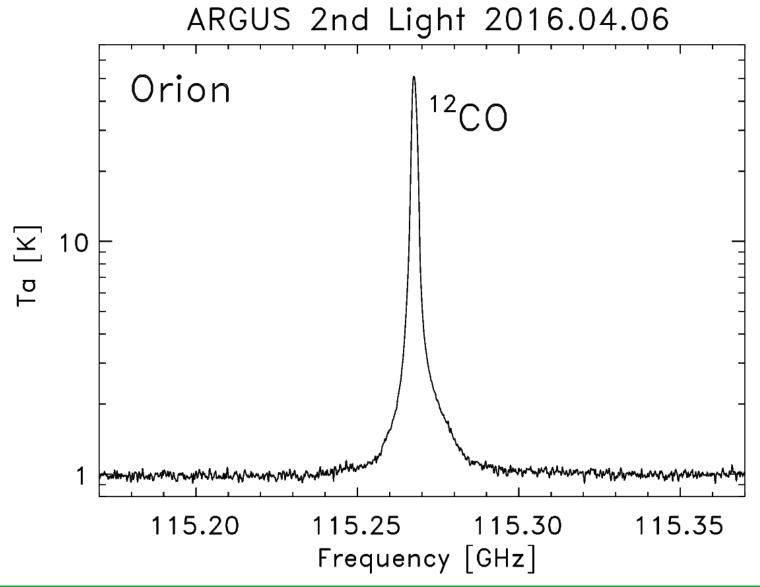

GBT Aperture Efficiency and Gain (K/Jy)



GBT Surface Improved in 2009



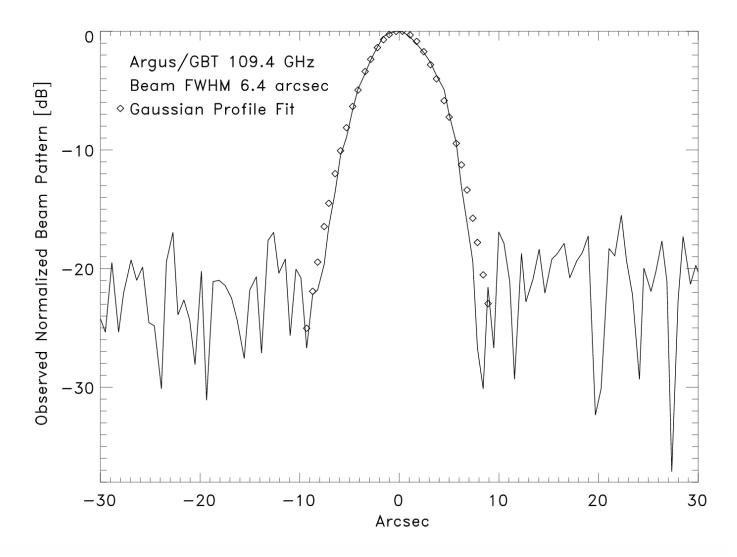
History of Surface Improvements



Improvements to the Zernike-Gravity model in 2014 yields a flat gain curve with elevation and has significantly improved the GBT performance at high-frequency (GBT Memo#301)

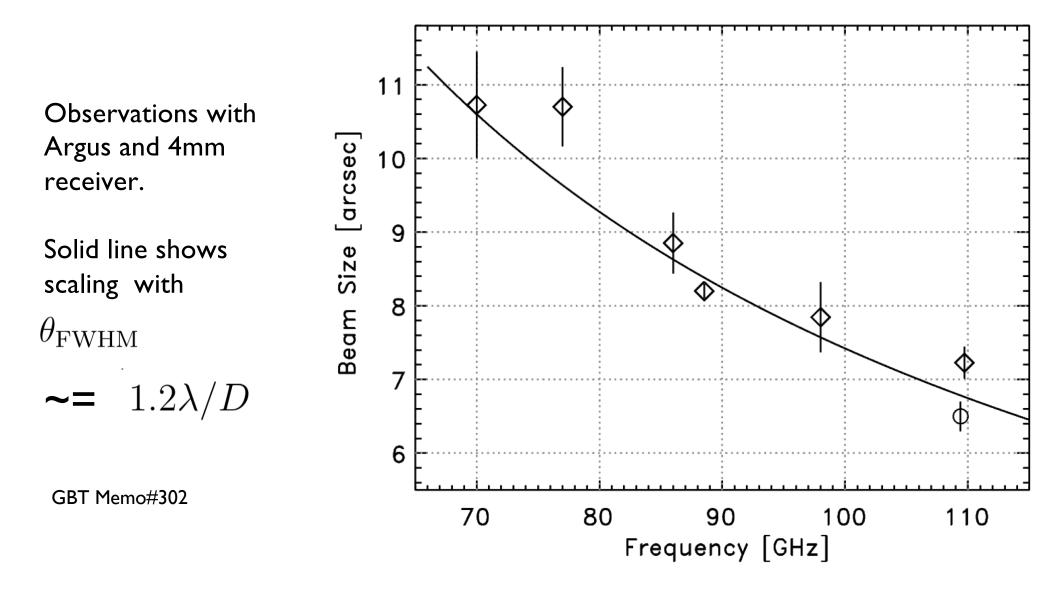
GREEN BANK

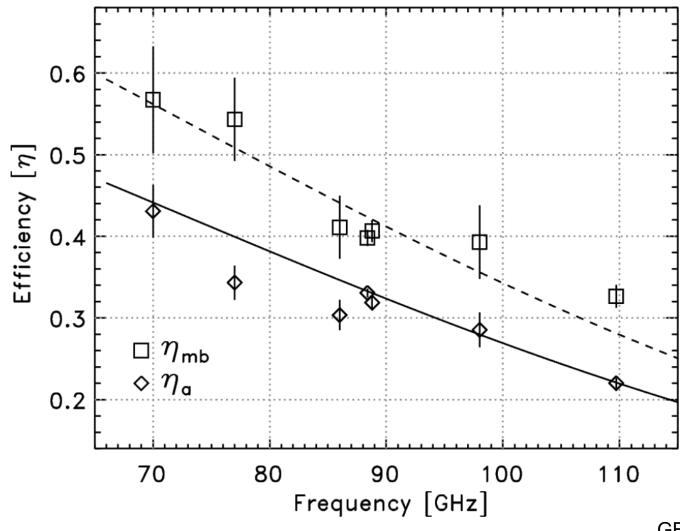
GBT can observe up to 116 GHz



GBT Achieves Theoretical Beam with Argus GBT Memo#296

GBT at 109.4 GHz reaches same beam size one would expect from extrapolating from the performance at 9GHz.

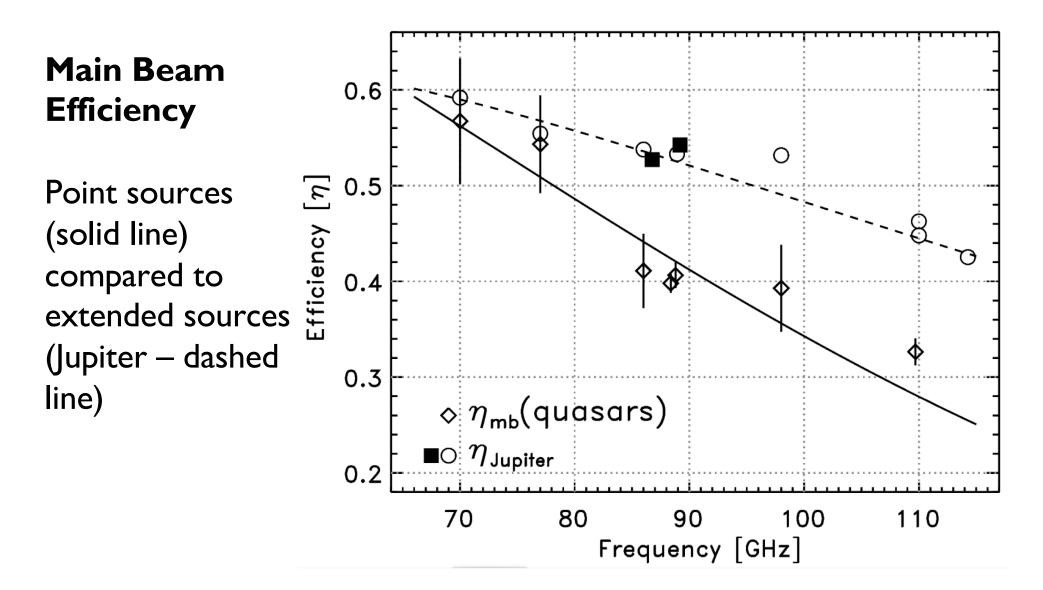

With Argus, the GBT achieves beam sizes of ~1.15--1.25 λ /D (in good conditions after OOF).


GBT Beam Size

Quasar Calibration Results

Average effective surface error is 0.235mm which determines the aperture efficiency (solid line). The point-source main-beam efficiency scales with the aperture efficiency as:

$$\frac{\eta_{mb}}{\eta_a} = 1.274 \pm 0.035.$$


which is consistent with a Gaussian beam and a beamsize parameter of:

$$\kappa \equiv \theta_{\rm FWHM} \left(\frac{D}{\lambda} \right) = 1.20,$$

GBT Memo #302 Frayer+ 2019

3mm Calibration Parameters GBT Memo#302

Results derived from hundreds of 4mm and Argus Observations over several seasons.

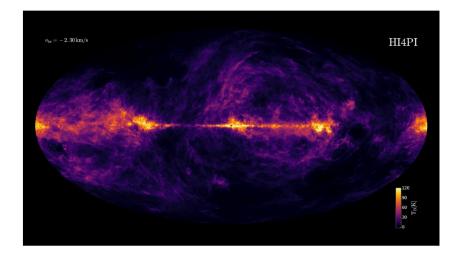
Table 2: 86GHz GBT Efficiency and Calibration Parameters					
Dish Diameter	D	100 m			
RMS Surface Accuracy	ϵ	$235\pm15\mu{ m m}$			
Beam Size Parameter	κ	1.20 ± 0.02			
Aperture Efficiency	η_a	0.347 ± 0.032			
Main-Beam Efficiency	η_{mb}	0.442 ± 0.043			
Corrected Main-Beam Efficiency	η^*_M	0.465 ± 0.035			
Jupiter Beam Efficiency $(43'' diameter)$	$\eta_{ m Jupiter}$	0.53 ± 0.05			
Moon Beam Efficiency $(32' \text{ diameter})$	$\eta_{ m Moon}$	0.814 ± 0.029			
Rear Spillover Efficiency ^{a}	η_l	0.985 ± 0.015			
Forward Spillover Efficiency ^{b}	η_{fss}	0.965 ± 0.020			

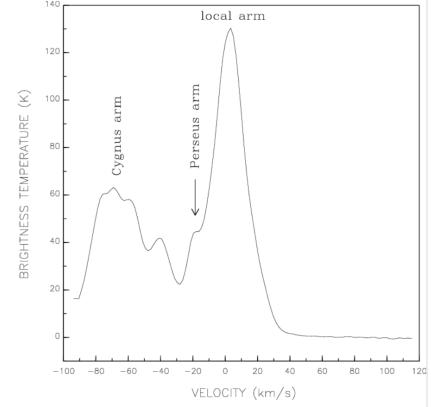
^aPower in the forward 2π direction. ^bFactional power in the forward direction inside the $\sim 1^\circ$ diameter error pattern.

GBT Performance (PTCS-PN78)

- ~10 arcsec blind pointing
- ~5 arcsec all-sky offset pointing
- ~1 arcsec nearby offset pointing
- ~0.5 arcsec tracking accuracy (still needs measurements)
- rms(surface) ~0.45mm without the active surface
- rms (surface) ~ 0.35mm no OOF corrections during day
- rms (surface) ~ 0.3mm no OOF corrections during night
- rms(surface) ~0.23mm with OOF corrections at night
- Long-term Goal: rms(surface)~0.20mm

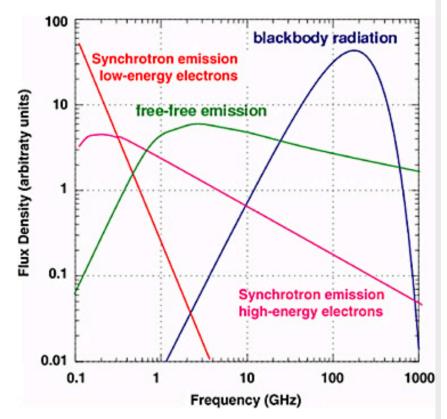
Observing Strategies


Your observing strategies depends on your science goals.



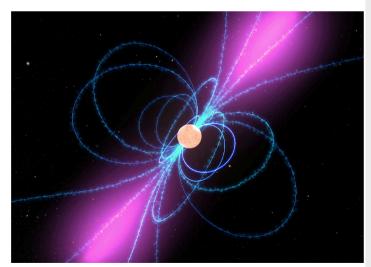
Spectral Lines

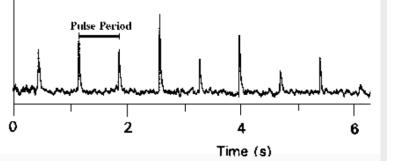
- Spectral features at specific frequencies from molecular or atomic transitions
 - These can be red or blue-shifted based on the source velocity
- Examples
 - Carbon Monoxide (115 GHz)
 - Neutral Hydrogen (1.421 GHz, shown)



Continuum Emission

- Broadband emission from a "continuum" of energies
 - Not specific frequencies
 - You could think of this as the "total brightness" of an object
- Examples
 - Free-Free Emission
 - Electrons accelerating around ions
 - Synchrotron
 - Ions spinning around magnetic field lines





Time Variable / Transients

- Examples
 - Pulsars
 - Fast Radio Bursts
- What's important here?
 - Saving data very quickly (millisecond)
 - Time stamps on data
 - Ideally, wide bandwidth
 - See "pulse shape" across many frequencies

Pulsar Schematic (above) Pulsar Plot (below)

The GBT provides a lot of observing options – multiple instruments and several observing modes

- Pick receiver based on frequency
- Pick backend based on observing type (line, continuum, pulsar,)
- Pick observing techniques based on science goals (point source, large field, narrow lines vs broad lines....)
- Calibration strategies depend on receiver and science needs

Radio telescopes measure: Ta = "antenna temperature"

- Ta(total) = Tsource + {Trx + Tbg + Tatm + Tspill}
- Where {....} = other contributions
- Want Tsource, so carry out ON OFF
- Ta(ON) =Tsource + {....}
- Ta(OFF) = {....}
- So Ta(ON)-Ta(OFF) = Tsource

Need to carry out ON-OFF observations and there are different observing techniques for measuring ON-OFF

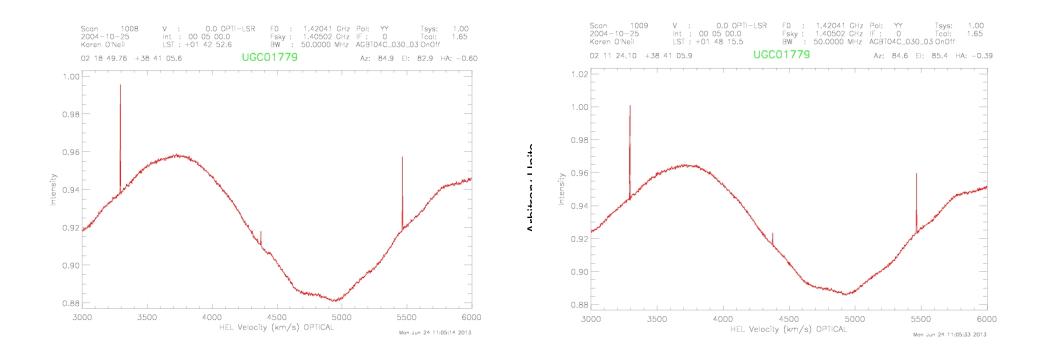
Different Observing Modes to derive the reference data (OFF)

Types of reference observations

- ➤Frequency Switching (FSW)
- In or Out-of-band
- ≻Position Switching (PS)
- Reference-Off
- Mapping-Off

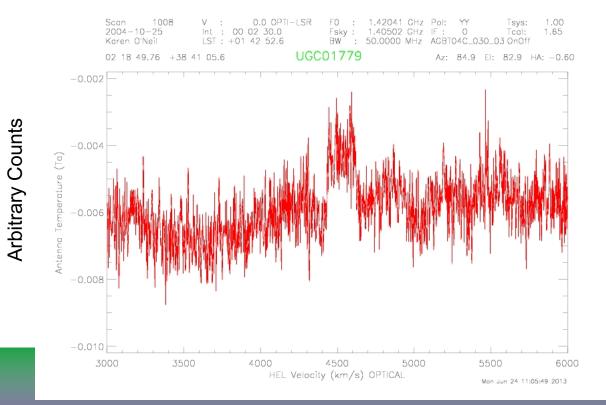
➤Dual-Beam Position Switching

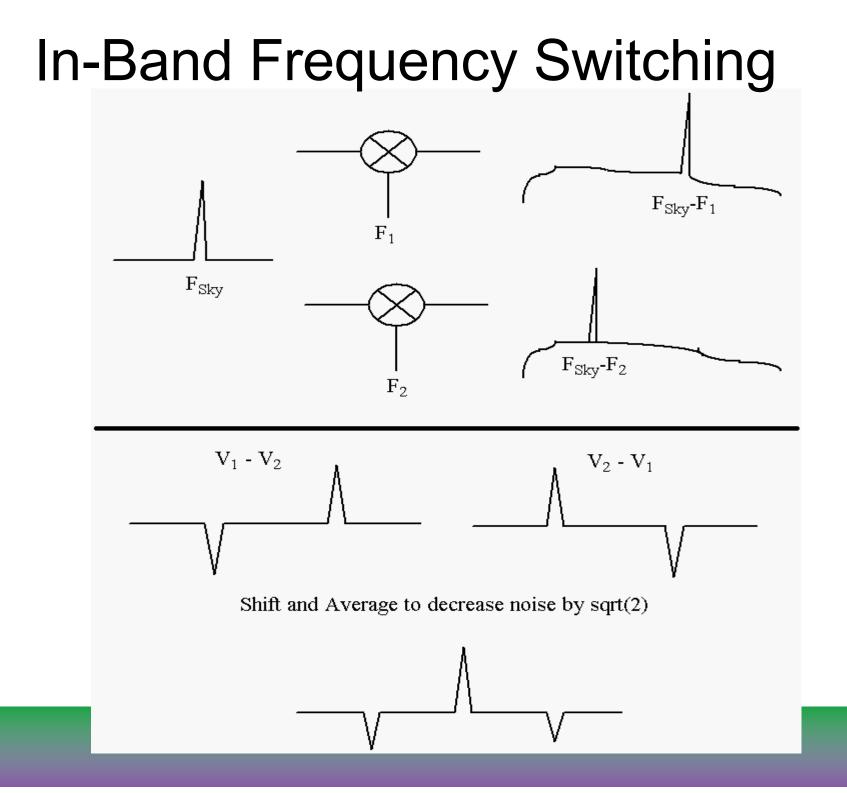
- Nod -- Move telescope
- SubBeamNod -- Move Subreflector



Position Switching

ON source T_{source} + T_{everything} else


OFF source $T_{everything else}$



Position Switching: ON-OFF on Sky ON - OFF (T_{source} + T_{everything else}) - (T_{everything else})

GREEN BANK OBSERVATORY

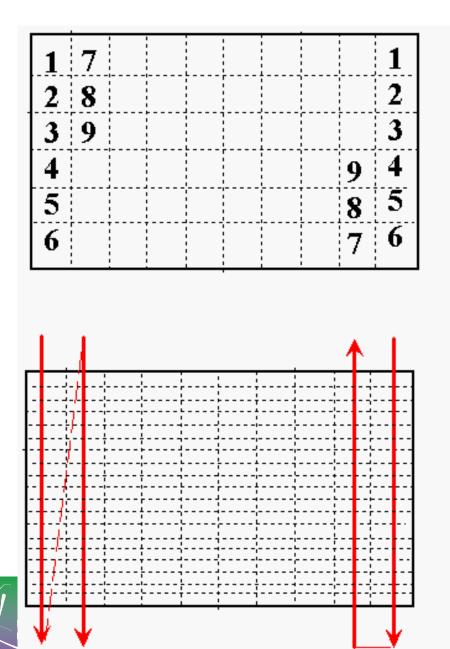
Frequency vs Position Switching

- Narrow line in non-crowded spectrum → Frequency Switching (FS)
- Narrow line in crowded spectral region or significant RFI → Position Switching (PS)
- Broad line → PS
- ➤Narrow line < 10 km/s</p>
- >Broad line > 100 km/s

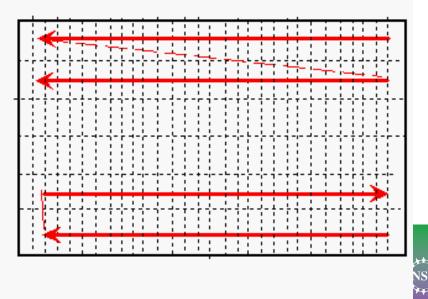
Observing Mode – Small Source

- If source size < beam, Line Obs, and for **PS**:
- Nod {two beams} if not limited by baselines
- SubBeamNod {two beams} for Ka, Q, and Argus (use Nod for K-band and W-band)
- OnOff {one beam}
- Track (with and w/o offset)
- If source size < beam, Line Obs and for **FS**:
- Track
- If source size < beam, Continuum Obs:
- Daisy map (efficient way to deal with 1/f noise)

Observing Mode – Large Source

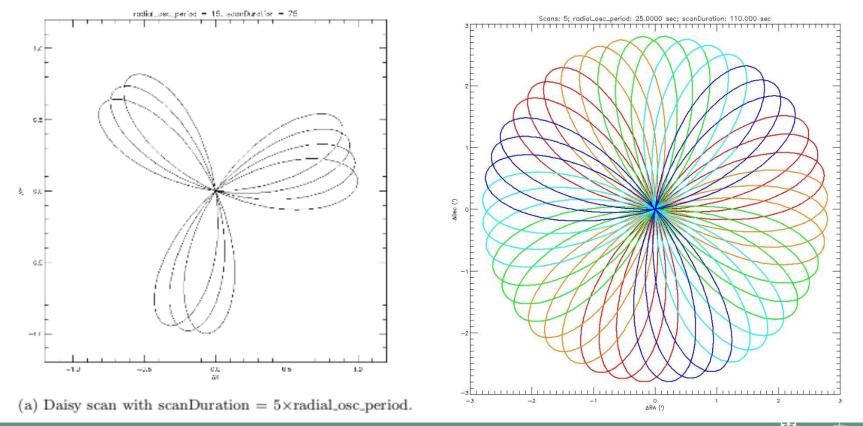

Map > FOV of instrument

- RaLongMap and/or DecLatMap
- Map <~ FOV of instrument (optimal method depends on several factors)
- RaLong/DecLat mapping (significant overheads for turn arounds)
- Daisy (if only interested in central point)
- Box scans
- PointMap (Grid) if needing a deep spectrum



Mapping Techniques

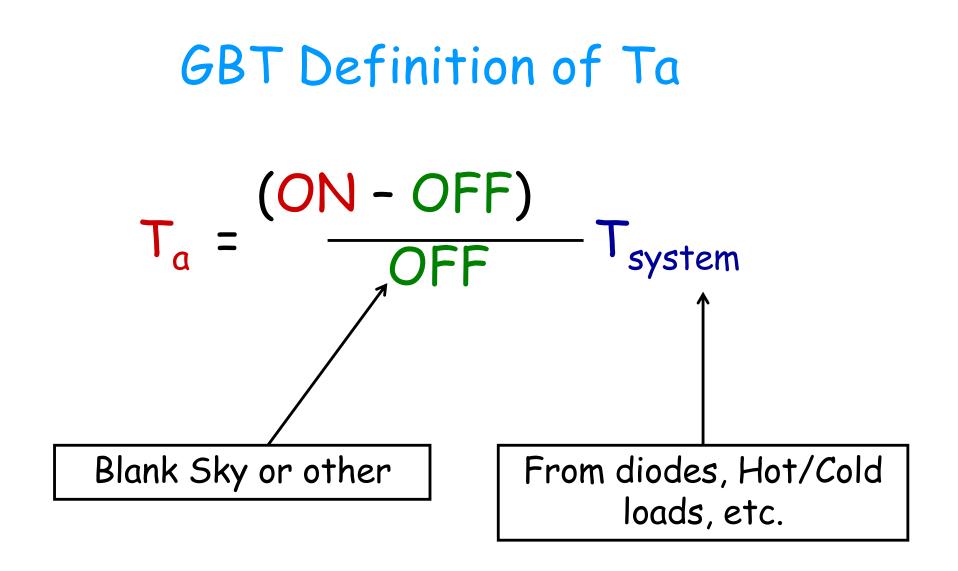
Point map


- •Sit, Move, Sit, Move, etc.
- On-The-Fly Mapping
- •Slew a column or row while collecting data
- •Move to next column row
- Basket weave
- •Should oversanple ~3x Nyquist along direction of slew
- Reference/OFF from a "source-free" map position or separate "OFF" spectrum taken.

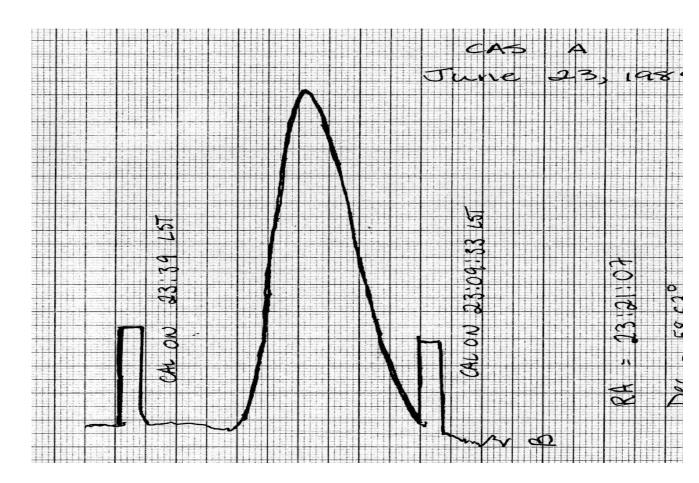
Mapping Techniques

<u>Daisy Map</u>

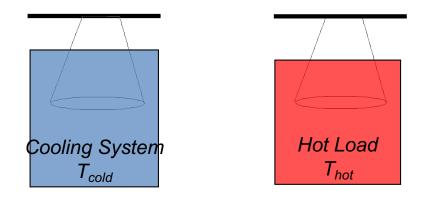
- Useful for multi-beam arrays
- ✤ Best for smaller regions (6')
- Most sensitive towards the center of the daisy



Calibration



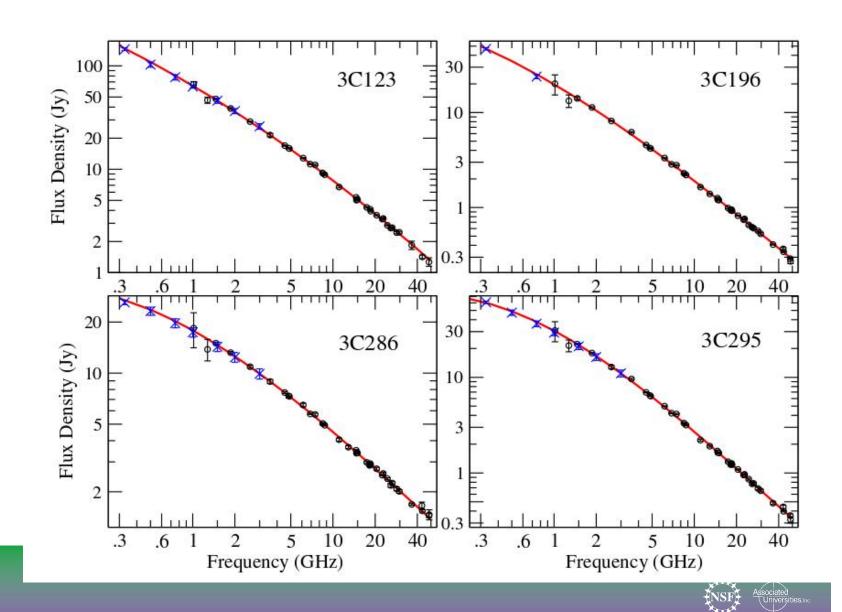
Noise Diodes


Example noise-diode signal from drift scans using the educational telescope

Hot & Cold Loads

Gain: g =(Thot – Tcold)/(Vhot –Vcold) [K/Volts]

Tsys = g Voff


Example GBT 4mm Rx

VLA Stable Calibrators

GBT to VLA calibration scale for 1-50 GHz, and we use ALMA for 3mm absolute calibration.

Observing: Antenna Optimization

- Should point+focus every 30min-1hr depending on frequency and time of day (point+focus takes ~5min).
 - C/X-band every 1hr during day; 2-3hr at night
 - Ku/K-band every 1hr during day; 1-2hr at night Ka/Q-band every 30-40min during day; 1hr at night

 - W-band every 20-30min during day; 40-50min at night
- AutoOOF (which takes ~30min) is used to correct the surface for thermal effects for Q-band and W-band at night. OOF solutions good for 2-6hrs at night.
- Daytime surface changes <1hr time scales and the AutoOOF solutions can cause more harm than good after ~1hr from the AutoOOF (so it is typically not useful to use the "thermal" corrections during the day).

greenbankobservatory.org

The Green Bank Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

