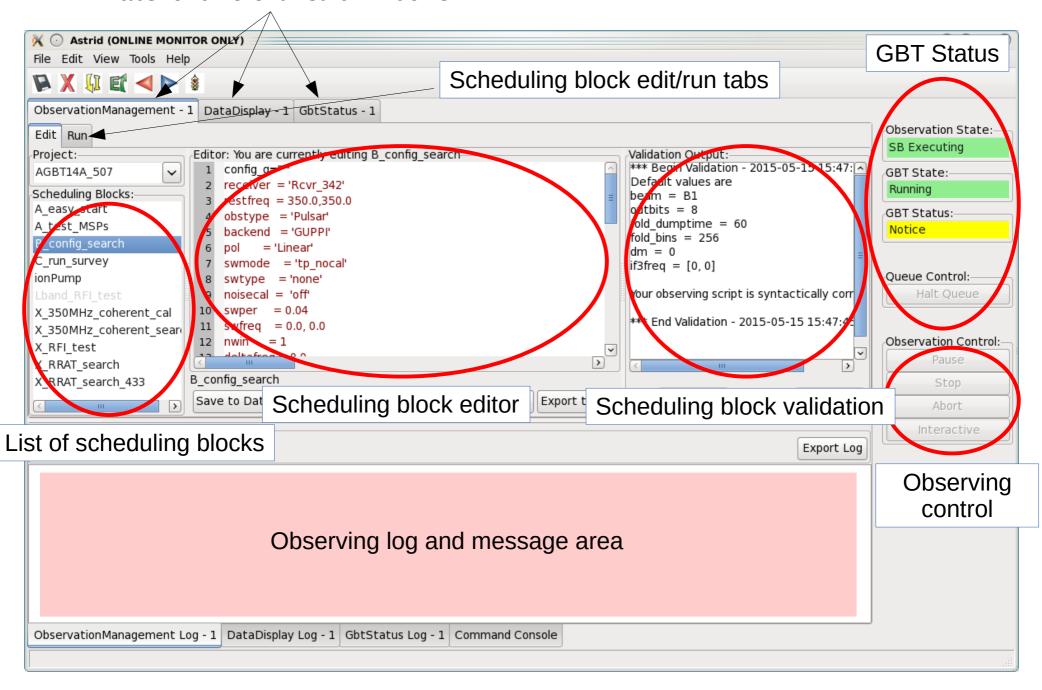
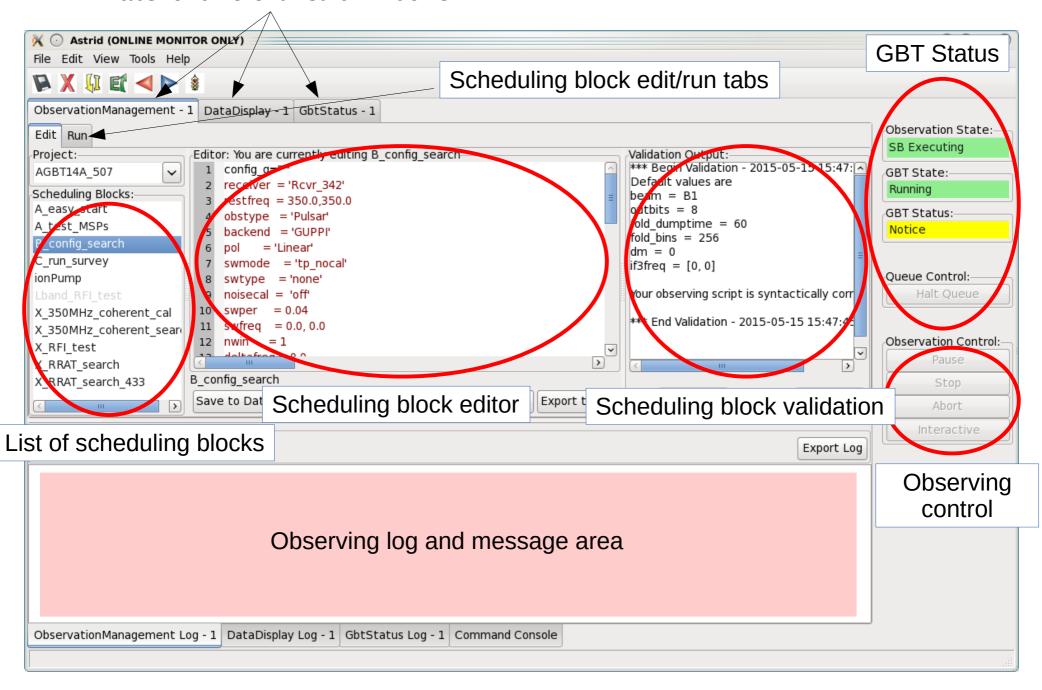


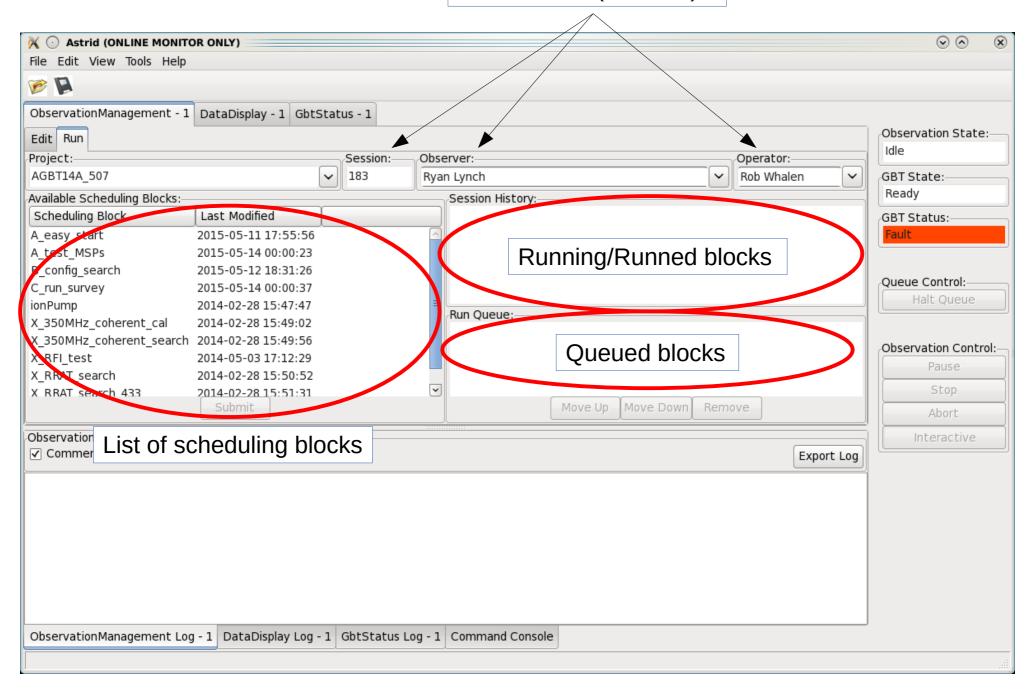
Pulsar Observing

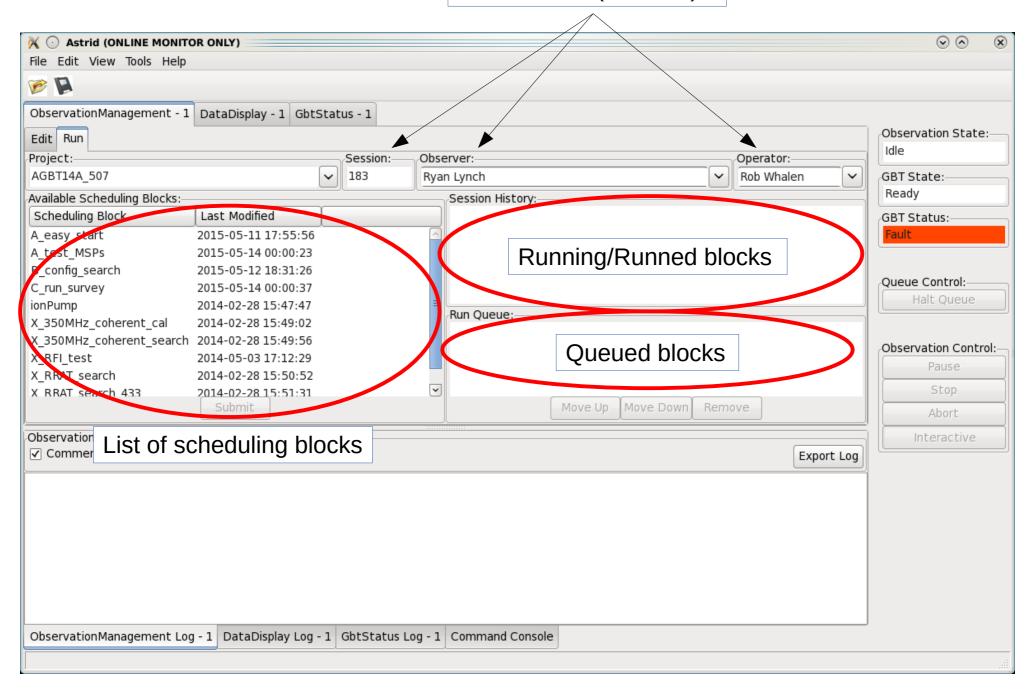
2021 Winter Observer Training Workshop

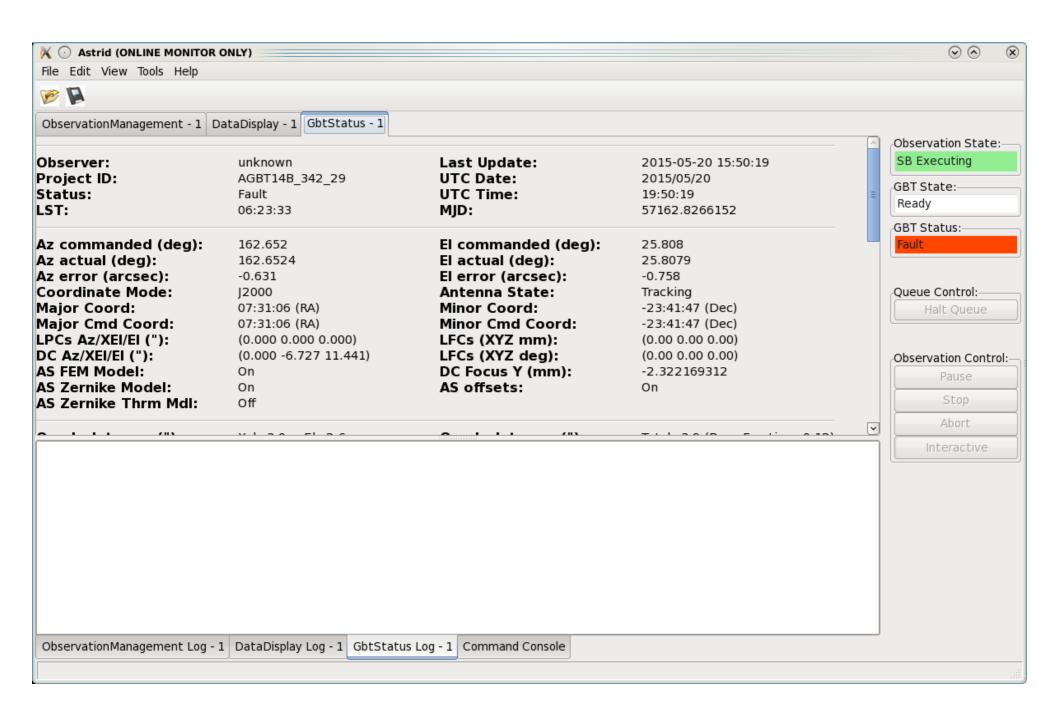


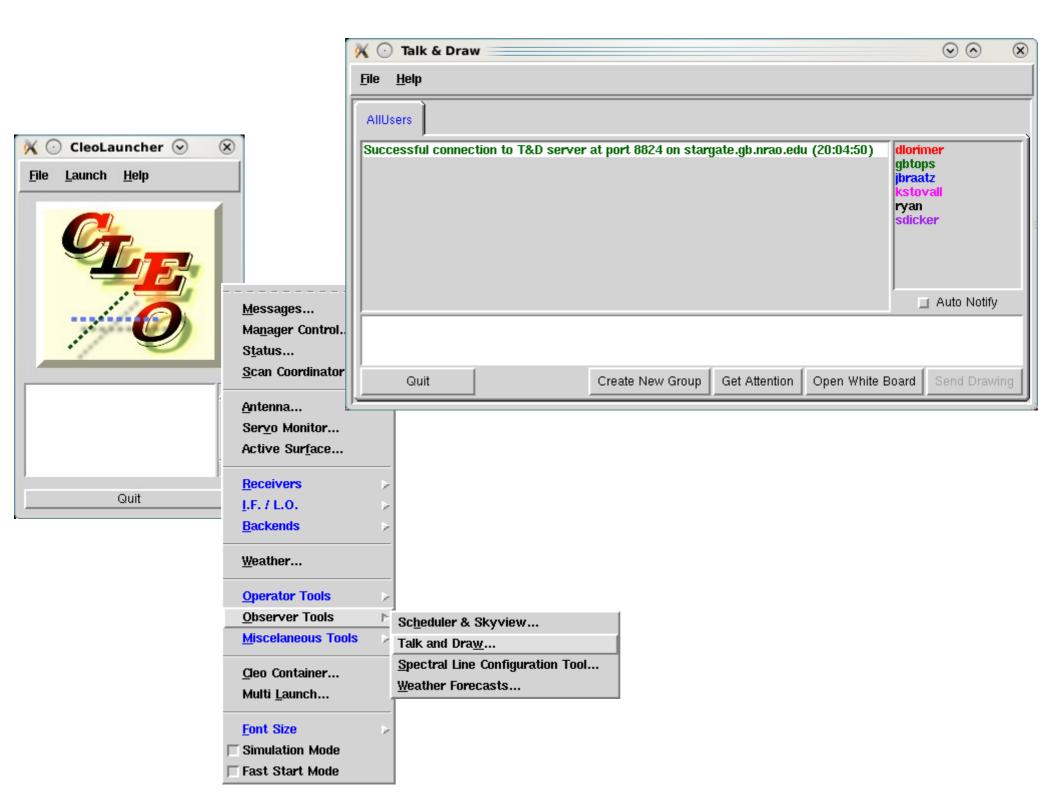

Some import terms...

- **Astrid**: <u>Astronomers Integrated Desktop</u>; Interface for controlling the GBT and monitoring observations
- Scheduling Block: A list of observing commands submitted through Astrid
- Configuration/Config: A special set of keywords and values that are used to setup the GBT for various types of observations
- **CLEO**: <u>Control Library for Operators and Engineers</u>; Useful tools + expert control of all GBT systems
- Talk & Draw: A CLEO chat tool


Tabs for different Astrid windows


Tabs for different Astrid windows




Session Info (Editable)

Session Info (Editable)

- Key parts of scheduling block are
 - Catalog(<catalog>): Loads a list of sources
 - Slew(source): Moves the telescope to a source
 - config: Defines backend and IF/LO parameters
 - Configure(config): Executes config instructions
 - Balance: Adjusts power levels to optimal range
 - Observing Directive
- There are *lots* of Astrid commands, and you can use python to make fairly complicated scripts
 - When in doubt, try Catalog(pulsars_all_GBT)
 - Note that this catalog may not be up-to-date with the brand new pulsars
- Let's look at the config portion more carefully...

```
receiver = 'Rcvr1 2'
restfreq = 1500.0
obstype = 'Pulsar'
backend = 'VEGAS'
pol = 'Linear'
swmode = 'tp_nocal'
swtype = 'none'
noisecal = 'off'
swper = 0.04
swfreq = 0.0
nwin = 1
deltafreq = 0
ifbw = 0
bandwidth = 800
tint = 81.92e-6
vlow = 0
vhigh = 0
vframe = 'topo'
vdef = 'Radio'
```

```
vegas.obsmode = 'search'
vegas.numchan = 2048
vegas.polnmode = 'full_stokes'
vegas.scale = 10000
vegas.outbits = 8
vegas.fold_dumptime = 10
vegas.fold_bins = 256
vegas.fold_parfile = "/users/rlynch/myparfile.par"
vegas.dm = 50
```

- swmode: Switching mode ('tp' or 'tp_nocal')
- swtype: Only used for frequency switching
- noisecal: Controls noise diode ('lo' or 'hi' or 'off')
- swper: Switching period (always 0.04 [25 Hz] for pulsar observing)
- swfreq: Only used for frequency switching
- nwin: Number of spectral windows (usually 1 for pulsar observing)
- deltafreq: Offset of spectral windows (always 0 for pulsar observing)
- ifbw: BW of filter in IF rack (80 for 100 MHz total bandwidth, otherwise 0)

- vegas.obsmode
 - fold, cal, search, coherent_{fold,cal,search}
- vegas.numchan
 - -2^{n} , n = 6...11 (64...4096 [8192])
 - Max depends on bandwidth
- vegas.polnmode
 - full_stokes or total_intensity
- vegas.scale
 - Varies with setup, but fairly stable
- vegas.outbits
 - Always 8

- vegas.fold_dumptime
 - Typically 10
- vegas.fold_bins
 - Typically 256, higher for coherent modes
- vegas.fold_parfile
 - Always make sure this is correct!!
- vegas.dm = 50
 - Specific to coherent_search

A word on tint

tint = acc_len * vegas.numchan/bandwidth

- acc_len is a hardware parameter not directly set by the user
 - acc_len > 4 for 100 and 200 MHz modes
 - acc_len > 16 for 800 MHz mode
 - acc_len < 100 recommended

- Write a simple observing script to observe B1937+21 in search mode for 30 minutes
 - 2048 channels, 40.96 us time resolution, total intensity, 800 MHz
 bandwidth
 - L-Band receiver
 - Center frequency of 1500 MHz
- Ask yourself
 - How will Astrid know the location of the source?
 - How do things need to be configured?
 - Is the system balanced?
 - How do I tell Astrid to start taking data?
- You may reference

https://safe.nrao.edu/wiki/bin/view/CICADA/VegasPulsarObservingInstructions#Example_Configurations

```
Catalog(<path on disk>)
config_string = """
receiver = 'Rcvr1 2'
111111
Configure(config_string)
Slew(<source name>)
Balance()
Track(<source name>, None, 1800)
```

head=name	ra	dec	
0034+69	00:33:13.03200000	+69:43:45.4800000	
0510+38	05:09:31.78854365	+38:01:18.0575238	
0636+51	06:36:04.84542630	+51:28:59.9831111	
0742+66	07:40:45.79660905	+66:20:33.5892639	
1124+78	11:25:59.83760878	+78:19:48.7496278	_
1649+80	16:41:20.84202477	+80:49:52.9304759	I
1816+45	18:16:35.93390826	+45:10:33.8680587	
1939+66	19:38:56.91758504	+66:04:31.7513018	
1309-23	13:09:27.42463533	-23:33:25.1647258	

format=spherical coordmode=J2000								
		-14		4	54.400			
head = name	jname	alias	ra	dec	S1400_Jy			
# Flux calibration sources from PSRCHIVE fluxcal.cfg								
1413+1509	J1413+1509	1413+15	14:13:41.660	+15:09:39.524	0.525662			
3C48	J0137+3309	0137+33	01:37:41.300	+33:09:35.13	16.2554			
3C123	J0437+2940	0437+29	04:37:04.375	+29:40:13.82	48.3292			
J0444-2809	J0444-2809	0444-28	04:44:37.708	-28:09:54.403	6.88461			
J0519-4546	J0519-4546	PicA	05:19:49.723	-45:46:43.855	67.1838			
3C138	J0521+1638	0521+16	05:21:09.900	+16:38:22.12	8.56402			
3C147	J0542+4951	0542+49	05:42:36.127	+49:51:07.23	22.1705			
3C196	J0813+4813	0813+48	08:13:36.056	+48:13:02.64	14.4286			
3C218	J0918-1205	HydA	09:18:05.669	-12:05:43.95	44.0132			
3C274	J1230+1223	M87	12:30:49.423	+12:23:28.04	212.310			
3C286	J1331+3030	1331+30	13:31:08.284	+30:30:32.94	15.0838			
3C295	J1411+5212	1411+52	14:11:20.647	+52:12:09.04	22.4993			
3C348	J1651+0459	HerA	16:51:08.024	+04:59:34.91	47.6466			
3C353	J1720-0058	1720-00	17:20:28.150	-00:58:46.80	57.4059			
3C380	J1829+4844	1829+48	18:29:31.781	+48:44:46.159	13.142			
3C405	J1959+4044	CygA	19:59:28.357	+40:44:02.097	1579.96			
3C444	J22214-1701	2214-17	22:14:25.752	-17:01:36.290	9.07134			
3C190	J0801+1414	0801+14	08:01:33.52	+14:14:42.2	2.46364			
1445+0958	J1445+0958	1442+101	14:45:16.440	+09:58:35.040	2.35757			
3C43	J0129+2338	0129+23	01:29:59.79	+23:38:19.4	2.83034			
3C394	J1859+1259	1859+129	18:59:23.3	+12:59:12	2.88127			
B2209+080	J2212+0819	2212+08	22:12:01.5685	+08:19:15.5868	1.70936			
NGC7027	J2107+4214	2107+42	21:07:01.530	+42:14:11.500	1.43339			

- How do we calibrate pulsar data?
 - Raw data are recorded in units of "counts", which change depending on how the system is balanced
 - We want physical units (Jansky)
- 1) Observe a standard source of known flux density
- 2) Use this to measure the strength of the GBT noise diode
- 3) Balance the system at the position of the pulsar and observe the noise diode
- 4) Observe the pulsar **without rebalancing**, and use the noise diode to calibrate the pulsar data

- Write a simple observing script to observe J1713+0747 using coherent fold mode for 20 minutes
 - 512 channels, 800 MHz bandwidth, (what is tint?)
 - Include all the necessary steps to fully calibrate the data
- You may reference

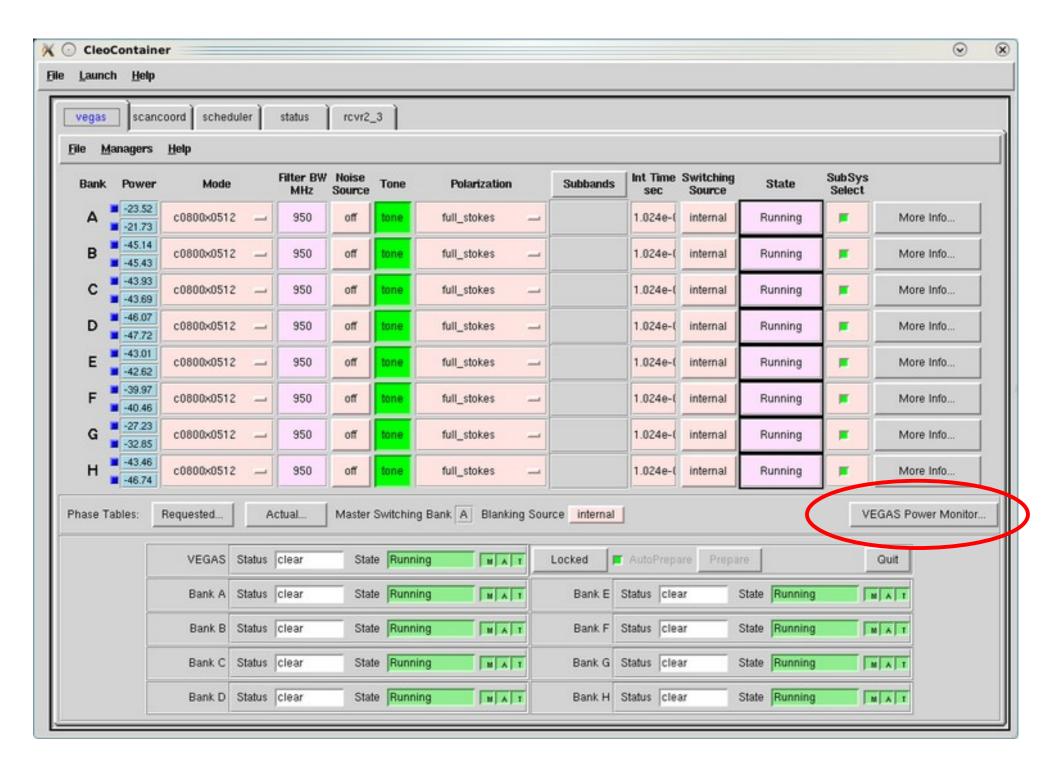
https://safe.nrao.edu/wiki/bin/view/CICADA/VegasPulsarObservingInstructions# Example_Configurations

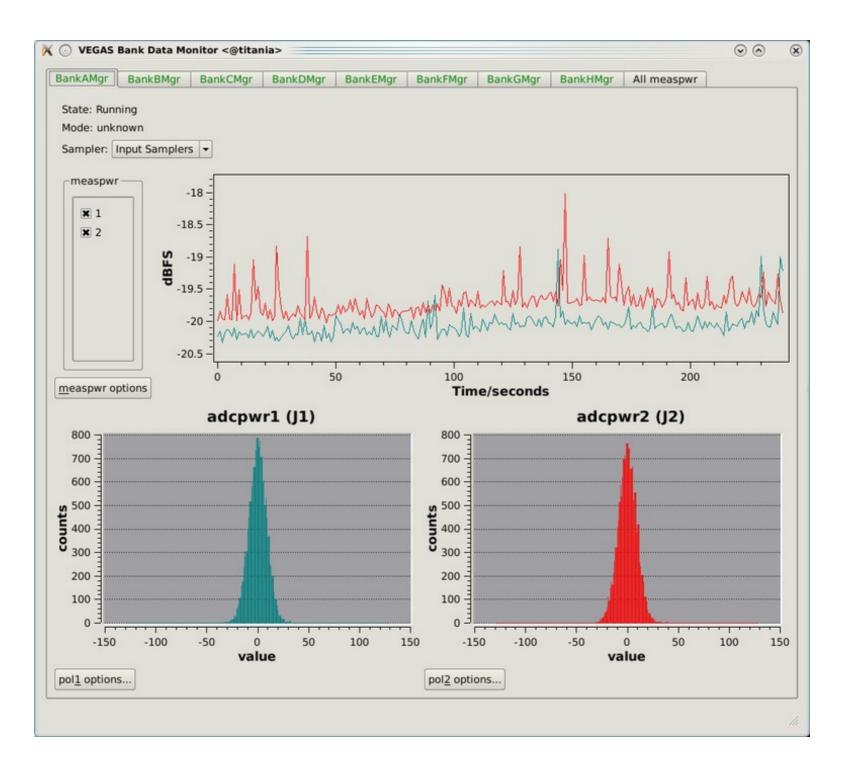
Scheduling blocks use Python!

```
sources = ["B1937+21", "J1713+0747"]
for src in sources:
   Slew(src)
   Balance()
   Track(src, None, 20*60)
```

```
for src in sources:
  config = """
  vegas.fold_parfile = "/home/gpu/tzpar/{src}.par"
  """.format(src=src)
srcdict = {
  "B1937+21":{"DM":50,"parfile":"mypar"},
   "J1713+0747":{"DM":100,"parfile":"mypar2"}}
for src in srcdict:
  config =
  vegas.fold_parfile = {parfile}
  """.format(parfile=src["parfile"])
```

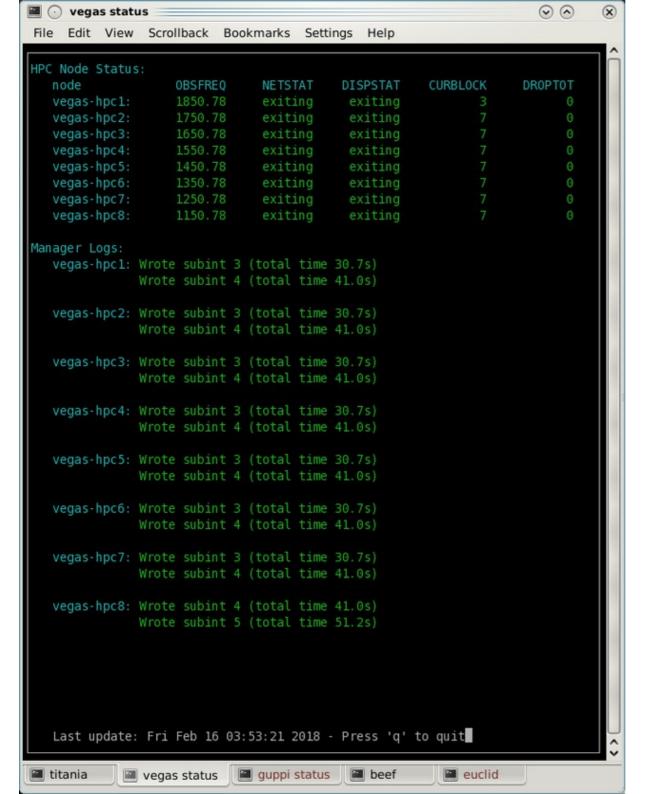
- Astrid has a number of useful convenience functions and options
 - Track() can take startTime and stopTime instead of scan length
 - Horizon() objects can be used to define times based on a source's elevation (.e.g., start observing when a source rises or stop when it sets)
 - OnOff() is useful for flux calibration scans
 - Observe an On source and Off source position automatically
 - AutoPeakFocus() necessary at high frequencies (roughly C-band and above)

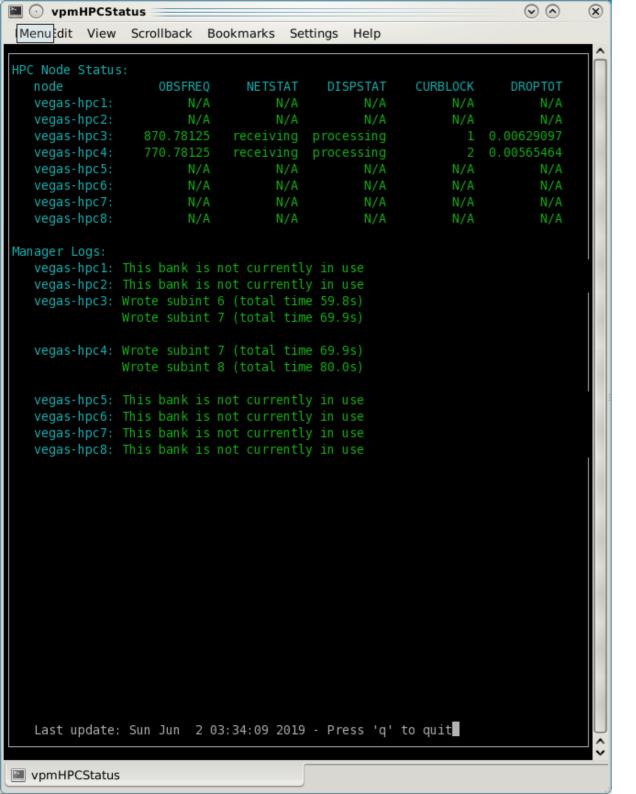

- Track(src, None, 3600)
- Track(src, None, 3600, startTime="15:15:00")
- Track(src, None, startTime="15:15:00", stopTime="16:15:00")


- myhorizon = Horizon(6.0)
 - Track(src, None, stopTime=myhorizon)
 - Track(src, None, startTime="15:15:00", stopTime=myhorizon)

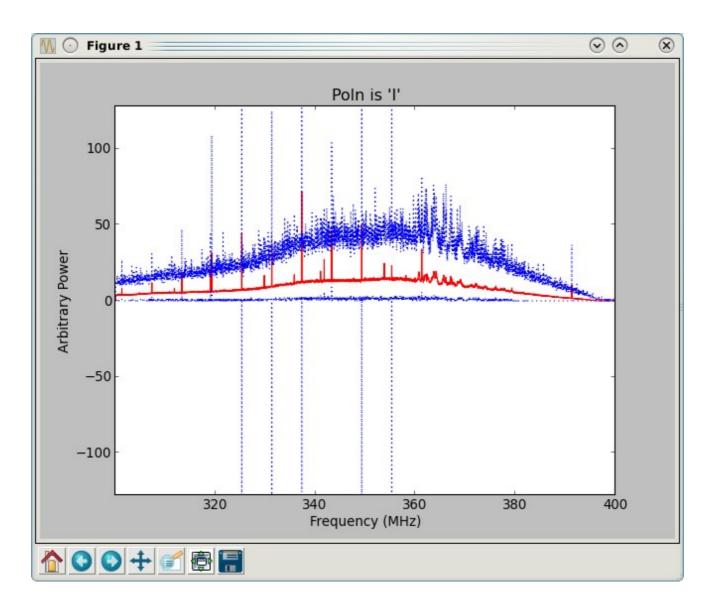
OnOff("3C48", Offset(0,1,cosv=False), 90)

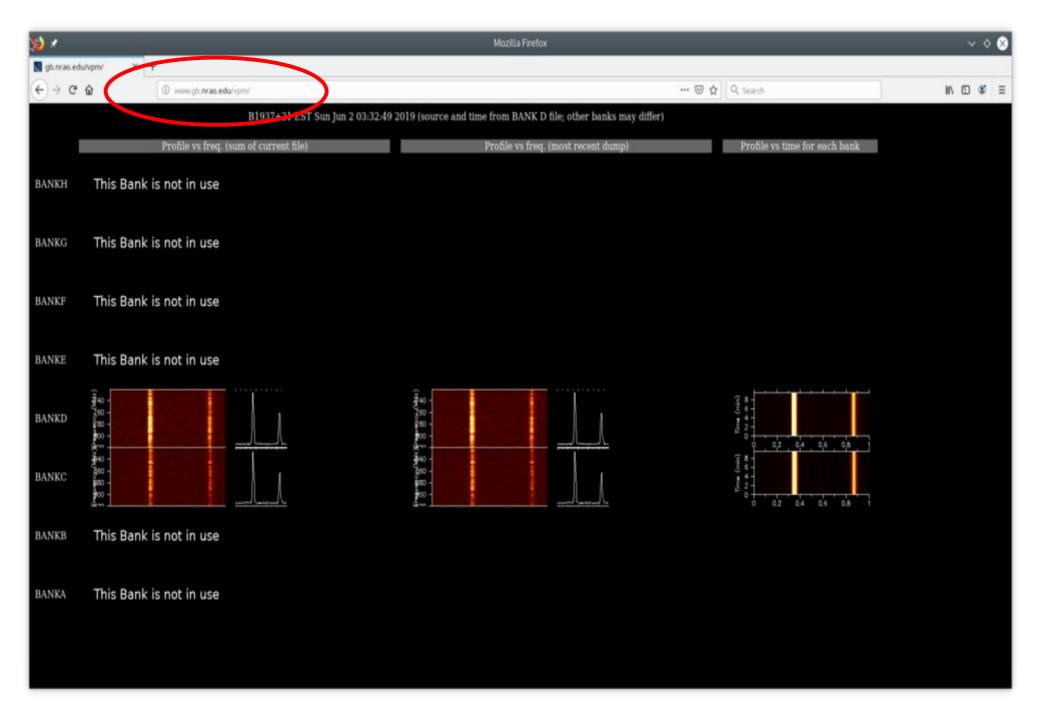
- Write an observing script that will loop over B1937+21, J1713+0737, and J1124+78
 - Perform a cal scan and online folding scan on each using coherent modes
 - You may specify the parfile in any way you choose
 - Do a 90 second cal scan and a 20 minute pulsar scan


- VEGAS is controlled through the GBT but there are standalone tools used to monitor observations
- Some are always used, some are specific to coherent and incoherent modes




```
status
File Edit View Scrollback Bookmarks Settings Help
 -Current GUPPI status:
 SRC NAME : 0034+69
                                      OBSERVER: Ryan Lynch
   RA STR: 00:34:11.8560
                                       DEC STR: +69:43:18.8400
 TELESCOP : GBT
                                      FRONTEND: Rcvr 342
  PROJID : AGBT14A 507 155
                                       FD POLN : LIN
                                       OBSFREQ: 350.0
 TRK MODE : TRACK
    OBSBW : -100.0
                                      OBS MODE : SEARCH
 CAL MODE : OFF
                                       SCANLEN: 305.0
  BACKEND : GUPPI
                                      DATAPORT: 50000
                                      CAL FREQ : 25.0
 CAL DCYC: 0.5
                                       CAL PHS: 0.0
                                          NPOL: 1
                                      PFB OVER: 12
   NBITS: 8
 NBITSADC : 8
                                       ACC LEN: 2
   NRCVR: 2
                                        ONLY I : 0
  DS TIME : 1
                                       DS FREQ : 1
   TF0LD : 1.0
                                          NBIN: 256
  PARFILE : None
                                       OFFSETO: 0.0
   SCALE0 : 1.0
                                       OFFSET1 : 0.0
   SCALE1: 1.0
                                       OFFSET2 : 0.5
   SCALE2 : 1.0
                                       OFFSET3: 0.5
   SCALE3 : 1.0
                                       DATADIR: /data1/rlynch/AGBT14A 507/201
  CHAN DM : 0.0
                                      NBITSRE0 : 8
                                      STT_SMJD : 13115
 STT IMJD : 57121
                                       SCANNUM : 1
 STT OFFS : 0
     TBIN: 8.192e-05
                                       CHAN BW : -0.0244140625
                                            ZA: 71.0801
 DAQPULSE: Wed Apr 8 23:39:42 2015
                                      DAQSTATE : running
                                          BMAJ: 0.588920316797
     BMIN: 0.588920316797
                                      DISKSTAT : waiting(11)
  NETSTAT : receiving
                                       DROPAVG: 8.56141e-15
  DROPTOT : 0
                                       DROPBLK : 0
 STTVALID : 1
                                      CURBLOCK : 10
 FOLDSTAT : exiting
                                       CURFOLD : 6
 Current data block info:
  PKTIDX: 819200
 Last update: Wed Apr 8 23:39:43 2015 - Press 'q' to quit
titania
              status
                           log
                                         beef
                                                      beef
```


- Launched by typing vpmStatus
- Must logged be vegas-hpc1 (or vegas-hpc2, vegashpc3...)


 Launched by typing vpmHPCStatus

 Launched by typing vpmHPCStatus

• Launched by typing <code>vpmMonitor</code> while data is flowing or by visiting www.gb.nrao.edu/vpm/vpm_monitor

www.gb.nrao.edu/vpm

- Final task: Write an observing script to observe some pulsars tonight, using incoherent search mode
 - Limit yourself to L-Band for tonight
 - You may choose sources, but they can't be part of an active project
 - Include a cal scan
 - You can be as pythonic as you want, or you can hard code things by hand
- When you are done, ask me to check your work