Submitting a GBT Proposal

2021 Winter Observer Training Workshop
Before you Begin

- Read the call for proposals in detail
- Understand the telescope and its capabilities
- Ask yourself...
 - Why is this proposal worth doing? Put yourself in the shoes of a critical referee
 - Has this been done before? What will I do differently this time?
 - Is this the right telescope for my science?
 - What do I actually need (as opposed to want) to accomplish my scientific goals?
Proposal Categories

- **Regular**
 - 0.3 – 8 GHz (any weather): < 400 hours and <= 1 year
 - 8 – 18 GHz (good weather): < 200 hours, <= 1 year
 - 18–27.5 / >50 GHz (excellent weather): < 100 hours, <= 1 year
 - Fixed time / monitoring (all weather): < 200 hours, <= 1 year

- **Large**
 - 0.3 – 8 GHz (any weather): >= 400 hours and > 1 year
 - 8 – 18 GHz (good weather): >= 200 hours, > 1 year
 - 18–27.5 / >50 GHz (excellent weather): >= 100 hours, > 1 year
 - Fixed time / monitoring (all weather): >= 200 hours, > 1 year
Proposal Categories

- Triggered proposals are submitted at the normal proposal deadlines
 - Intended for pre-planned observations of transients whose times are not known *a priori*
 - Must include clear, well-justified trigger criteria
- Director’s Discretionary Time (DDT): Two types
 - Target of Opportunity: Unexpected phenomena, rapid response
 - Exploratory Time: Typically a few hours or less, intended for pilot projects taking advantage of a new idea or capability
Great, Good or Poor

- 300-500 proposals reviewed every deadline
- Few (~10) are obviously great
- Few (~10-20) are obviously poor
- All others are good and about equal
 - We are all intelligent, good writers, etc.
- How do you make your proposal standout?
Proposal Elements

• Abstract (on the cover page) – limited to 200 words for GBT proposals
• Introduction and background information
• Project description
• Scientific justification
• Time request (including backends, observing strategy, etc.)
• Technical justification (pre-formatted)
Scientific Justification Tips

• Do
 – Be thorough but concise – this is a skill that takes practice to develop!
 – Provide a relevant introduction
 – Cite relevant literature
 – Discuss the potential impact of a successful proposal
 – Discuss the potential impact of a null result

• Don’t
 – Assume that all referees are experts in your domain
 – Don’t “blind with science” - KISS
 – Use words when a figure would suffice (and vice versa)
Technical Justification Tips

• Do
 – Make sure you are up-to-date on instrumental availability and capabilities
 – Ask observatory support staff if you have questions
 – Provide all the information that is asked for
 – Use observatory provided tools
 – Be explicit about any assumptions you are making

• Don’t
 – Ask for something that is unavailable or impossible
 – Ask for an instrumental set up that is not justified by the science
 – “Pad” the time request – we conduct an independent review
Stylistic Considerations

- Don’t repeat the abstract in the proposal – it is included in the cover sheet! The same goes for technical justification.
- Don’t add content just to reach the page limit.
- Follow all formatting guidelines
 - 4-page limit for regular, triggered, DDT proposals
 - 10-page limit for large proposals
 - Includes figures, tables, references
 - All proposals: Min. 11 point font for main text (smaller font OK for figures, footnotes, but must be legible)
 - All proposals: 1-inch margins
- Remember that referees read lots of proposals – make it exciting.
GBO/NRAO Proposal Call

- August 1 and February 1 deadlines
- August deadline observing February-July
- February deadline observing August-January
Hidden Gems

• Joint proposals with
 – Hubble
 – Fermi
 – Chandra
 – Swift
 – SOFIA
• Filler time proposals
GBO/NRAO Tips

- Panel Based system
 - Eight different panels
 - Broad community representation on panels
 - Non experts on panels

- 0=best and 10=worst
- Will be given a group
 - A: active for one year, expect to complete
 - B: one semester, should get most of time
 - C: one semester, filler time
 - N: not accepted
GBT Tips

• If in doubt contact us
• Technical justification – unlimited space
 – What you are using
 – How you are using it
 – How long you need it
 – How you determined those values
• Include Overhead times
 – Pointing/focus every 0.5-2 hours
 – AutoOOF every 1-2 hours (above 30 GHz)
 – Interscan latencies
 • Slew times
 • 20-30 seconds to start scan
Common Mistakes

• Confusion Limit
 – Once you hit it you are done (unless you have knowledge of emission at higher resolution)
• 1/f noise (Gain variations)
 – Receiver dependent
 – Relevant when product of BW and tint exceeds certain limits
• RFI
 – Check for known emissions
 – Have a plan
• Use the GBT sensitivity calculator
• Use the GBT mapping calculator
 – http://www.gb.nrao.edu/~rmaddale/GBT/GBTMappingCalculator.html
Sessions

- Only include receivers and backends that must be observed at one time

- Typical telescope period is 3-6 hours long
 - Scheduled using average RA and Dec of sources
 - Group sources accordingly

- Sources in a sessions should be:
 - Within a 2-3 hour RA range
 - Use $\lambda=\delta$ as a divider (avoid long slews)
 - Time visible should be the same to within 1-2 hours

- Don’t restrict observable LST range too much
 - More flexibility = better chance to be scheduled
Scheduling Considerations

• GBT is oversubscribed, particularly when Galactic center is up
 – If you can, ask for time that is in lower demand
• Fixed projects are becoming harder to schedule!
 – This especially impacts pulsar and VLBI observing
 – If you need **fixed** or **windowed** observations you must provide strong justification (and rank highly)
 – Be as flexible as possible with scheduling constraints
 – Make your “must-haves” clear and different from your “prefer-to-haves”
Important Websites

 - Links and information for all things related to GBT proposals

- https://my.nrao.edu
 - Primary portal for submitting all GBO/NRAO proposals

- https://dss.gb.nrao.edu/calculator-ui/war/Calculator_ui.html
 - Tool for calculating observing time and sensitivity

- https://www.gb.nrao.edu/~rmaddale/GBT/GBTMappingCalculator.html
 - Tool for planning maps