
DRAFT

Requirements for Multifrequency Observing with the GBT

Ronald J. Maddalena
October 23, 2002

I. Introduction

Up to now, the use of the GBT has mostly been concerned with observing at a single frequency
with a single bandpass or spectral window. The observers who have tried to observe multiple
spectral-line transitions have had to devise their own methods of configuring the hardware and
processing the data.

The purpose of this document is it describe step-by-step how one can set up multifrequency
observing. I hope to provide requirements to those implementing the telescope control systems
so that observers will have sufficient tools to make the task of multifrequency observing easier
than it has in the past.

A few general comments:

• Astronomers will ask for multifrequency continuum, pulsar, radar, VLB and spectral line
observing. I have tried to be complete for only continuum and spectral-line observing.

• A few of the capabilities I describe (offset frequencies and multifrequency Doppler
tracking) can be phased in over time.

• I have assumed all observing will be dual polarization (linear or circular), single-beam
observing but what is discussed here eventually needs to be expanded to cover single and
cross polarization observing as well as multi-beam observing.

• Throughout I use notations, variable names, and equations that are only meant to facilitate
this discussion and are not meant to influence implementation. The code presented in the
appendix is provided as a model for the developers.

• The reduction of multifrequency data will be discussed in a separate document.
• Many of the ideas presented come from the memos, e-mails, or conversations with F.

Ghigo, D. Balser, A. Roshi, B. Garwood, J. McMullin, T. Minter and others.

The document starts off with a few observing scenarios that cover the kinds of multifrequency
observing astronomers will expect the GBT to perform (§ II). I next describe what an observer
needs to specify for multifrequency observing (§ III). Once that information is known, the
control system can configure the hardware for a suite of observations (§ IV) and for a single
observation (§ V). Section VI provides the information that needs to be passed from the control
system to the analysis software for proper data reduction. I conclude (§ VII) with those items I
believe still need some discussion before detailed design and implementation can begin.

II. Observing Scenarios

Almost all multifrequency observing can be covered by just a handful of scenarios. The reader
should make note of the abbreviations I suggest for each mode since I will use them throughout
this memo. The scenarios are:

• Single frequency observing in a single spectral window (SFSW): The observer will want
to observe a single spectral line transition of a molecule or atom or a band centered at a
single frequency for continuum observing. GBT observing up to now has been
predominately of this type. An example of this would be observing galactic atomic
hydrogen with a bandpass sufficiently wide to encompass all of the emission. Or, an 8.4
Ghz continuum map of M17.

• Multiple frequencies in a single spectral window (MFSW): The observer will want a
single spectral-line bandpass to encompass two or more transitions from different atoms
or molecules or different transitions from the same molecule. This is a spectral-line
observing mode only. Two examples are: 1) Observing the 1665 and 1667 MHz lines of
OH in a 2.5 MHz or wider bandpass; 2) Observing the 4.8 Ghz H2CO and 5.3 Ghz
CH2NH with an 800 MHz bandpass.

• Multiple frequencies in multiple spectral windows. Three scenarios come to mind, each
of which is just an extension or hybrid of the above modes:
• Multiple frequency spectral-line observing with each spectral window covering a

single transition or continuum observing at multiple frequency (MFMW-1). This
is essentially an extension of SFSW observing and an example of which is
observing the 1612 and 1720 MHz lines of OH, each in a 5 MHz bandpass. Or,
continuum observing at 8.4 and 10 Ghz with a bandwidth of 200 MHz..

• Multiple frequency observing with each spectral window covering multiple
transitions (MFMW-2). Essentially an extension of MFSW observing and a
spectral-line observing mode.

• Multiple frequency observing with some spectral windows covering a single
transition while others cover multiple transitions (MFMW-3). This is a spectral-
line observing mode and is a combination of SFSW and MFSW observing..

• Single frequency in multiple spectral windows (SFMW). Observers will pick this kind of
spectral-line observing for two common reasons.
• when they know the rest frequency of the atom or molecule but don’t know the

velocity of the object along the line of sight. An example of this kind of
observing would be an attempt to discover galaxies in the zone of avoidance from
their HI emission.

• when the expected line width is broader than the maximum bandwidth of a
backend. Here, the observer is trying to synthesize a broad bandpass from narrow
ones.

In almost all cases, the spectral windows are placed in series with maybe some overlap in
frequency coverage.

Other types of observing can be described by one of these scenarios. For example, a spectral-line
survey of TMC-1 could be set up using either MFSW or MFMW-2.

Summary: Multi-frequency observing must be able to handle observing in the following
modes:
• SFSW - Single frequency, single spectral window
• MFSW - Multiple frequencies, single spectral window
• MFMW - Multiple frequencies, multiple spectral windows of which there are three

subtypes.
• MFMW-1 - multiple SFSW
• MFMW-2 - multiple MFMW
• MFMW-3 - a hybrid of SFSW and MFSW.

• SFMW - Single frequency, multiple spectral window
Continuum, pulsar, radar, and VLB observing can only be accomplished with the SFSW and
MFMW-1 scenarios.

III. User Inputs for Configuring the System and Observing

For decades other telescopes have provided the ability to observe in all of the above scenarios.
Thus, we don’t need to look far for models of how we should present to the observer the various
options for configuring the hardware for multifrequency observing. For example, I have tried to
base my suggestions on the philosophies behind the 12-m and 140-ft control system.

From the above scenarios, it is almost obvious that the observer needs to be asked for the number
of required spectral windows (numWindows).

For each spectral window, most telescope systems require that the observer supplies a single rest
frequency. Initially, I thought that we would have to ask the user for multiple rest frequencies in
order to cover the MFSW and most of the MFMW scenarios. But, I believe that Aips++ can
handle the requirements by allowing the user the ability to change the assigned rest frequwncy to
each spectral window. Thus, I think we should pick the simplest of options and have the
observer supply a single rest frequency for each spectral window. Thus, the observer needs to
supply a vector of rest frequencies whose length is numWindows [e.g.,
restFrequencies(numWindows)] and whose units are MHz. It would be nice if the configuration
tool could supply a list of common rest frequencies to reduce the number of times observers
would have to type in frequencies.

Since Doppler tracking with the GBT’s L.O. 1 can only be done correctly for a single rest
frequency, one of the values in the vector has to be designated as the rest frequency used in the
Doppler calculations. I suggest that this ‘master’ rest frequency be the first in the vector and that
the user interfaces make it clear that this rest frequency is given special significance by the
control software. Note that the system could Doppler track multiple spectral windows
simultaneously by using L.O. 2 (see § IV and V) but I consider this a feature that we will want to
add at some future time.

For scenario SFMW, the rest frequencies for all of the spectral windows should have the same
value. But, how does one specify the offsets between the different spectral windows? For
scenario MFSW, how does one specify how much a spectral line should be offset from the center
of the spectral window? In previous control systems, the user typically fudges either the rest
frequencies or the intermediate frequencies.

A. Rosh suggested a more elegant solution where the observer can specify an offset frequency for
every spectral window. The offset is defined as the amount by which the frequency of the center
of a bandpass is shifted in MHz and would have a default value of zero and units of MHz. There
are three possibilities for a definition of offset frequency, with each definition having certain
benefits:

• Offset in rest frequency. For example, in scenario MFSW, if the astronomer was
observing the 4.8 GHz H2CO and 5.3 Ghz CH2NH with an 800 MHz , he or she could
specify a rest frequency of 4.8 GHz and an offset of 250 MHz to center the bandpass
between the two lines. However, SFMW observing doesn’t fit well with this definition of
offset frequency.

• Offset in intermediate frequency. In scenario SFMW, an HI observer could specify a rest
frequency of 1420 MHz, a bandwidth of 200 MHz and offsets of 180, 360, 540, MHz
for the various spectral windows. Unfortunately, observers may not know the sign of to
use for the offset since we have a mixture of upper and lower-sideband mixers and
multiple mixes in our receiver and I.F. systems.

• Offset in sky frequency (i.e., the Doppler-shifted rest frequency). Here, the SFMW
observer could specify a proper placement of the various spectral windows without
worrying about the sign of the offsets but the MFSW observer would have difficulty
calculating a proper offset if the source has a high velocity since the separation between
two lines will change as a function of source velocity for some definitions of Doppler
shifts.

Since there is no clear choice here, I will assume for the rest of this discussion the last definition
(offset in sky frequency) but what follows can be easily modified if we choose a different option.
Since this capability can be fudged in other ways (e.g., specifying a rest frequency that is offset
from the actual rest frequency), the capability of specifying an offset can be a later addition to the
control software.

As will become obvious in the next section, in order for the configuration tool to configure the
hardware for multifrequency observing the observers will need to specify a Doppler definition
(velDefinition= radio, optical, or relativistic) and a range of velocities (velMin and velMax in
km/s) that will cover all of the objects in the observer’s source list. The observer will specify the
receiver and backend. I will make the simplifying assumption the user will specify a single
bandwidth (in MHz) for all spectral windows, though it would be easy to extend the following
sections to handle different bandwidths in different windows. For spectral line work, the user
will need to specify the number of channels (numChannels, assumed to be the same for all
spectral windows) and, for the Spectrometer, the number of levels (numLevels) at which the
samplers are to be run.

Summary: To configure the hardware the user must be able to specify:
• numWindows
• restFrequencies(numWindows) of which the first is to be considered the master for

L.O. 1 Doppler tracking
• offsets(numWindows) – possibly a later addition
• velDefinition
• velMin and velMax
• receiver and backend
• bandwidth
• numChannels and numLevels when appropriate.

For observing, the user must specify:
• numWindows
• restFrequencies(numWindows) of which the first is to be considered the master for

L.O. 1 Doppler tracking
• offsets(numWindows) – possibly a later addition
• velDefinition and restFrame
• velocity
• receiver and backend
• bandwidth
• xpos, ypos, coordMode, epoch
• startTime or ASAP

In our current plans, the items in the first set of bullet will be assigned values as part of the
configuration tool. Some of the items in the second list will be inherited from the
configuration tool. All of the items in the second set would be assigned values as part of the
observing tool (GO).

For observing with GO, the astronomer must specify velDefinition, a rest frame (LSR, solar
system barycenter, galactocentric, etc.), receiver, backend, bandwidth (in MHz), source velocity
(velocity in km/s), coordinate frame (J2000, B1950, Galactic, etc.), source position (in the natural
units for the coordinate frame), epoch (if coordinate frame requires it) and time of observation
(start time and date) or ASAP if the start time doesn’t matter. Since the configuration tool knows
many of the values that are needed for observing, it would be beneficial if GO could inherit these
values from the configuration tool somehow.

IV. Hardware Configuration

Once the control software has the information need to configure the hardware, how does one
determine the filters needed to use in a receiver or piece of I.F. equipment, what are the values of
synthesizers, etc? In particular, how does one assign values to parameters in the various
hardware managers for the GBT? This section addresses how one can set up a legitimate signal

path through the GBT for a suite of observations of multiple sources (i.e., what should the
configuration tool do). Section V will deal with what needs to be set before each observation of
a source (i.e., by GO).

Many of the steps in configuring the hardware are documented elsewhere and won’t be covered
here. In particular, I will not cover how one uses the GBT cabling file to determine the routing
between devices. Instead I will concentrate on those aspects of configuring the hardware that
have not been documented elsewhere and are relevant for multifrequency observing.

A. Receiver R.F. Filters

Many of the GBT receivers have R.F. bandpass filters before the receiver’s mixer. The filter for
a suite of observations should not be changed between sources. Instead, the configuration
software must calculate the minimum and maximum sky frequency that will cover the range of
rest frequencies and source velocities. The R.F. filter that should be chosen must cover the range
of sky frequencies augmented by the desired bandwidth.

As an aid to implementation, the appendix provides Tcl code for calculating sky frequency from
rest frequency, velocity definition, and source velocity (calculateSkyFreq) as well as the
minimum and maximum sky frequency from restFrequencies, velMin, velMax, bandwidth,
velDefinition, and offsets (skyFrequencyRange). Note how the latter routines uses bandwidth
to add extra coverage in sky frequency. Using the output from a similar routine, the
configuration tool should look at the range of frequencies covered by the R.F. filters in a receiver
and pick the filter with the narrowest width that covers the range of sky frequencies.

Note that the calculation for sky frequency range does not involve the rest frame since the
configuration tool does not know the date or time of the observing or the source position. Thus
it cannot correct the Doppler calculation for the Earth’s motion in a chosen rest frame. The
resulting range of frequencies could be off from its optimum values by the sky-frequency
equivalent of a few hundred km/s. But, having non optimum values is probably not sufficient to
produce a bad configuration since receiver filters do not have sharp edges.

B. L.O. 1 Frequency and Center I.F.

An accurate L.O. 1 frequency can only be determined at the time of observation since it depends
upon source position and time of observation. Nevertheless, we need to calculate guesses for the
L.O. 1 frequency in order to calculate an optimum center I.F. frequency for a range of
observations.

Before we can calculate these quantities, the configuration tool must know the center frequency
formula (CFF) for the chosen receiver. The CFF describes how one can calculate sky frequency
from the L.O. 1 frequency and I.F. Center. By rearranging the CFF, one can calculate L.O. from
I.F. and sky frequency or I.F. from sky and L.O. frequencies. The CFF must take into
consideration any multipliers or offset mixers in the L.O. chain. Everyone writes CFF

differently but all representations are just algebraic permutations of the same equations. For this
work I’ll write the CFF in the form:

As an example, Rcvr1_2 has a CFF of SkyFrequqncy = LO1 - IFcenter.

Each receiver has an preferred center I.F. (e.g., 3000 MHz for Rcvr1_2, 1080 MHz for PF1,
etc.). The first step in calculating an optimum center I.F. is to chose an L.O. 1 such that the
average of the maximum and minimum sky frequency is converted by the mixer to the preferred
center I.F. Next, the configuration tool should calculate an I.F. from the sky frequency of the
“master” rest frequency and the just-calculate L.O. 1 frequency. Since we are expecting a range
of source velocities, the above calculations are done for velMin and velMax and the resulting
center I.F. averaged together. The average center I.F. is then the optimum value for configuring
the hardware. I have provided Tcl code to perform these calculations for Rcvr1-2 in the
appendix (optimumIFCenter).

The configuration tool will need to know for later calculations a good guess of the LO1
frequency. To do so requires using the optimum center I.F., the master rest frequency, and
probably the average of velMin and velMax (see setPreliminaryLO1 in the appendix).

C. Receiver I.F. Filters and I.F. Rack Filters

Once the optimum center I.F is known, we can now determine which I.F. filters to use in the
receiver (if any exist there) and in the I.F. rack. The filter to pick must be the one with the
narrowest width that covers the range in observing I.F. The range in observing I.F. is calculated
from the CFF, the minimum and maximum sky frequencies, augmented by the backend
bandwidth, and the L.O. 1 frequency. The calculation is repeated for velMin and velMax so as to
find the minimum and maximum I.F. that will cover all of the proposed observations. The
ifRange procedure in the appendix is an example of this calculation.

E. L.O. 2 Frequency

For some very limited continuum SFSW observations, the setting of the filters in the I.F. rack
will be the last stage in configuring observing. In most cases, multifrequency observing will
require configuring the L.O. 2 synthesizers in the Converter Rack. Although one needs to
examine the cabling file to determine which Converter Rack modules will be needed for an
experiment, the number of modules will always be equal to 2 x numWindows and the number of
L.O. synthesizers will be equal to numWindows. Polarization pairs will share a common L.O. 2
synthesizer (e.g., Synthesizer 2 feeds modules 2 and 6 which should be the two polarizations for

a single spectral window). The cabling file will also determine the routing of signals from the
converter rack to the analog filter rack or various backends.

In addition to signal routing, multifrequency observing requires the setting of the synthesizers for
L.O. 2. The second I.F. frequency after the mixer in the converter rack depends upon the
backend, or in the case of the Spectrometer, the chosen bandwidth. Once the second I.F. is
known, for each rest frequency, the configuration tool must calculate the sky frequency using the
average of velMin and velMax, and then calculate the first I.F. The L.O. 2 frequency is a rather
simple calculation that uses the first I.F. and knowledge of the backend and bandwidth (see
calcLO2 in the appendix.)

F. Other Devices

Essentially, the only thing that remains to be configured is backend specific. For example:

• DCR: Must use the cabling file to determine which samplers are going to be used. The
number of samplers will be 2 x numWindows. For most multifrequency work, the Analog
Filter Rack (AFR) will be used and the number of AFR modules will be 2 x numWindow.
The modules that will be used in the AFR depend upon the bandwidth and which
Converter Rack Modules are used. The filters in the AFR are also determined by the
desired bandwidth.

• Spectral Processor: The samplers to use must be in sequence and balanced between the
two racks. These restrictions essentially dictates the Converter Rack modules that must
be employed. The number of samplers will always be 2 x numWindows

• Spectrometer: 2 x numWindows modules in the Analog Filter Rack (AFR) will be used.
The modules that will be used depend upon the bandwidth and which Converter Rack
Modules are used. The filters settings in the AFR are determined by the desired
bandwidth. The samplers that will be used in the Spectrometer depend upon the cabling
file but the number of samplers will always be 2 x numWindows.

The Spectrometer also has the characteristic that the same scientific goals cane sometime
be accomplished with one of multiple configurations. The findSpectrometerConfig
routine in the appendix will determine the Spectrometer mode strings and control
parameters for a user’s choice of Spectrometer bandwidth, number of levels, and number
of samplers (= 2 * numWindows). If more than one mode is possible, then it might be the
cabling to the Spectrometer that will dictate which mode should be used. If, after
eliminating modes which are illegal because of cabling, there still exists a choice of
configurations then it is probably best if the configuration tool were to select the
configuration that uses the fewest Spectrometer banks.

Example: Let us consider an example where the astronomer wants to observe rest frequencies of 1420,
1612, 1665, 1667, and 1720 MHz with a bandwidth of 12.5 MHz (i.e., Rcvr1_2 and the Spectrometer will
be used). Since the 16655 and 1667 lines fall into the same bandwidth, the observer will require four
spectral windows with the third window offset by 1 MHz. The list of objects will have velocities that
extend from +200 to -1000 km/s with velDefinition = radio. The user selects 1420 MHz as the “master”
for Doppler tracking, 9-level sampling with 8192 channels per spectrum.

% skyFrequencyRange {1420 1612 1665 1720} -1000 200 12.5 radio {0 0 1 0}
1412.8026781 1731.98730163

[This indicates we will need to use the 1.1 - 1.8 GHz filter in the receiver]

% optimumIFCenter {1420 1612 1665 1720} Rcvr1_2 -1000 200 radio {0 0 1 0}
3150.20013843
% setPreliminaryLO1 {1420 1612 1665 1720} Rcvr1_2 -1000 200 radio {0 0 1 0} 3150.20013843
4572.09478223

[We now can specify the center I.F. and have an estimate of a L.O. frequency that will be used when
observing commences.]

% ifRange {1420 1612 1665 1720} Rcvr1_2 -1000 200 12.5 radio {0 0 1 0} 4572.09478223
2840.1074806 3159.29210413

[The appropriate filter to use in the I.F. rack is the one that covers 2840 to 3160 MHz.]

% calcLO2 {1420 1612 1665 1720} Rcvr1_2 -1000 200 12.5 Spectrometer radio {0 0 1 0} 4572.09478223
13182.7001384 12990.4439612 12936.3732457 12882.2998616

[We now have the three values for the L.O. 2 synthesizers in the converter rack.]

% findSpectrometerConfig 12.5 9 4 8192
2 Bank(s) -> 1N2----12-9
 (A1 B1 - 2 sampler(s) per bank)

1 Bank(s) -> 2N4----12-9
 (A2 - 4 sampler(s) per bank)

Two Spectrometer configurations are possible, and, if the cabling is appropriate, the second, single-bank
configuration is preferred.

V. Observing

The previous configuration step sets up the system for observing a suite of objects. Both GO and
the control system need to be modified so as to properly change the set up of the system to
accommodate the observation of individual sources. Fortunately, most of what we already have
gone through will be directly applicable to what the control system must do on a source by
source, scan by scan basis.

• The control system will not need to change filters in either the receivers or I.F. rack as the
observer moves from one source to the next. The configuration step insures that the
chosen filters will handle all sources and, therefore, there is no equivalent of
skyFrequencyRange or ifRange for observing.

• The calculateSkyFreq algorithm presented in the appendix is inadequate. For observing,
we need this calculations to correctly calculate the systemic velocity in the user’s chosen
velocity frame. The algorithm must calculate the systemic velocity from the time of the
observation, coordinate system, and source position. The full algorithm is well described
in memos by Joe Brandt and Rick Fisher and is already in use for calculating L.O. 1
frequencies.

• By using the modified calculateSkyFreq, the control system should calculate the
optimum I.F. center frequency. This step should probably be done by GO at the start of
every observation. Note that the version of optimumIFCenter in the appendix requires a
velMin and velMax. For observing, both of these values will be the same and will be the
user-specified velocity of the source that is about to be observed.

• The setPreliminaryLO1 routine in the appendix is an exact functional copy of the code
Joe Brandt must be using in the control system for setting L.O. 1 frequencies. Thus, this
step is already being handled.

• The calcLO2 routine should be called at least at the start of an observation for a source.
Again, this routine asks for a velMin and velMax but the value inserted for observing for
both these arguments will be the source velocity.

It is interesting to note that if we wanted to perform correct Doppler tracking for all spectral
windows, not just for the master, the calcLO2 routine can be used every time the value of L.O. 1
changes in order to set the L.O. 2 synthesizers properly. Thus, we now have a conceptual and
computational outline of how we can accomplish proper multifrequency Doppler tracking.

It is also important to note that the configuration tool must pass to GO the number of spectral
windows, the list of rest frequencies and offset frequencies, the receiver, backend, etc. Many of
these values GO can currently pick up directly – the configuration tool sets the values for most
items into manager parameters and GO then can obtain the values from the manager.
Unfortunately, we currently don’t have any parameters that correspond to numWindows,
restFrequencies, or offsets. It is unclear whether we need new parameters to pass this
information to GO or whether there are other mechanisms we can use to pass the information. If
we decide on parameters, then it is then unclear to which manager these parameters belong.

Summary: For observing, the control and GO software must be modified to handle the
following:
• An optimum center I.F. should be calculated at the start of every scan and placed into

the L.O. 1 manager.
• L.O. 2 frequencies should be recalculated at the start of every scan and placed into the

Converter Rack manager.
• Proper Doppler tracking for all spectral windows can be accomplished by updating

L.O. 2 frequencies whenever L.O. 1 is updated. We may want to hold off
implementing this feature.

• numWindows, restFrequencies, and offsets need to be passed from the configuration
tool to either GO or an appropriate manager.

VI. FITS Files

Almost all of the information needed to describe how the system has been set up for
multifrequency observing already exists in our current set of FITS files. The information needed
by a data analysis system that doesn’t already exist in the FITS files is the restFrequencies
vector. B. Garwood’s opinion is that if GO knows the values of this vector, then they best belong
in the GO FITS files. If we decide to store these values in a manager’s parameter, then that
manager must write that information to its FITS files. There’s no need for the offset vector to be
included in the FITS files since the information already in the I.F. Manager’s FITS files contain
sufficient information for any analysis system.

In any case, B. Garwood suggests that we retain the current RESTFREQ keyword in our FITS
files and add a RESTFRQS vector of keyword to the appropriate FITS file.

Summary: A vector keyword, called RESTFQS, must be added to a FITS file, preferably the
file created by GO.

VII. Items for Discussion

There are a few outstanding items in the above discussion.

• How does GO inherit the values from the configuration tool?
• Is offset in sky frequency what observers will find most useful?
• Is the averaging of velMin and velMax in some of the calculations correct?
• Does GO or a manager write the new RESTFQS keyword to its FITS file?
• Who knows enough to modify this discussion to cover pulsar, VLB, and radar observing?
• Should we extend this document to cover multi-beam and single/cross-polarization

observing?
• When should we think about phasing in offset frequencies and L.O. 2 Doppler tracking?

• Should offset vector be included in the FITS files?
• Does GO or a manager take care of setting center I.F. and L.O. 2 frequencies at the start

of an observation?

Appendix

The following TCL code illustrates how one can calculate the various quantities described in the
above text. I have tried the code on a only few cases, not enough to convince me that it is free of
errors. Only minimum error checking is currently being done.

#--

calculateSkyFreq

#

Calculates sky frequency

#

Arguments:

#

restFrequency – rest frequency in MHz

VelDefinition – velocity definition. Either radio, optical, or relativistic

Velocity – source velocity

#

Returns:

Sky frequency in MHz

#

proc calculateSkyFreq {restfrequency velDefinition velocity} {

 set z [expr $velocity / 299792.5]

 switch $velDefinition {

 optical {

 return [expr $restfrequency/($z + 1.)]

 }

 radio {

 return [expr $restfrequency*(1. - $z)]

 }

 relativistic {

 return [expr $restfrequency * sqrt((1. - $z) / (1. + $z))]

 }

 default {

 return -code error "Bad velocity definition: $velDefinition"

 }

 }

}

#--

skyFrequencies

#

Returns list of sky frequwencies for a list of rest frequencies and a velocity

#

Arguments:

#

restFrequencies – list of rest frequency in MHz

velocity - Velocity of source

VelDefinition – velocity definition. Either radio, optical, or relativistic

offsets – Offset frequencies in sky-frequency space

#

Returns:

list of min and max sky frequencies in MHz

#

proc skyFrequencies { restFrequencies velocity velDefinition offsets} {

 set numWindows [llength $restFrequencies]

 if {$numWindows != [llength $offsets]} {

 return -code error "Number of offset frequencies and rest frequencies don't match"

 }

 # For each rest frequency, calculate the sky frequency and add to list of sky frequencies

 for {set idx 0} {$idx < $numWindows} {incr idx} {

 set restf [lindex $restFrequencies $idx]

 set off [lindex $offsets $idx]

 lappend skyFrequencies [expr [calculateSkyFreq $restf $velDefinition $velocity] + $off]

 }

 # Sort the list of sky frequencies.

 return $skyFrequencies

}

#--

skyFrequencyRange

#

Calculates the range sky frequency for a suite of observations

#

Arguments:

#

restFrequencies – list of rest frequency in MHz

velMin/max - range of source velocities

bandwidth - backend bandwidth

VelDefinition – velocity definition. Either radio, optical, or relativistic

offsets – Offset frequencies in sky-frequency space

#

Returns:

list of min and max sky frequencies in MHz

#

proc skyFrequencyRange { restFrequencies velMin velMax bandwidth velDefinition offsets} {

 # Create a list of sky frequencies at both velMin and Max.

 set skyFrequencyList [skyFrequencies $restFrequencies $velM in $velDefinition $offsets]

 eval lappend skyFrequencyList [skyFrequencies $restFrequencies $velMax $velDefinition $offsets]

 # Sort the list of sky frequencies. The first and last elemnnts in the list should be the

 # min and max sky velocities

 set skyFrequencyList [lsort $skyFrequencyList]

 set maxSkyFreq [lindex $skyFrequencyList end]

 set minSkyFreq [lindex $skyFrequencyList 0]

 # Adjust range of frequencies by half the bandwidth

 return "[expr $minSkyFreq - $bandwidth/2.] [expr $maxSkyFreq + $bandwidth/2.]"

}

#--

skyFreqFromLO1IF, lo1FreqFromSkyIF, ifFreqFromSkyLO1

#

Routines that return either sky frequency, I.F, or L.O. frequencies from

two of these three values

#

Arguments:

#

receiver - Name of the receiver

Two of the following: sky - sky fequency

lo1 - lo1 frequency

ifCenter - I.F. frequency

#

Returns:

The one tem of the three not passed as an argument

#

proc skyFreqFromLO1IF { receiver lo1 ifCenter } {

 switch $receiver {

 Rcvr1_2 {

 return [expr $lo1 - $ifCenter]

 }

 }

}

proc lo1FreqFromSkyIF { receiver sky ifCenter } {

 switch $receiver {

 Rcvr1_2 {

 return [expr $sky + $ifCenter]

 }

 }

}

proc ifFreqFromSkyLO1 { receiver sky lo1 } {

 switch $receiver {

 Rcvr1_2 {

 return [expr $lo1 - $sky]

 }

 }

}

#--

preferredIFCenter

#

Returns a receiver's preffered I.F.

#

Arguments:

#

receiver - Name of the receiver

#

Returns:

Value of the preferred I.F. in MHz

#

proc preferredIFCenter { receiver } {

 switch $receiver {

 Rcvr1_2 {

 return 3000

 }

 }

}

#--

optimumIFCenter

#

Returns the optimum center IF. Assumes the same bandwidth for all spectral windows.

#

Arguments:

#

restFrequencies – list of rest frequency in MHz

receiver - Name of the receiver

velMin/max - range of source velocities

velDefinition – velocity definition. Either radio, optical, or relativistic

offsets – Offset frequencies in sky-frequency space

#

Returns:

list of min and max sky frequencies in MHz

#

proc optimumIFCenter { restFrequencies receiver velMin velMax velDefinition offsets} {

 # Calculate the sky frequwncies for the master rest frequwncy at velMin

 set masterRestFrequency [lindex $restFrequencies 0]

 set masterOffset [lindex $offsets 0]

 set skyFreqForRestFreqVelMin [expr [calculateSkyFreq $masterRestFrequency $velDefinition $velMin] + $masterOffset]

 # Find the average sky frequency for velMin

 set skyFrequencyListVelMin [lsort [skyFrequencies $restFrequencies $velMin $velDefinition $offsets]]

 set avrgSkyFreqVelMin [expr ([lindex $skyFrequencyListVelMin 0] + [lindex $skyFrequencyListVelMin end])/2.]

 # Calculate LO1 for the receiver's preferred center IF and the average sky frequency at velMin

 set loCenterVelM in [lo1FreqFromSkyIF $receiver $avrgSkyFreqV elMin [preferredIFCenter $receiver]]

 set ifSkyVelMin [ifFreqFromSkyLO1 $receiver $skyFreqForRestFreqVelMin $loCenterVelMin]

 # repeat for velMax

 set skyFreqForRestFreqVelMax [expr [calculateSkyFreq $masterRestFrequency $velDefinition $velMax] + $masterOffset]

 set skyFrequencyListVelMax [lsort [skyFrequencies $restFrequencies $velMax $velDefinition $offsets]]

 set avrgSkyFreqVelMax [expr ([lindex $skyFrequencyListVelMax 0] + [lindex $skyFrequencyListVelMax end])/2.]

 set loCenterVelM ax [lo1FreqFromSkyIF $receiver $avrgSkyFreqVelMax [preferredIFCenter $receiver]]

 set ifSkyVelMax [ifFreqFromSkyLO1 $receiver $skyFreqForRestFreqVelMax $loCenterVelMax]

 # Average the two center If's

 return [expr ($ ifSkyVelMin+$ifSkyVelMax)/2.]

}

#--

setPreliminaryLO1

#

Returns an adequate guess for a typical LO1.

#

Arguments:

#

restFrequencies – list of rest frequency in MHz

receiver - Name of the receiver

velMin/max - range of source velocities

velDefinition – velocity definition. Either radio, optical, or relativistic

offsets – Offset frequencies in sky-frequency space

ifCenter - Center I.F.

#

Returns:

list of min and max sky frequencies in MHz

#

proc setPreliminaryLO1 { restFrequencies receiver velMin velMax velDefinition offsets ifCenter} {

 set avrgV el [expr ($velMin + $velMax)/2.]

 # Calculate the sky frequwncies for the master rest frequwncy at velMin

 set masterRestFrequency [lindex $restFrequencies 0]

 set masterOffset [lindex $offsets 0]

 set skyFreqForMaster [expr [calculateSkyFreq $masterRestFrequency $velD efinition $avrgV el] + $masterOffset]

 return [lo1FreqFromSkyIF $receiver $skyFreqForM aster $ifCenter]

}

#--

ifRange

#

Returns the range in I.F. that will cover an observation.

#

Arguments:

#

restFrequencies – list of rest frequency in MHz

receiver - Name of the receiver

velMin/max - range of source velocities

bandwidth - backend bandwidth

velDefinition – velocity definition. Either radio, optical, or relativistic

offsets – Offset frequencies in sky-frequency space

lo1 - preliminary L.O . 1

#

Returns:

Min and max I.F in MHz

#

proc ifRange { restFrequencies receiver velMin velMax bandwidth velDefinition offsets lo1} {

 set skyFrequencyList [lsort [skyFrequencies $restFrequencies $velMin $velDefinition $offsets]]

 set if1 [ifFreqFromSkyLO1 $receiver [expr [lindex $skyFrequencyList end] + $bandwidth/2.] $lo1]

 set if2 [ifFreqFromSkyLO1 $receiver [expr [lindex $skyFrequencyList 0] - $bandwidth/2.] $lo1]

 set skyFrequencyList [lsort [skyFrequencies $restFrequencies $velMax $velDefinition $offsets]]

 set if3 [ifFreqFromSkyLO1 $receiver [expr [lindex $skyFrequencyList end] + $bandwidth/2.] $lo1]

 set if4 [ifFreqFromSkyLO1 $receiver [expr [lindex $skyFrequencyList 0] - $bandwidth/2.] $lo1]

 if {$if1 > $if2} {

 set ifmax [expr $if1>$if3?$if1:$if3]

 set ifmin [expr $if2<$if4?$if2:$if4]

 } else {

 set ifmax [expr $if2>$if4?$if2:$if4]

 set ifmin [expr $if1<$if3?$if1:$if3]

 }

 # Adjust range of frequencies by half the bandwidth

 return "$ifmin $ifmax"

}

#--

calcLO2

#

Returns a list of L.O. 2 frequencies

#

Arguments:

#

restFrequencies – list of rest frequency in MHz

receiver - Name of the receiver

velMin/max - range of source velocities

bandwidth - backend bandwidth

backend - name of backend

velDefinition – velocity definition. Either radio, optical, or relativistic

offsets – Offset frequencies in sky-frequency space

lo1 - preliminary L.O . 1

#

Returns:

List of L.O. 2 synthesizers settings

#

proc calcLO2 { restFrequencies receiver velMin velMax bandwidth backend velDefinition offsets lo1} {

 # Calculate list of sky frequqncies for the average of velMin and velMax and step through each.

 foreach skyFrequency [skyFrequencies $restFrequencies [expr ($velMin+$velMax)/2.] $velDefinition $offsets] {

 # First I.F. frequqency

 set ifForLO2 [ifFreqFromSkyLO1 $receiver $skyFrequency $lo1]

 switch $backend {

 DCR -

 Spectrometer {

 switch $bandwidth {

 12.5 {

 lappend rtrn [expr 10500 + $ifForLO2 + 32.5 - 500]

 }

 50 {

 lappend rtrn [expr 10500 + $ifForLO2 + 75 - 500]

 }

 200 {

 lappend rtrn [expr 10500 + $ifForLO2 + 900]

 }

 800 {

 lappend rtrn [expr 10500 + $ifForLO2 + 1200]

 }

 }

 }

 SpectralProcessor {

 lappend rtrn [expr 10500 + $ifForLO2 - 250]

 }

 VLBI {

 # add appropriatre code here

 }

 BCPM {

 # add appropriatre code here

 }

 }

 }

 return $rtrn

}

#--

findSpectrometerConfig

#

Determines the Spectrometer configurations that will work for a specific

set of observing parameters

#

Arguments:

#

bandwidth -- Bandwidth {800, 200, 50, or 12.5)

numLevels -- 3 or 9, ignored in bandwidth is 800 or 200

numSamps -- number of samplers

numChannels -- number of channels per spectra

#

Returns:

List of mode strings and M& C paaramter values that can be used to set up the

Spectrometer. For some combinations, no legitimate mode exists. For others,

more than one will be returned.

#

proc findSpectrometerConfig { bandwidth numLevels numSamps numChannels } {

 # Need to calculate Number of quads * number of banks. This depends upon

 # bandwidth, sampling level, and number of samplers

 set p 1

 set s 1

 switch $bandwidth {

 800 {

 set s 16

 }

 200 {

 set s 4

 }

 12.5 -

 50 {

 switch $numLevels {

 3 {

 set p 1

 }

 9 {

 set p 4

 }

 }

 }

 }

 set quadsXBanks [expr 4 * $numChannels * $numSamps * $s * $p / 262144]

 if {$quadsXBanks <= 0 || $quadsXBanks > 4} {

 return -code error "Configuration not possible"

 }

 # Determine whether this is a W(ide) or N(arrow) mode. Determine the trailing part of the

 # mode string

 switch $bandwidth {

 200 -

 800 {

 set char W

 set bw_lvl "----$bandwidth"

 }

 12.5 -

 50 {

 set char N

 set bw [string range $bandwidth 0 1]

 switch $numLevels {

 3 {

 set bw_lvl "----$bw-3"

 }

 9 {

 set bw_lvl "----$bw-9"

 }

 }

 }

 }

 # Determine the first and third character for the current mode. Sometimes

 # multiple modes provide the same configuration.

 set modes ""

 foreach numQuadsPerBank {1 2 4} {

 set numBanks [expr $quadsXB anks / $numQuadsPerBank]

 if {$numBanks > 0} {

 set numSampsPerBank [expr $numSamps / $numBanks]

 if {$numSampsPerBank < 16 && $numSampsPerBank > 0} {

 # Find illegal modes

 switch $bandwidth {

 50 -

 12.5 {

 if {$numLevels == 9 && $numSampsPerBank == 8 && $numQuadsPerBank > 1} {

 break

 }

 }

 200 {

 if {$numSampsPerBank == 8 || ($numSampsPerBank == 4 && $numQuadsPerBank > 1) } {

 break

 }

 }

 800 {

 if {$numSampsPerBank > 2 || ($numSampsPerBank == 2 && $numQuadsPerBank > 1) } {

 break

 }

 }

 }

 # All has past muster so we can create the configuration mode string.

 append modes "$numBanks Bank(s) -> $numQuadsPerBank$char$numSampsPerBank$bw_lvl\n "

 # Create the M&C parameter configuration designation

 set configParms {A B C D}

 append modes " ("

 for {set ibank 0} {$ibank < $numBanks} {incr ibank} {

 append modes "[lindex $configParms $ibank]$numQuadsPerBank "

 }

 append modes "- $numSampsPerBank sampler(s) per bank)\n\n"

 }

 }

 }

 return $modes

}

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20

