

Hardware

- Gregorian "Signal" receiver
 - Prime focus mount not suitable for holography
 - Combines the errors from primary and secondary
 - Special purpose 12 GHz receiver
- "Reference" receiver mounted at the tip of the feed horn
 - Except for gain, a clone of signal receiver
 - Special cables to keep relative phases stable
 - 30-cm diameter feed horn provides sufficient collecting area
- Special-purpose correlator
 - Used in 1992 for measuring the OVLBI antenna

What Do We Observe

How Do We Observe?

Map Size

Products

Amplitude Map

Reflectivity of Antenna Feed Amplitude response

Focus/Pointing Fit

Pointing Offset Focus Errors Optical Alignments Phase Map

Surface rms
Feed phase response
Astigmatism
Gravitational deformations

Experiment to Determine Panel-to-Panel Errors

- 200 μm rms surface accuracy ➤ 50 μm rms measurement accuracy.
- Elevation = 45°
 - Where the best 12 Ghz geostationary satellites are located.
 - Near the rigging angle
- ½ m resolution
 - 200 x 200 pixel, 3° x 3° map
 - About 1 dozen pixels per panel
- Mapping time ~ 4 hours, including overhead
 - 50 msec sampling time (6x oversampling)
 - 3º / min slew rates

Experiment to Determine Large-Scale Errors

- 50 µm rms measurement accuracy.
- Wide range of elevations
 - Methanol masers (~ 1kJy x 15 kHz)
 - Same receiver and hardware as for panel setting
- 5m resolution
 - 20 x 20 pixel, 20' x 20' map
 - 7 panels per pixel
- Mapping time ~ 30 min
 - 0.5 sec sampling (6x oversampling)
 - 0.3 deg/min slew rate

- Correlator OVLBI Holography experiment in 1992
- M&C Software 140-ft experiment in 1999
- Analysis Software Various experiments
- GBT I.F. System 1998-1999
- GBT Holography receiver April 2002
 - Miscellaneous problems including I.F. saturation
 - Sufficient signal-to-noise and long-term phase stability

Next Step...

- When do we start:
 - May 2003
- Map types
 - Panel-to-panel, high resolution maps
 - Some large-scale maps
- Expected Problems
 - Pointing & feed arm sway
 - Temperature changes during a map
- Problem Mitigation
 - Multiple maps to beat down the introduced pointing "noise"
 - Extra overhead to allow time for feed arm to damp out
 - Observe on calm, overcast nights

Saturation

Pointing

Phase Stability

