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/ astrō’keməstrē /

(n) the study of molecules in space - where they 
are, how they got there, and what they are doing
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Where do we come from?
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W H A T  W I L L  I  C O N V I N C E  Y O U  O F ?

GBO facilities are, and always have been, at the forefront 
of astrochemical discovery

‘Minor’ technical upgrades will enable significant new 
science

The upgrade we really need is political, not technical
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Chirality
kaɪˈrælɪti
χειρ (kheir) - ‘hand’
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A N D  I N  B I O L O G Y …

alanine serine

lysine

tryptophan

Homochirality
All life on Earth uses only a 
single enantiomer of amino 
acids, sugars, and other 
biomolecules
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Enantiomeric Excesses in Meteoritic
Amino Acids

John R. Cronin and Sandra Pizzarello

Gas chromatographic–mass spectral analyses of the four stereoisomers of 2-amino-
2,3-dimethylpentanoic acid (DL-a-methylisoleucine and DL-a-methylalloisoleucine) ob-
tained from the Murchison meteorite show that the L enantiomer occurs in excess (7.0
and 9.1%, respectively) in both of the enantiomeric pairs. Similar results were obtained
for two other a-methyl amino acids, isovaline and a-methylnorvaline, although the a
hydrogen analogs of these amino acids, a-amino-n-butyric acid and norvaline, were
found to be racemates. With the exception of a-amino-n-butyric acid, these amino acids
are either unknown or of limited occurrence in the biosphere. Because carbonaceous
chondrites formed 4.5 billion years ago, the results are indicative of an asymmetric
influence on organic chemical evolution before the origin of life.

The origin of homochirality, that is, the
almost exclusive one-handedness of the
chiral molecules found in terrestrial organ-
isms, is a key problem of the origin of life.
Both biotic and abiotic theories of homo-
chirality have been proposed (1). Accord-
ing to the former, life was initially based on
achiral molecules or racemates, and the use
of specific enantiomers came about through
evolution. In the latter, a tendency toward
homochirality is presumed to have been
inherent in chemical evolution, and thus
the asymmetry preceded the origin of life.

Meteorites, specifically the carbonaceous
chondrites, carry a record of the organic
chemical evolution of the early solar system
(2). It is reasonable to suppose that if some
asymmetric process influenced the formation
or degradation of organic compounds in the
parent molecular cloud, the solar nebula, or
the prebiotic solar system, then enantiomeric
excesses would have resulted and might still
be observable in the organic compounds of
carbonaceous chondrites. Evidence for such
an effect has been sought in the form of net
optical rotation by meteorite extracts (3), as
well as by directly measuring enantiomer ra-
tios of specific chiral compounds (4–6). The
results have been either negative or uncon-
vincing, the latter largely because of the sus-
picion of terrestrial contamination when
small excesses of the L enantiomers have been
reported in meteoritic amino acids that are
also common in the biosphere (7). Collective-

ly, these results have given rise to the widely
held view that the chiral compounds of me-
teorites occur as racemic mixtures. In con-
trast, we report here the detection of enantio-
meric excesses in four amino acids indigenous
to the Murchison meteorite.

We initially targeted for study 2-amino-
2,3-dimethylpentanoic acid (2-a-2,3-dmpa),
an amino acid with two chiral centers and,
consequently, four stereoisomers (8) (Fig. 1).
This amino acid meets two important crite-
ria: (i) It is present in the Murchison mete-
orite (9) but has not been reported to occur
in terrestrial matter, and (ii) its two chiral
centers are resistant to epimerization because
one (C-2) lacks a hydrogen atom and the
other (C-3) has a methine hydrogen atom of
low acidity. Consequently, it is likely that
the chiral centers retained their original con-
figurations through the aqueous and mild
thermal processing experienced by the mete-
orite parent body (10) and that the original
enantiomer ratios have not been compro-
mised by contamination.

We synthesized 2-a-2,3-dmpa in the labo-
ratory as a mixture of the four stereoisomers
(9) and analyzed them individually by gas
chromatography–mass spectrometry (GC-
MS) of their N-fluoroacyl isopropyl esters on
Chirasil-L-Val and Chirasil-D-Val capillary
columns. The four stereoisomers are well re-
solved on both phases (Fig. 2), although this
requires the use of N-pentafluoropropionyl
(PFP) isopropyl esters with the L phase and
N-trifluoroacetyl (TFA) isopropyl esters with
the D phase. The two diastereomeric pairs
were separated on Chirasil-L-Val but overlap

Department of Chemistry and Biochemistry, Arizona
State University, Tempe, AZ 85287–1604, USA.
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A few amino acids show 
excess of L by almost 10%

But where did it come from!?
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W H A T  I S  P R I M O S ?

PRebiotic Interstellar MOlecular Survey

Brandon Carroll

Sgr B2(N)

Lake Waiau

Coverage
0.5 - 50 GHz

Resolution
24.4 kHz 

15 km/s @ 0.5 GHz 
0.15 km/s @ 50 GHzKona



W H A T  I S  P R I M O S ?

PRebiotic Interstellar MOlecular Survey

Brandon Carroll

Sgr B2(N)

Lake Waiau

Sensitivity @ 15 GHz

~ 3 mK RMS

Kona

Sensitivity @ 50 GHz

~ 10 mK RMS



W H A T  I S  P R I M O S ?

PRebiotic Interstellar MOlecular Survey
http://www.cv.nrao.edu/~aremĳan/PRIMOS/

Publicly Available
Fully reduced 
Raw data



W H A T  I S  P R I M O S ?

PRebiotic Interstellar MOlecular Survey
http://www.cv.nrao.edu/~aremĳan/PRIMOS/

Data made available 
through the PRIMOS 
project and the SLiSE 
interface are available 

for use by the scientific 
community with no 
strings attached.
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W H E R E  D O E S  T H E  G B T  E X C E L ?

ALMA and other mm/sub-mm facilities have the 
monopoly on ‘traditional’ sources  

(hot cores, outflows, etc.)

GBT excels at understanding the inventories and 
chemistry occurring BEFORE these later stages 

Absolutely essential; if you don’t have t = 0 correct, 
everything after that is hogwash and hand waving
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2 Large Programs

Essentially 
Private IRAM: Astrochemistry 

featured as ‘key science’ 
in every annual report 
since 2004
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O O P S …

Astrochemistry is not a category 
in the proposal system…
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Regular: 6% 
Large: 2%
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@3400 hours/semester 
~2% to Astrochem
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What’s Next?



G B T  S T R E N G T H S  F O R  A S T R O C H E M I S T R Y

Sensitivity

Spectral Resolution / Bandwidth

~Beam Size

Unique Frequency Range



W H A T  I S  P R I M O S ?

PRebiotic Interstellar MOlecular Survey

Brandon Carroll

Sgr B2(N)

Lake Waiau

Kona

~1000 Hours w/  
GBT Spectrometer

~300 Hours w/  
VEGAS

~??? Hours w/  
ATLANTIC CITY



W H E R E  D O  W E  G O  F R O M  H E R E ?

TMC-1

Sgr B2(N) 
PRIMOS
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A  B R I E F  S I D E  N O T E

HC515N
DC7N

HC613CN
HC513CCN

HC413CC2N
HC313CC3N

HC213CC4N
HC13CC5N

1 New Molecule / 250 MHz
1 New Iso. / 125 MHz



W H E R E  D O  W E  G O  F R O M  H E R E ?

TMC-1

Sgr B2(N) 
PRIMOS

~7000 (1200) hours w/ GBT Spectrometer

~1300 (400) hours w/ VEGAS


~??? with ATLANTIC CITY
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W H A T  W E  R E A L L Y  N E E D

The primary purpose of astrochemistry is to study 
chemistry



W H A T  A S T R O C H E M I S T R Y  I S  N 0 T

The proposal would benefit from a clearer 
description of the relation between the objectives 

[…] and studies of star formation on Galactic 
scales […].

Actual ‘weakness’ received on an 
astrochemistry proposal:



W H A T  A S T R O C H E M I S T R Y  I S  N 0 T

The proposal would benefit from a clearer 
description of the relation between the objectives 
[…] and studies of chemical evolution on Galactic 

scales […].

Could easily be recast for a star formation 
proposal:



W H A T  A S T R O C H E M I S T R Y  I S  N 0 T

If both of these are not fair review criteria, 
neither are
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W H A T  I  H O P E  I  H A V E  C O N V I N C E D  Y O U  O F

GBO facilities are, and always have been, at the forefront 
of astrochemical discovery

‘Minor’ technical upgrades will enable significant new 
science

The upgrade we really need is political, not technical


