Single-Dish Continuum

- Continuum emission mechanisms & science
- Issues
 - Confusion
 - gain fluctuations
 - atmosphere
- Receiver architectures & observing strategies
- •The future: large arrays

Brian Mason (NRAO) NRAO/NAIC Single-Dish Summer School July 10, 2007

M82

Synchrotron (dash-dot curve), free-free (dashes), and dust (dots) emission typical of spiral galaxies

See Condon (1992, ARA&A)

The Sky Isn't Empty: Confusion

NVSS (45 arcsec FWHM) grayscale under GB6 300' (12 arcmin FWHM) contours illustrates source blending

The confusion amplitude P(D) distribution [for n(s) = kS^{-2.1}]

Euclidean:

$$\gamma = -2.5$$

D = image brightness (e.g., Jy/beam)

D = 0 mean is not a good baseline; use

running median instead

Long tail --> use at least 5 sigma threshold (src/30 beams) Condon (1974); Scheuer (1956)

The 5σ extragalactic confusion limits for Arecibo (d = 220 m) and the GBT (d = 100 m).

Random Noise

The Radiometer Equation:

$$\Delta T = \frac{T_{sys}}{\sqrt{t\Delta v}}$$

SNR of a continuum measurement can be made higher by increasing the bandwidth of the measurement.

Radiometer equation for a real receiver

$$\sigma = T_{\rm s} \bigg[\frac{1}{B\tau} + \bigg(\frac{\Delta G_{\rm r}(f)}{G_{\rm r}} \bigg)^2 + \bigg(\frac{\Delta T_{\rm s}(f)}{T_{\rm s}} \bigg)^2 \bigg]^{1/2}$$

A Simple Picture of Gain Fluctuations

$$G(t_1)\{T_{SRC} + T_{RX} + T_{ATM}\}$$
$$G(t_2)\{T_{RX} + T_{ATM}\}$$

$$On - Off = G(t_1)T_{SRC} + \Delta G(T_{RX} + T_{SKY})$$

How fast does G(t) vary?

Postdetection power spectrum showing 1/f noise at low frequencies and refrigerator microphonics near 1.2 Hz.

Use $\tau < 1/(2\pi v_k)$: on-the-fly mapping, Dicke switching, ...

Postdetection power spectrum showing 1/f noise at low frequencies and refrigerator microphonics near 1.2 Hz.

Use $\tau < 1/(2\pi v_k)$: on-the-fly mapping, Dicke switching, ...

Characteristic Timescales for Broadband Measurements

Gain fluct. In coherent amplifiers: 100+ Hz

receiver architecture

incoherent (bolometer) detectors: 0.1-10 Hz
atmosphere

- chopping or rapid scanning

For more details see instrumentation sections of • <u>Radio Astronomy</u> by L. Krauss

• Tools of Radio Astronomy by Rohlfs & Wilson

Dicke-Switching Receiver

- Rapidly alternate between feed horns to achieve theoretical noise performance
- Only spend 50% of time on source
- Differencing adds another Sqrt(2) to the noise level
- Requires
 - Switch before unstable components (e.g., HEMT amplifier)
 - Closely balanced Trx/gains before switch

Higher-Order Differences: Symmetric Nodding

- For sensitive photometry, one level of differencing is usually not enough
 - Gradient in sky emission, or with time
 - Dual-feed systems: Slight differences in feedhorn gains or losses

Correlation Receiver

Always looking at both source & reference: only lose one sqrt(2) for differencing

Receiver noise is uncorrelated and drops out.

Also useful for spectroscopy (ZSPEC)

Gives radiometer equation for 10s of seconds.

Other GBT receivers are total power (few to 50 x radiometer equation in 1 second).

Common Myth: You beamswitch to cancel the atmosphere

$$A - B = G_1 T_{SRC} + \Delta G(T_{RX} + T_{SKY})$$

Common Myth: Tea Feamswitch to cancel the atmosphere

$$A - B = G_1 T_{SRC} + \Delta G(T_{RX} + T_{SKY})$$

Correlation Polarimeter

See talk by Carl Heiles

Measure your uncertainties from the scatter in the data!

Bolometers

Bolometer detectors

- *Incoherent*; measure total power
- Very broad bandwidths possible; approach quantum limited noise.
- Can be built in very large-format arrays!

MUSTANG Detector Array

The Future: Array Receivers

ALFA

ALFA on Arecibo

7-element λ = 21 cm coherent array, 3 arcmin resolution

GALFACTS:full-Stokes, sensitive, high-resolution survey of 12,000 deg²

Galactic magnetic fields, ISM, SNR, HII regions, molecular clouds ...

MMIC Arrays

QUIET

- 91 pixels
- 90 GHz
- integrated,

mass-

- producable
- "receiver on a chip" (MMIC)

OCRA

- 1-cm Receiver Array
- Under construction at Jodrell Bank, initially for Torun 30m telescope
- 16 --> 100 pixels
- correlation architecture

T. Gaier (JPL)

Sub-millimeter

Sub-mm Common User Bolometer Array (SCUBA)

- JCMT (15m)
- 37 pixels at 850um, 91 at 450 um

SCUBA-2

- JCMT (15m)
- ~10,000 pixels!
- SQUID-MUX'd TES bolometers (CCD-like)
- First light expected soon!

Also: SHARC-II on CSO, 384 pixels at 350 um

Millimeter

Bolocam/AZTEC

- 1-2 mm
- 144 pixels
- CSO (10m) & LMT (50m)

ACT (6m) , SPT (10M)

- 1-2 mm
- Large Area Surveys (SZ) -1000s of deg²
- few 1000 detectors

Atacama Cosmology Telescope

Princeton, Pennsylvania, Rutgers, plus GSFC, NIST, Drexel, Haverford, CUNY, Columbia, Toronto, Católica...

Also IRAM 30m, APEX

Multiplexed SQUID/TES Array for Ninety Gigahertz (MUSTANG)

- 8x8, multiplexed TES array
- Bandpass 86-94 GHz initially
- Fully sampled focal plane (8" fwhm beams, 4" beam spacing
 - All technologies suitable for a much larger bolometer array
- Achieved first light on the GBT in Fall 2006; will be a proposable facility instrument

MS0735.6+7421 McNamara et al. 2005, Nature (Chandra/VLA composite)

MUSTANG Science

- High resolution SZ (bubbles, shocks, cooling flows, etc.)
- High-z galaxies
- Protostellar clouds
- PMS stars & debris-disk systems

- First light: Fall 2006
- *Commissioning, GBT surface improvements, early science 2007-2008*
- Facility instrument: Fall/winter 2009

75 & 300 MHz continuum emission from the Galactic Center: A diffuse Halo around SgrA* 75 MHz, VLA:

330 MHz, GBT:

LaRosa, Brogan et al. (2005)

Linear polarization of the sky at 20 GHz (WMAP)

Dust emission at high redshifts

Dust emission at high redshifts

• Discovered an abundant population of submm galaxies at z~1-3

confusion limited

HDF-- Hughes et al. (1998)

FIG. 10.—SED of LDN 1622. The solid line shows a fit to the data, composed of a free-free component, a modified blackbody at 15 K with a 1.7 emissivity index representative of traditional dust emission, and the Draine & Lazarian (1998b) spinning dust emissivities.

Casassus et al. (2006)

Spinning Dust

Newly discovered, often dominant emission mechanism at cm wavelengths *Electric dipole emission from small, spinning dust grains*

Diffuse, extended signals-discovered by, and best studied with, single dishes (or extremely compact interferometers)

The Basic Problem

Simulations courtesy Of E. Chapin & D. Hughes (IANOE)

Bolometer Timestreams

Image

SD Continuum Maps are Often Limited by Systematics not Noise

→ATMOSPHERE→ RELATIVE GAINS

Penn Array simulation: 5'x5', no atmosphere (thermal noise only)

Same simulation with atmosphere, standard reduction (subtract baseline, grid onto sky)

Extragalactic Radio Sources

408 MHz continuum emission from our Galaxy

Haslam et al., 1982

Active Galactic Nuclei & Quasars

Cygnus A -- Perley, Carilli, & Dreher (1984)

Readhead, Mason et al. 2004

Continuum Mapping

- If High sensitivity or extended structures aren't sought, simple approaches will work (total power receiver; subtract a polynomial or median-filter baseline & grid residuals onto sky)
- Otherwise systematics must be removed, and this often removes some astronomical information as well
 - Eg, map made with a dicke switching system
- How to deal with this?
 - Emerson, Klein, & Haslam (1972): directly deconvolve beam switch.
 - Switch multiple angles (chopping system) or parallactic angle rotation allows most of the lost information to be regained
 - Iterative schemes (single-dish CLEAN-- Bill Cotton's OBIT)
 - Brute-force least-squares & variants thereof
 - Used for WMAP & other CMB experiments
 - Implemented in IDL for SHARC-II, NICMOS-- See Fixsen, Moseley, & Arendt (2000)

$$\vec{d} = A\vec{m}$$
$$\vec{m} = (A^T A)^{-1} A^T \vec{d}$$

- Spectral Lines arise from the quantization of energy levels in atoms and molecules. These give rise to fairly sharp, distinct (dnu/nu << 1) features in the frequency domain
- Macroscopic bodies and unbound particles, in contrast, usually give rise to frequency spectra which vary quite slowly (continuum)

To separate astronomy signal from systematics, an appropriate scan pattern is necessary

Scan or chop speed
 t_scan < t_systematics

• 100s Hz (Rx gain for coherent system)

• 0.1 - few Hz (sky)

• Resample the same patch of sky in different ways (e.g., basketweaving)