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Outline

● Analog to digital conversion

● ADC calibration

● Sampling theorem

● Total power detectors

● Spectrometers

● Fourier Transform

● Additional data processing

● VEGAS at the GBT

● Next generation systems



  

Why Digital Backends?

● Signal processing over wide bandwidths can be achieved 
with modern computers at relatively low cost

– Some components may be custom, many can be 
commercial off the shelf (COS)

● Provide flexibility, portability of data products, long term 
archiving, etc.

● Can take advantage of improvements in computing power, 
storage, etc.

● But need to discretely sample continuous signals without loss 
of information



  

EM Radiation

● Can be defined by 

– Direction of propogation

– Amplitude

– Frequency

– Phase

– Polarization
● We want to keep track

of as much of this information
as we can



  

Continuous vs Discrete Signals

● Incoming radiation is a continuous change in electric field 
over a continuous range of frequencies

– We do not typically think in terms of discrete photons in 
radio astronomy (with some exceptions)

● Digital systems work on discrete values that can be 
represented with some finite number of bits

● 1 bit = 2
1
 values (0,1)

● 2 bit = 22 values (0 – 3)

● 8 bit = 28 = 256 values (0 – 255)



  

● The number of bits used to sample the signal defines the 
dynamic range

– Smaller bit depth / resolution provides less granularity (1 
bit = high or low)

– Higher bit depth captures both weak and strong inputs
● This introduces some error, as perfect reconstruction is not 

possible with a finite number of bits

– Bit depth chosen to keep quantization errors at or below 
an acceptable level



  

Analog to Digital Converters

● An analog-to-digital converter (ADC) is a device for 
converting continuous signal to discrete, digital signal

● ADCs use specialized circuits (comparators) to compare an 
input and reference voltage

– Different types of ADCs exist with different schemes for 
using comparators

– In simplest approach, 2N comparators (N = number of 
bits) are used to successfully determine input level



  

Analog to Digital Converters

● An analog-to-digital converter (ADC) is a device for 
converting continuous signal to discrete, digital signal

● Key features of ADCs are

– Spurious free dynamic range (SFDR, related to resolution)

– Sampling rate (determines bandwidth)
● Why does sampling rate determine bandwidth??



  

Nyquist-Shannon Sampling 
Theorem

● To perfectly reconstruct a time varying signal, we must 
sample at a critical rate, fN, that is twice the highest 
frequency contained in the signal

– A signal at a frequency f > fN will be aliased into our 
sampling band at a lower apparent frequency

● fN is known as the Nyquist frequency



  

Nyquist-Shannon Sampling 
Theorem

● This is not just a time/frequency phenomenon

● Spatial variations can be decomposed into spatial 
frequencies

– Sharp features contain higher frequency components (see 
Fourier transform later in talk)

● Nyquist sampling in spatial domain is important in mapping 
(see talks tomorrow by Larry Morgan and Dave Frayer)

Image credit: Wikipedia



  

Sampling Rate and Bandwidth

● To avoid aliasing, we must apply an analog filter to suppress 
power outside some desired bandwidth B

● ADCs sample at a frequency fs = 2 x B

– Example: We want to sample 800 MHz bandwidth

– Downcovert to baseband and apply low-pass filter

– Sample at 1.6 Gsps
● Remember: filters are not perfectly

 sharp

– Filter roll-off needs to start 
below fs/2 to ensure aliasing is 
kept below an acceptable level



  

ADC Calibration

● To achieve high sampling rates, many ADCs are interleaved

– Actually consist of several individual ADC cores, each 
clocked at a lower sampling rate than desired

– Sampling is offset and a switch selects output from ADCs 
at appropriate times

Image credit: analog.com



  

ADC Calibration

● Minor differences in the ADCs (e.g. gain, starting phase) 
leads to artifacts in the output data

● Proper calibration is important to keep spurious signals below 
an acceptable level 

Image credit: analog.com



  

Dynamic Range for Wideband Systems

● Note that ADCs are total power devices

– We have not yet sampled the power contributed at 
individual frequencies

● As the bandwidth goes up, so to do does the total power 
contributed by noise, RFI, and signal of interest

● Resolution / bit depth becomes increasingly important for 
wideband systems

– Strong signals can push ADCs into non-linear regime
● Often use multiple digitizers to cover smaller portions of the 

total desired bandwidth

– Analog filters may also be needed to remove portions of a 
band with strong RFI



  

Complex Voltage and Power

● Because incoming radiation is described by both an electric 
field amplitude and phase, it is convenient to represent it as 
a phasor

● This lends itself to using complex numbers to describe the 
voltage (recall Euler’s formula)

A eiθ x=A [cos(θ x)+i sin (θ x)]



  

Complex Voltage and Power

● Note that when sampled at baseband the cosine and sine 
terms are often referred to as I(t) and Q(t) (i.e. I/Q values)

– I corresponds to the real part of the complex voltage, and 
Q to the imaginary part

– Don’t confuse these with the I and Q of Stokes 
parameters!



  

Complex Voltage and Power

● This allows us to represent the digitized signal with a real and 
imaginary part

– Retains full amplitude and phase information so can be 
used for coherent processing

● In the final analysis we are usually interested in the power 
(which has non-zero mean), rather than the amplitude

● This step is usually referred to as detection

– If we sample two polarization states, we can form Stokes 
parameters or other polarization products prior to detection

– Note that we lose phase information at this stage!

P=|A eiθ x|2



  

Spectrometers

● So far we have only been talking about time series data

● We are often interested in decomposing the time series into 
a spectrum that measures powers as a function of time and 
radio frequency

● Radio spectrometers do not rely on optical or electronic 
devices to spatially disperse different frequencies

– Instead, take advantage of digital, phase coherent data 
and use Fourier transform



  

The Fourier Transform

● Recall that the ADC output are time samples of a band-
limited signal containing power at many individual 
frequencies

● The (discrete) Fourier transform (DFT) is used to form a 
power spectrum, i.e. power measured at some discrete 
number of frequencies, or channels

– Each discrete frequency is itself a measure of the total 
power within some finite channel bandwidth



  

The Fourier Transform

● Recall that the FT describes a function as a (finite, in our 
case) sum of sines and cosines

time

X k=∑
n=0

N−1

xn e
2π i k n/N

=∑
n=0

N−1

xn [cos(2π k n /N )+isin (2π k n/N )]



  

Weiner-Kinchin Theorem

● Relates the power spectrum to the autocorrelation of the 
incoming time series

● rxx is the autocorrelation, defined as

– t is known as the lag, and * denotes the complex conjugate
● In words, the power spectrum is the Fourier transform of the 

integral of the input signal multiplied point-wise by a time-delayed 
version of itself 

r xx=∫
−∞

∞

f (u) f ∗(u−t)du



  

Autocorrelation Spectrometer

● An autocorrelation spectrometer is highly flexible in 
terms of total bandwidth and channel bandwidth

– The sampling interval Dt and total number of lags N 
completely determine these parameters

The factor of 1.2 comes from the windowing function, 
which is simply a hard cutoff at t > DtN (i.e. w(t) = 1 for t 
<= DtN, else 0)

– The observed power spectrum is a convolution of the true 
spectrum with the Fourier transform of w

B=
1

2D t

D f=1.2
B
N

~S ( f )=S (f )∘W (f )



  

Autocorrelation Spectrometer

● Because the Fourier transform of a top-hat is a sinc function, 
the channel shape of an ACS is itself a sinc, defined by it’s 
FWHM

– This is where the factor of 1.2 comes from
● While an ACS is flexible and easy to implement, this frequency 

response is undesirable

– Power can leak into adjacent channels

– For very strong signals, 
leakage can impact
significant part of band

● Can we do better?

– Yes!



  

Polyphase Filterbank

● In a direct DFT we start with a rectangular windowing 
function (in time) and end with a sinc response (in frequency)

● We prefer to have a rectangular (i.e. flat) response in 
frequency across a channel

– Use the Fourier inverse as the time-domain window, i.e. a 
sinc filter

● In practice, to obtain an N-point spectrum, use M = N x P 
points

– P is the number of phases in the polyphase filterbank, 
also referred to as the number of taps



  

Polyphase Filterbank

● After multiplication by an M-point filter, each phase is added 
to produce an N-point input to the DFT

● The DFT can now be taken, the result squared, and then 
accumulated to produce a power spectrum

Image credit: Dale Gary



  

Polyphase Filterbank

● Caveats

– In pratice, the sinc window 
must be truncated so the 
frequency response is not 
perfectly flat

– We typically multiply the sinc 
window by an finite impulse 
response (FIR) filter to 
improve frequency response

– Using more taps also 
improves response

● PFB is more computationally intensive (~1.5x) than direct DFT 
but improved spectral response is usually worth the trade-off

Image credit: Jayanth Chennamangalam



  

Astronomical Spectrometers

● Note that the frequency resolution we obtain is determined 
by the number of points in the FFT

– The sampling theorem is also relevant here: we need 2N 
time samples for N frequency channels

● This creates an inverse relationship between time and 
frequency resolution

● In typical spectral line observing, we are more concerned 
with frequency resolution than time resolution

● In pulsar observing we are usually more concerned with time 
resolution that frequency resolution



  

Astronomical Spectrometers

● The last* step is typically to detect and accumulate power 
spectra for some integration time

– The choice of integration time depends on the stability of 
the instrument and scientific goals

– Typically use ~0.1 – 10 s for spectral line observing to 
allow efficient excising of RFI

– Typically use 10s ms in pulsar observing to retain 
sensitivity to fast pulsars

*Additiona signal processing often performed in pulsar 
observing (e.g. dedispersion, folding)



  

Polarization Products

● Most receivers sample two polarization states (typically 
linear [X/Y] or circular [L/R])

● Everything described above must be duplicated for each 
polarization channel

– 2x ADCs, 2x spectrometer engines
● The polarization products that one records depends on 

science goals

– Typically sufficient to record each channel’s self-products 
independently (e.g. |X|2 and |Y|2 )

● For strongly polarized sources, typically record Stokes 
parameters or self and cross terms



  

Polarization Products

● Stokes parameters allow complete recovery of polarized 
signal

– For a linear basis:

I   = |X|2 + |Y|2 (total intensity)
Q = |X|2 - |Y|2

U = 2 Re(X* Y)
V = 2 Im(X* Y)

– |V| = circular polarization
|L| = √(Q2 + U2) = linear polarization

● We may also record the self and cross terms directly, [i.e. 
|A|2, |B|2, Re(A* B), Im(A* B)]



  

RFI Mitigation

● RFI is to radio astronomers as light pollution is to optical 
astronomers

● RFI almost only get’s worse with time, even in radio quiet 
zone

Image credit: Will Fiore (WVU)



  

RFI Mitigation

● RF techniques for RFI mitigation are “notch” filters that 
remove affected band

– Degrades Tsys but may be necessary for strong, 
persistent RFI

● Digital techniques can be passive or active

● Passive techniques

– Flag/mask small numbers of channels/integrations from 
downstream processing

– Preserves original data at expense of losing all 
information in a flagged channe/integration

– Adds a (potentially expensive) step to post processing



  



  

RFI Mitigation

● Active mitigation may include

– Subtraction of reference antenna signal
● Complicated by differences in gain, beam shape, etc.
● Must be done on complex data

– Statistical flagging/replacement pre-detection
● Look for statistical outliers in voltage data
● Replace with zeros, Gaussian noise with same statistics as 

unaffected data, etc.
● Removes RFI closer to the source

● Alters original data in unrecoverable way (unless a second copy 
is made)

● Statistical flagging/replacement being investigated at GBO



  



Observation of OH 
megamaser in III Zwicky 
35

Signal at 1622MHz, 
underneath Iridium 
Satellite RFI

_________________

200 MHz bandwidth 
centered at 1581.5 MHz, 
256 channels

One GUPPI raw file 
pictured, with 2017 
spectra averaged at a 
time

Leading to 2581μs time s time 
resolution on the plot and 
168.73s / 2.81 min total

Slide by Evan Smith (WVU)



Observation of OH 
megamaser in III Zwicky 
35

Spectral Kurtosis excision 
applied

_________________

200 MHz bandwidth 
centered at 1581.5 MHz, 
256 channels

One GUPPI raw file 
pictured, with 2017 
spectra averaged at a 
time

Leading to 2581μs time s time 
resolution on the plot and 
168.73s / 2.81 min total

Slide by Evan Smith (WVU)



Apply 
Confidence 
Cutoff: 0.3

Raw Channelized 
Data (ML Input)

ML Confidence Output

RFI Mask

UNet

Excised 
Data

Replace 
RFI with 

zeros

Slide by Max Hawkins (U Alabama)



Slide by Max Hawkins (U. Alabama)



  

A Note on Complex Voltages

● There are some applications in which it is 
desirable/necessary to record pre-detection complex 
voltages

– Very long baseline interferometry requires phase 
information for correlation

– Offline analysis may be needed to form spectra with 
different resolutions for different applications

● This comes at the expense of very high data rates, requiring 
lots of storage



  

Hardware for Modern Digital Backends

● Modern systems are typically implemented with a 
combination of field programmable gate arrays (FPGAs) and 
GPU-equipped high performance computers running 
specialized digital signal processing software

● GBT currently uses five primary backends

– Digital continuum receiver

– Mark V (now Mark VI) VLBI baseband recorder

– GUPPI (pulsar observing – being retired)

– VEGAS (spectral line/pulsar observing)

– Breakthrough Listen (baseband recording for SETI, etc.)



  

Hardware for Digital Backends

● GUPPI, VEGAS, BTL developed through CASPER (Collaboration 
for Astronomical Signal Processing and Electronics Research)

● VEGAS uses 8x ROACH2 boards and NVIDIA GPUs

– Integrated ADCs, FPGAs, 10 gigabit ethernet, serial 
communication ports, onboard flash memory perform 
initial conditioning, supply channelized data or I/Q values

– Additional spectral line / pulsar processing performed on 
GPUs/CPUs

– Data stored on lustre distributed filesystem

– 8 independent spectrometer banks for maximumize 
frequency coverage/flexibility



  

Hardware for Digital Backends



  

Next Generation Backends

● Fast (i.e. wideband) ADCs with lots of bits are relatively new

● ADCs can also be noisy (i.e. generate RFI) and produce a lot 
of heat

● Historically, most radio telescopes convert to IF and use lots 
of analog components

– Lots of components can be impacted by RFI



  

Next Generation Backends

● New ADCs and FPGAs make it feasible to directly sample 
wide bandwidths at RF

– Already being done for some instruments (e.g. UWBL 
receiver at Parkes, FLAG at GBT, and others)

● GBO has just started a new NSF-funded R&D project to 
develop integrated RF sampling for GBT ultrawideband 
receiver



  

Next Generation Backends

● GBO has just started a new NSF-funded R&D project to 
develop integrated RF sampling for GBT ultrawideband 
receiver

● Goal is use 10 Gsamp/s, 12-bit ADCs to sample 4 GHz of 
bandwidth

– Data rates > 240 Gbits/s
● Will also offer optional active RFI excision

● R&D phase over next two years

– Would then build new spectrometer



  

Questions?



greenbankobservatory.org

The Green Bank Observatory is a facility of the National Science Foundation
operated under cooperative agreement by Associated Universities, Inc.
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