

Brief Introduction to Radio Telescopes Frank Ghigo

GBO/Arecibo Single Dish Workshop August 19 2019

Terms and Concepts

Parabolic reflector Blocked/unblocked Subreflector Frontend/backend Feed horn Local oscillator Mixer Noise Cal Flux density Jansky Bandwidth Resolution Antenna power pattern Half-power beamwidth Side lobes Beam solid angle dB (deciBels) Main beam efficiency Effective aperture

Aperture efficiency Antenna Temperature Aperture illumination function Spillover Gain System temperature Receiver temperature convolution

Text books on Radio Astronomy

- Essential Radio Astronomy
- https://science.nrao.edu/opportunities/courses/era

Essential Radio Astronomy

James J. Condon, Scott M. Ransom Princeton University Press, Apr 5, 2016 - Science - 376 pages *Essential Radio Astronomy* is the only textbook on the subject specifically designed for a onesemester introductory course for advanced undergraduates or graduate students in More »

Search inside

© 2014

Tools of Radio Astronomy

Authors: Wilson, Thomas, Rohlfs, Kristen, Huettemeister, Susanne

Presents the 6th edition of a leading textbook on radio astronomy to include state-of-the-art descriptions of instrumentation and new observations

Pioneers of Radio Astronomy

Karl Jansky 1932

Grote Reber 1938

Unblocked Aperture

- 100 x 110 m section of a parent parabola 208 m in diameter
- Cantilevered feed arm is at focus of the parent parabola

GBT 100 x 110 m Parabola Section

Paraboloidal mirror

Spherical reflector : Arecibo telescope

Subreflector and receiver room

On the receiver turret

Basic Radio Telescopes

Verschuur, 1985. Slide set produced by the Astronomical Society of the Pacific, slide #1.

Intrinsic Power P (Watts) Distance R (meters) Aperture A (sq.m.)

Flux = Power/Area Flux Density (S) = Power/Area/bandwidth Bandwidth (β)

A "Jansky" is a unit of flux density

 $10^{-26} Watts / m^2 / Hz$

 $P = 10^{-26} 4\pi R^2 S\beta$

Antenna Beam Pattern (power pattern)

Kraus, 1966. Fig.6-1, p. 153.

Fig. 3-2. Relation of antenna pattern to celestial sphere with associated coordinates.

dB ??

 $\Delta p(dB) = 10\log_{10}(\frac{P_1}{P_2})$

P1/P2	$\Delta p(dB)$
1	0
2	3
10	10
100	20
1000	30

Figure 2.5 The power pattern of an antenna $A(\theta)$ and the intensity profile of a source $I_1(\theta')$ used to illustrate the convolution relationship. The angle θ is measured with respect to the beam center *OC* and θ' is measured with respect to the direction of the nominal position of the source *OB*.

Smoothing by the beam

Fig. 3-6. For a point source the observed distribution is the same as the mirror image of the antenna pattern.

GREEN BANK OBSERVATORY

Some definitions and relations

Main beam efficiency, ϵ_{M}

Antenna theorem

Aperture efficiency, ϵ_{ap} Effective aperture, A_e Geometric aperture, A_g

$$\left[\boldsymbol{\varepsilon}_{ap} = \frac{A_e}{A_g} \right] \qquad A_g(GBT) = \pi \left\{ \frac{1}{2} (100m) \right\}^2 = 7854m^2$$
$$\boldsymbol{\varepsilon}_{ap} = \boldsymbol{\varepsilon}_{pat} \boldsymbol{\varepsilon}_{surf} \boldsymbol{\varepsilon}_{block} \boldsymbol{\varepsilon}_{ohmic} \cdots$$

another Basic Radio Telescope

Kraus, 1966. Fig.1-6, p. 14.

ų,

Aperture Illumination Function ←→ Beam Pattern

A gaussian aperture illumination gives a gaussian beam:

$$\varepsilon_{pat} \approx 0.7$$

Fig. 6-104 Beam and aperture efficiencies for a onedimensional aperture as a function of taper. (After Nash, 1964.) The aperture efficiency is a maximum with no taper, while the beam efficiency is a maximum with full taper.

Not-quite-perfect parabola

 σ = rms surface error

Surface efficiency -- Ruze formula

John Ruze of MIT -- Proc. IEEE vol 54, no. 4, p.633, April 1966.

Detected power (P, watts) from a resistor R at temperature T (kelvin) over bandwidth β (Hz)

$$P = kT\beta$$

Power P_A detected in a radio telescope Due to a source of flux density S

$$P_A = \frac{1}{2} AS\beta$$

power as equivalent temperature. Antenna Temperature T_A Effective Aperture A_e

$$S = \frac{2kT_A}{A_e}$$

greenbankobservatory.org

The Green Bank Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

