Radiation Fundamentals II

D. Anish Roshi Arecibo Observatory

• Spectral lines of Astronomical interest

• Spectral line formation

• Polarization: application Faraday Rotation

Essential Radio Astronomy, Condon, J. & Ransom, S. https://www.cv.nrao.edu/~sransom/web/xxx.html

Spectral Lines: HI 21cm line

- •Study of neutral component of ISM -- cold and warm; our Galaxy and external galaxy (cold 60 K, 30 cm⁻³, 5x10¹⁹ cm⁻²; Warm 8000 K, 0.2 cm⁻³, 10¹⁸ cm⁻²)
- •Kinematics of our Galaxy and external galaxy (eg. spiral galaxy)
- •Large scale structure (nearby z<0.16; < 700 Mpc)

Spectral Lines: CO line

Study of cold molecular gas in ISM; (10 K, 10³ cm⁻³, 20 pc)

Proxy for H_2 ; cloud properties (need to know X_{co}).

GBO/AO single dish workshop, Green Bank, August 19, 2019

¹²CO, ¹³CO, C¹⁸O Image of Orion region

Spectral Lines: Radio Recombination Lines

FIG. 3. The theoretically computed radio spectra for the Orion Nebula and NGC 2024, together with the observed flux densities.

Spectral Lines: Astronomical Masers

Stimulated microwave spectral line emission

OH, H₂O, CH₃OH, SiO, HRRL

Structure of Milky Way

Plan view of Milky Way. Dots are the locations of newly formed OB-type stars determined from VLBI trigonometric parallaxes using associated H_2O or methanol maser emission. The Galactic center is denoted by the plus (+) sign at (0,0) kpc; the Sun is labeled in yellow at (0,8.4) kpc.

Einstein A coefficient (spontaneous emission coefficient)

Classical approximation: A_{ul} is average spectral power emitted by a dipole divided by the photon energy.

HI 21cm line:
$$A_{F=10} = 2.85 \times 10^{-15} \text{ s}^{-1} (\sim 11 \text{ Myr half-life})$$

¹²C¹⁶O rotational trans: $A_{J=10} = 7.2 \times 10^{-8} \text{ s}^{-1} (\sim 0.4 \text{ yr}; \propto \text{J}^3)$

RRL transitions:
$$A_{n+1,n} = 5.3 \times 10^9 \left(\frac{1}{n^5}\right)$$
 s⁻¹ (n=100; ~ 2 sec)

Energy level population

$$\frac{N_u}{N_l} = \frac{g_u}{g_l} e^{-\frac{E_{ul}}{k_b T}}$$
 T is a unique temperature in TD equilibrium
Otherwise T=T_{ex} (excitation temperature)

Statistical Equilibrium

For two level system

$$N_u A_{ul} + N_u C_{ul} + N_u B_{ul} \frac{I_{\nu}}{c} = N_l C_{lu} + N_l B_{lu} \frac{I_{\nu}}{c}$$

. .

Multi-level system

$$N_i \sum_j R_{ij} = \sum_j N_j R_{ji}$$

Solution to this equation gives the level population; T_{ex} can be different for different levels

Energy level population: LTE approximation

$$\begin{array}{l} \displaystyle \frac{N_u}{N_l} &= \displaystyle \frac{g_u}{g_l} \ e^{-\frac{E_{ul}}{k_b T}} & T = T_k \ \text{the kinetic temperature} \\ & \text{(In general for LTE T=T_{ex} is same of all level;} \\ \displaystyle C_{ul} \ \approx \ A_{ul} \end{array}$$

 $n^* \sigma v \approx A_{ul}$ n^* critical density (density of collision partner); σ cross section; v mean velocity

HI 21 cm line: n^{*} << 1 cm⁻³

Condition:

¹²C¹⁶O J=1-0 line: $n^* \sim 10^3 \text{ cm}^{-3}$ (T_k ~ 20 K)

RRLs:
$$n^* \sim 90 \text{ cm}^{-3} (T_k \sim 10^4 \text{ K}; n=100)$$

Energy level population: LTE approximation

$$\frac{N_u}{N_l} = \frac{g_u}{g_l} e^{-\frac{E_{ul}}{k_b T}} \quad T = T_k \text{ same for all levels}$$
$$\frac{N_u}{n_d} = \frac{g_u e^{-\frac{E_u}{k_b T_k}}}{Q}$$
$$Q = \sum_i g_i e^{-\frac{E_i}{k_b T_k}} \quad \text{Partition function}$$

HI 21cm line

$$Q \approx g_0 + g_1 e^{-\frac{h\nu_{10}}{k_b T_k}} - \frac{h\nu_{10}}{k_b} \sim 0.08 \text{ K}$$

 $\approx 1+3=4$ (This is true for other values of T encountered in the ISM)

$$N_u \approx \frac{3}{4}n_d$$

Energy level population: LTE approximation

¹²C¹⁶O J=1-0 line

$$Q_{rot} \approx \frac{2k_b T_k}{h\nu_{10}} = 0.36T_k$$

$$Q_{rot} \approx \frac{2k_b T_k}{h\nu_{10}} = 0.36T_k$$

 $N_u \approx n_d \times \frac{3 \ e^{-\frac{h\nu_{10}}{k_b T_k}}}{0.36 T_k}$ for $\nu_{J=10} = 115.27 \ \text{GHz transition}$

(see Mangum & Shirley 2015; Turner 1991)

•Rotation – lowest energy state

•Q has contribution from rotation, vibration, ...

Hydrogen RRLs

Number density of atoms in quantum state n

$$N_n \propto n^2 \frac{n_p n_e}{T_e^{3/2}}$$
$$\propto n^2 \frac{n_e^2}{T_e^{3/2}} \quad n_d \approx n_e$$

- Saha-Boltzmann equation in Q
- •Q diverges for hydrogenic atoms
- •For fulling ionized gas in ISM

 $n_{d} \sim n_{p}$ the proton density $\sim n_{e}$

 $T_{k} = T_{e}$ the electron temperature

Optically thin case; no background radiation

What we want? $n_d (cm^{-3}); N \sim n_d 2R_s (cm^{-2})$ T (K), R_s (pc)

Prediction for obs

 $S_{L}(\nu) = \frac{P_{\nu}}{4\pi R_{d}^{2}} \propto N_{u} A_{ul} 2R_{s} \left(\frac{R_{s}}{R_{d}}\right)^{2} \phi(\nu) h\nu_{0} \quad \text{ergs/s/cm}^{2}/\text{Hz} \quad \text{Flux density of the line}$ $\propto N_{u} 2R_{s} A_{ul} \phi(\nu) h\nu_{0} \Omega_{s} \quad \text{ergs/s/cm}^{2}/\text{Hz}$ $N_{u} \text{ in terms of the total density} \quad \text{Normalized Gaussian}$

Not optically thick; background radiation

$$I_{\nu}(\tau_{\nu}) = I_{\nu}(0) e^{-\tau_{\nu}} + S_{\nu}(1 - e^{-\tau_{\nu}})$$

Line flux density

$$S_L(\nu) = S_{\nu} \tau_{\nu} \Omega_s$$
 For $I_{\nu}(0) = 0; \tau_{\nu} << 1$

 $= u_{\nu} 2R_s \Omega_s$ ergs/s/Hz/cm²

Source function

$$S_{\nu} = B(T) \approx \frac{2k_bT}{\lambda^2}$$

In TD equilibrium by Kirchhoff's law

LTE approximation

$$\frac{N_u}{N_l} = \frac{g_u}{g_l} e^{-\frac{E_{ul}}{k_b T}} \quad T = T_{ex}$$

$$S_{\nu} \approx B(T_k) \approx \frac{2k_b T_k}{\lambda^2} \quad T_{ex} = T_k \text{ same for all levels}$$

$$S_{\nu} \approx B(T_{ex}) \approx \frac{2k_b T_{ex}}{\lambda^2} \quad T_{ex} \text{ same for all levels}$$

Solution to RT in temperature

$$I_{\nu}(\tau_{\nu}) = I_{\nu}(0) e^{-\tau_{\nu}} + S_{\nu}(1 - e^{-\tau_{\nu}})$$

$$S_{\nu} \approx B(T_{ex}) \approx \frac{2k_b T_{ex}}{\lambda^2} \quad T_{ex} \text{ same for all levels}$$

$$I_{\nu}(0) = \frac{2k_b T_{\nu,b}}{\lambda^2} \quad T_{\nu,b} \text{ brightness temperature}$$

$$T_{\nu}(\tau_{\nu}) = T_{\nu,b} e^{-\tau_{\nu}} + T_{ex}(1 - e^{-\tau_{\nu}}) \qquad \mathsf{K}$$

Line optical depth:LTE case

Peak line optical depth: LTE case

$$au_{
u} \propto N_u \, 2R_s \, A_{ul} \, rac{1}{
u_0 T_{ex}} \, \phi(
u)$$

HI 21cm line

 $N_u = \frac{3}{4} n_d; A_{ul} \text{ is const}$ Freq = 1420.405 MHz

$$\tau_{\nu}(\nu_0) = 5.1335 \times 10^{-19} \frac{N_H (\text{cm}^{-2})}{T_s(\text{K})\Delta v (\text{km s}^{-1})}$$

 N_H column density of HI, $T_{ex} = T_s$ spin temperature

Peak line optical depth: LTE case

$$au_{
u} \propto N_u \, 2R_s \, A_{ul} \, rac{1}{
u_0 T_{ex}} \, \phi(
u)$$

CO J=1-0 transition

$$\tau_{\nu_{1,0}}(\nu_0) = 3.95 \times 10^{-15} \left(1 - e^{-\frac{h\nu_{1,0}}{k_b T_{ex}}} \right) \frac{N_{CO}(\text{cm}^{-2})}{T_{ex}(\text{K}) \ \Delta v(\text{km s}^{-1})}$$

 N_{CO} column density of CO, T_{ex} excitation temperature (did not use hv/k_bT_{ex} << 1 approximation; T_{ex} ~ 20 K)

Peak line optical depth: LTE case

$$\tau_{\nu} \propto N_u \, 2R_s \, A_{ul} \, \frac{1}{\nu_0 T_{ex}} \, \phi(\nu)$$

RRL alpha transition

$$\tau_{\nu}(\nu_{0}) = 1.92 \times 10^{3} \frac{EM(\text{pc cm}^{-6})}{T_{e}^{5/2}(\text{K})\Delta\nu(\text{KHz})}$$
$$EM = \int n_{e}^{2} \text{d}s \qquad \text{Emission measure}$$

For ionized gas $T_{ex}=T_{k}=T_{e}$ $N_{u} \alpha n^{2} 1/T_{e}^{3/2} n_{e}^{2}$ $A_{ul} \alpha 1/n^{5}$ RRL alpha freq $\alpha 1/n^{3}$

Knowing source function and optical depth we can get S_L from RT solution

Excitation temperature T_{ex}

Consider two level system

$$\begin{split} N_{u}A_{ul} + N_{u}C_{ul} + N_{u}B_{ul}\frac{I_{\nu}}{c} &= N_{l}C_{lu} + N_{l}B_{lu}\frac{I_{\nu}}{c} & \text{Statistical equilibirum} \\ & \\ \frac{N_{u}}{N_{l}} = \frac{g_{u}}{g_{l}} e^{-\frac{E_{ul}}{k_{b}T_{ex}}} &= \frac{C_{lu} + B_{lu}\frac{I_{\nu}}{c}}{A_{ul} + C_{ul} + B_{ul}\frac{I_{\nu}}{c}} \\ \text{Radiation dominates} & \text{Collision dominates} \\ & \\ \frac{B_{lu}\frac{I_{\nu}}{c}}{A_{ul} + B_{ul}\frac{I_{\nu}}{c}} & \\ & \\ T_{ex} \to T_{b} & \\ \end{array}$$

Non-LTE effects

$$\frac{N_u}{N_l} = \frac{g_u}{g_l} e^{-\frac{E_{ul}}{k_b T_{ex}}} \qquad \mathsf{T}_{ex} \text{ different for different level}$$

$$= \frac{b_u g_u}{b_l g_l} e^{-\frac{E_{ul}}{k_b T_k}} \qquad \mathsf{LTE level population with T=T}_k$$

$$\mathsf{b}_u, \mathsf{b}_l \text{ are departure coefficient}$$

Solve for b₁, b₁ using statistical equilibrium equation.

Maser emission

 $N_u > N_l$ Upper level population greater than lower level

$$\frac{N_u}{N_l} = \frac{g_u}{g_l} e^{\frac{E_{ul}}{k_b T_{ex}}} \quad \mathsf{T}_{\mathsf{ex}} \text{ is negative } !!$$

 $I_{\nu}(\tau_{\nu}) \approx I_{\nu}(0) e^{\tau_{\nu}}$ Optical depth is negative \rightarrow exponential amp.

Polarization of galactic background emission

WMAP image of polarized galactic synchrotron emission at 3° scale

DRAO image of galactic polarized synchrotron Emsission smoothed to 3° scale. The difference in emission structure is dominated by Faraday depolarization.

Measurement

General elliptical pol from two (orthogonal) linear pol

$$\vec{E} = \left(E_x \ e^{j\phi_x} \ \hat{x} + E_y \ e^{j\phi_y} \ \hat{y} \right) e^{j\omega t}$$

$$E_x, E_y, \delta = \phi_x - \phi_y$$

p, fractional pol

Stokes parameters (incoherent source)

 $I = \langle E_x^2 \rangle + \langle E_y^2 \rangle$

 $Q \; = \; < E_x^2 > - < E_y^2 >$

$$U = 2 \operatorname{Re} \langle E_x E_y^* \rangle = 2 \langle E_x E_y \cos(\delta) \rangle$$

$$V = 2 \operatorname{Im} \langle E_x E_y^* \rangle = 2 \langle E_x E_y \sin(\delta) \rangle$$

Measurement

Stokes parameters (incoherent source)

$$I = \langle E_x^2 \rangle + \langle E_y^2 \rangle$$

$$Q = \langle E_x^2 \rangle - \langle E_y^2 \rangle$$

$$U = \langle E_{45}^2 \rangle - \langle E_{-45}^2 \rangle$$

$$V = < E_l^2 > - < E_r^2 >$$

Receiving sense Hamaker & Bregman (1996)

Angle of linear polarization

 $P = Q + iU = |P| e^{2i\chi}$ Linear polarization in complex notation; |P| lin. pol flux density

Measurement

General elliptical pol from two (orthogonal) circular pol

•Linear pol light \rightarrow sum of right and left circular pol

•Right and left circular pol velocities are different (due to coupling with the cyclotron motion of thermal electrons)

$$\begin{split} 2\Delta\psi &= \left(\frac{2\pi}{\lambda_r} - \frac{2\pi}{\lambda_l}\right) \Delta s & \Delta \Psi \text{ is pol rotation angle} \\ \Delta\psi &\approx \lambda^2(\text{m}^2) \times 0.8125 \int_{obs}^{source} B_{||}(\mu\text{G})n_e(\text{cm}^{-3})\text{d}s(\text{pc}) & \text{n}_e \sim 0.1 \text{ cm}^{-3} \text{ f}_p \sim 2.8 \text{ KHz} \\ & \text{For } \omega >> \omega_p \& \omega >> \omega_c \end{split}$$

 $pprox \lambda^2(m^2) RM \ (rad \ m^{-2})$ RM is the rotation measure

RM measurement

 $\chi = \frac{1}{2} \tan^{-1} \left(\frac{U}{Q} \right)$ Angle of the measured linear pol

 $P = Q + iU = |P| e^{2i\chi}$ |P| is the flux density of linear polarization

$$\Delta \psi \approx \lambda^2 (m^2) RM (rad m^{-2})$$
 Diff between the incident and emerged pol angle

Combining RM and DM one could get B_{\parallel} field (Haverkorn et al 2015)

Faraday tomography or RM synthesis

Burn (1966) Brentjens & de Bruyn (2005)

 $\phi(r) = 0.8125 \int_{obs}^{r} B_{||} n_e \mathrm{d}s$ Faraday depth (not RM; RM is the integral over the whole source)

 $\Delta\psi(r)~=~\lambda^2\phi(r)~$ Change in pol angle due to Faraday depth

$$P_{obs}(\lambda^2) = \int P(r) \ e^{2i\phi(r)\lambda^2} d\phi(r)$$
Fourier transform (Φ , λ^2)

$$A$$

$$Q_{obs} + iU_{obs}$$

$$Q(r) + iU(r) \text{ linear pol at r average over the source}$$

$$GBO/AO \text{ single dish workshop, Green Bank, August 19, 2019}$$

Thank You