

Pulsars

2019 GBO/AO Single Dish Workshop Ryan Lynch (GBO)

A Pulsar Model

- $M_p = 1.3 2.0 M_{sun}$
- R ~ 10 km
- P_{rot} 1.4 ms few sec

•
$$B_{surf} = 10^8 - 10^{14}$$

- $L = 10^{30} 10^{37} \text{ erg/s}$
 - Most energy lost via particle wind

A Pulsar Model

- Point sources
 - No mapping
 - Sometimes imaged using VLBI for astrometry
- Broad-band continuum
 - Wide bandwidths
- Rapidly varying
 - High time resolution
- Highly polarized
 - Linear and circular
- Natural on/off sources
 - No position/frequency switching

Pulsar Population

- ~2,400 pulsars known
 - ~10% are millisecond pulsars
 - ~100 transients (**RRATs**)
 - ~30 magnetars (4 radio)
- Pulsars are observed in radio, x-ray, γ-ray
 - Most discovered and studied in radio

Millisecond Pulsars

- MSPs are often excellent physical tools
 - Often found in relativistic binaries
 - Most stable rotators \rightarrow can be used as precise clocks
- Recycled by accreting matter and angular momentum from binary companion

Structure and Equation of State

- Internal structure still uncertain
 - Equation of state of ultra-dense matter not known
- Basics...
 - Very thin atmosphere
 - Rigid outer crust
 - Superfluid neutron interior
- Different maximum masses predicted for different equations of state
 → pulsars can be used to do nuclear physics!

Pulsar Emission

- Emission still not well understood, despite 50 years of research
- Basic picture is...
 - Time varying magnetic field induces strong electric potential
 - Charged particles are pulled from NS surface
 - Accelerated along open magnetic field lines
 - Emit via curvature radiation (synchrotron-like process in extremely strong B-field)

Pulsar Emission

- Wide variety of pulse shapes are observed
 - Can be explained in terms of simple phenomenological models
- Individual pulse shapes vary
- Average profile observed to be very stable

Canonical Properties

- Pulsar rotation slows with time
 - In rotation power pulsars this is the primary source of energy
 - In magnetars magnetic field decay powers highenergy emission
- By *assuming* pulsars radiate like dipoles in a vaccuum certain properties can be inferred

$$B_{s} = \sqrt{\frac{3c^{3}I}{8\pi^{2}R^{6}(\sin\alpha)^{2}}P\dot{P} = 10^{12}G\left(\frac{\dot{P}}{10^{-15}}\frac{P}{s}\right)^{1.2}} \qquad \tau_{c} = \frac{P}{2\dot{P}} = 16\,\mathrm{Myr}\left(\frac{P}{s}\right)\left(\frac{\dot{P}}{10^{-15}}\right)^{-1}}$$
$$\dot{E} = 4\pi^{2}I\dot{P}P^{-3} = 4\times10^{35}\,\mathrm{erg/s}\left(\frac{\dot{P}}{10^{-15}}\right)\left(\frac{P}{s}\right)^{-3}$$

• The ISM is an ionized plasma with refractive index

$$\mu = \left[1 - \left(\frac{\mathbf{v}_p}{\mathbf{v}}\right)^2\right]^{1/2}$$

where $\nu_{\text{p}} \sim$ few kHz << ν_{obs} for typical electron densities

- As a result, group velocity of radio waves $v_g(v) < c$
 - Lower frequencies travel more slowly than higher frequencies

• This leads to a delay in arrival time for different frequencies of a broadband signal

$$\Delta t \approx 4 \times 10^{3} \sec \left(\frac{DM}{\text{pc cm}^{-3}}\right) \left[\left(\frac{\nu_{\text{lo}}}{\text{MHz}}\right)^{-2} - \left(\frac{\nu_{\text{hi}}}{\text{MHz}}\right)^{-2}\right]$$

where DM is the column density of electrons along a line of sight

$$DM = \int n_e(s) ds$$

- If we naively sum over frequency, pulses will be completely smeared out
- We must shift each frequency channel appropriately before summing

Figure credit: Handbook of Pulsar Astronomy Lorimer and Kramer

• Intra-channel dispersion will still cause smearing

$$\Delta t_{\rm DM} = 8 \times 10^3 \sec \left(\frac{\Delta v}{v^3} \right)$$

- Minimize by using many frequency channels (incoherent de-dispersion)
- Remove completely by operating on complex voltages (coherent de-dispersion)

Coherent Dedispersion

 Observed voltage is a time domain *convolution* (frequency domain multiplication) of intrinsic voltage and **transfer function**

V(f) = FT[v(t)]

$$V_o(f + \delta f) = V_i(f_0 + f) \cdot H(f_0 + f)$$

$$H(f+\delta f) = \exp\left[\frac{2\pi i}{(f_0+f)f_0^2}k\,\mathrm{DM}f^2\right]$$

PSR B1937+21, 1500 MHz, GBT/GUPPI

Interstellar Scattering

Imhomogenieties in the ISM lead to multi-path propagation

Figure credit: Handbook of Pulsar Astronomy Lorimer and Kramer

Interstellar Scattering

- Scattering is strongly dependent on frequency $(\sim v^{-4})$ and is not easy to mitigate
 - May be the limiting factor in searches of some regions, e.g. the Galactic center and certain globular clusters
- Mitigate by going to higher frequencies

Scintillation

- Multi-path propagation can lead to constructive and destructive interference
 - Modulates intensity of the pulsar in time **and** frequency on short and long time scales
- Equivalent to optical "twinkling"

Scintillation

- Multi-path propagation can lead to constructive and destructive interference
 - Modulates intensity of the pulsar in time **and** frequency on short and long time scales
- Equivalent to optical "twinkling"

Observational Modes

- Two primary observing modes
- "Search" modes \rightarrow high time resolution spectra
 - Searching for new pulsars
 - Resolution of single pulses
 - Fast radio bursts
 - Simultaneous observations of multiple pulsars
- "Timing" modes \rightarrow phase-folded spectra
 - Observations of known pulsars

Pulsar Timing (The Basics)

- **Timing** is one of the most powerful techniques for studying pulsars
- It takes advantage of the *clock-like* nature of pulsars
 - Deviations from the expected arrival time of a pulse contain useful information
- Let's go through timing schematically...

Time

Time

Time

Timing Models

- Time of arrival (TOA) can be predicted from a model for pulsar rotation and other effects
 - Period, spin-down
 - Position, parallax, proper motion
 - Binary orbital parameters
 - The interstellar medium (ISM)
 - And more...
- Model is *coherent in rotational phase*
 - Every single rotation is accounted for
- Deviations from predicted arrival times used to update / improve model parameters

Timing Models

 $\phi(t) = \phi_0 + f(t - t_0) + \frac{1}{2} df/dt (t - t_0)^2 + \dots$

• Must be transformed to an inertial reference frame...

$$t_{\rm SSB} = t_{\rm topo} + t_{\rm corr} - k \, \rm DM / f^2 + \Delta_{R_{\rm S}} + \Delta_{S_{\rm S}} + \Delta_{R_{\rm B}} + \Delta_{R_{\rm B}} + \Delta_{S_{\rm B}} + \Delta_{S_{\rm B}}$$

- In order:
 - Topocentric (observatory) TOA
 - Clock corrections (Earth rotation, relativistic, etc.)
 - Dispersion delay
 - Roemer delay (geometric)
 - Shapiro delay (spacetime curvature)
 - Einstein delay (time dilation / gravitational redshift)
 - For Solar system and pulsar binary (if applicable)

Pulsar Timing

Figure credit: Handbook of Pulsar Astronomy Lorimer and Kramer

Pulsars as Clocks

 $f = d\phi/dt$, at some reference t_0 $\phi(t) = \phi_0 + f(t - t_0) + \frac{1}{2} df/dt (t - t_0)^2 + \dots$

- Spin period can be measured to $\sim \delta/N_{rot}$
 - For MSPs observed over many years, $N_{rot} \sim 10^9$
- At 2018-05-20 13:30 EDT the frequency of PSR J0437-4715 is/was

 $173.687945250858 \pm$

0.00000000004 Hz

Timing Uncertainty

- Individual TOA error is roughly $\delta/(S/N)$
 - Measured via Fourier domain cross correlation
 - Narrow profile features are good
- Often interested in long-term predictability
 - Want small scatter in **residuals**

Optimal Frequencies for Pulsar Timing

- Moving to higher frequencies, wider bandwidths can give substantial improvements in residual RMS
- Pulsar and telescope dependent!

Folding

- With an accurate timing model, data can be phase folded in real-time
 - Reduces data rate, simplifies later processing

Searching for Pulsars

 After de-dispersion frequencies are typically summed to create a time series

Searching for Pulsars

- In practice, single pulses are often below the noise floor
- Most pulsars are found via Fourier-domain searches
 - Care must be taken to account for Doppler shifting of pulse period due to binary acceleration
- Searches are often the most computational intensive part of a search

Individual pulses are sometimes visible

17-May-2012 00:35

Millisecond Pulsar Timing Arrays

- GWs will cause a quadirpolar angular correlation signature
- Requirements: 10-100s ns residuals, full sky coverage, lots of pulsars, precise ISM measurements

The nHz GW Universe

- Galaxies merge, so should their supermassive BHs
- Gravitational radiation will take over as dominant mechanism of energy loss
- Orbital periods of few years correspond to nHz GW frequency
 - This is the PTA band
- More exotic sources are also possible (e.g. cosmic strings)

Observational Signatures

- Different source classes have different structure in residuals
- Sensitive to $f_{GW} \sim nHz$ / $\lambda_{GW} \sim 10^{17}$ m

Complementary Gravitational Wave Detectors

NANOGrav

- North American PTA
 - Senior/affiliated researchers at over two dozen institutions (US, Canada, Europe)
- Funded by NSF Physics Frontier Center (\$14.5M over 5 years)
 - Portion of funding supports GBT operations
- Currently time 45 pulsars at GBT and Arecibo
 - 500 (GBT) + 800 (AO) = 1300 hrs/year
 - Does not include pulsar searches!
 - Each contributes 50% of overall GW sensitivity
- International collaboration through IPTA

Sources of GWs – Stochastic Background

- Ensemble of binary BHs will give rise to a stochastic GW background
 - Amplitude depends upon merger rate, BH coupling to environment, eccentricity distribution
- Current limits are in an interesting range given astrophysical uncertainties

Sources of GWs – Stochastic Background

- Ensemble of binary BHs will give rise to a stochastic GW background
 - Amplitude depends upon merger rate, BH coupling to environment, eccentricity distribution
- Current limits are in an interesting range given astrophysical uncertainties

Bottom line: detection expected early next decade

Sources of GWs – Individual Binaries

- Individual binaries will appear at ~constant GW frequency
- "PSF" depends strongly on skylocation of best-timed pulsars
 - Full-sky coverage and distribution of pulsars is essential!
- Detection of single sources will most likely come later this decade

Single sources from a snapshot population (Mingarelli et al. 2017, Nat. Astr., 1, 886)

Arzoumanian et al. accepted by ApJ

Subatomic Physics

Most highly cited GBT paper (1,550+)

Subatomic Physics

Rules out most or all EOSs with exotic material in the cores

Latest Results

NANOGrav timing reveals another massive (> 2 M_{sun}) NS, pointing to "hard" EOS

Cromartie et al., submitted to Nat. Astr.

Strong Field GR Tests

- Double Pulsar is the premier system for studying strong-field GR
 - Light from one pulsars passes within 10,000 km of the other
- Seeing 2nd order post-Newtonian effects

Courtesy of Michael Kramer

Subatomic Physics

Most highly cited GBT paper (1,550+)

Subatomic Physics

Rules out most or all EOSs with exotic material in the cores

Testing the Strong Equivalence Principle

- PSR J0337+1717: First MSP in a stellar triple system
 - Discovered in GBT survey
- Three body dynamical effects cause secular changes in orbital parameters
 - Allow us to precisely solve for the geometry and masses of all stars and orbits

- All bodies fall at the same rate (?)
- MSP & inner WD falling in gravity of outer WD

Image credit: Ransom et al. (2014, Nature, 505, 520)

Testing the Strong Equivalence Principle

 Violations parameterized by differential acceleration

Currently dominated by systematics

Sensitive to Solar wind DM variations

Testing the Strong Equivalence Principle

- Violations parameterized by differential acceleration
- Currently dominated by systematics
 - Sensitive to Solar wind DM variations
- Current best limit on differential acceleration $\Delta = 10^{-6}$
 - 100x improvement over Lunar ranging tests

Archibald et al. (2018)