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A Pulsar Model

● Mp = 1.3 – 2.0 Msun

● R ~ 10 km

● Prot 1.4 ms – few sec

● Bsurf = 108 – 1014

● L = 1030 – 1037 erg/s
– Most energy lost via 

particle wind

● Age 103 – 109 yr



  

A Pulsar Model
● Point sources

– No mapping
– Sometimes imaged using 

VLBI for astrometry

● Broad-band continuum
– Wide bandwidths

● Rapidly varying
– High time resolution

● Highly polarized
– Linear and circular 

● Natural on/off sources
– No position/frequency 

switching



  

Pulsar Population

● ~2,400 pulsars known
– ~10% are millisecond 

pulsars
– ~100 transients (RRATs)
– ~30 magnetars (4 radio)

● Pulsars are observed in 
radio, x-ray, g-ray
– Most discovered and 

studied in radio



  

Millisecond Pulsars

● MSPs are often excellent physical tools
– Often found in relativistic binaries

– Most stable rotators → can be used as precise clocks

● Recycled by accreting matter and angular 
momentum from binary companion



  

Structure and Equation of State

● Internal structure still uncertain
– Equation of state of ultra-dense matter not known

● Basics…
– Very thin atmosphere

– Rigid outer crust

– Superfluid neutron interior

● Different maximum masses predicted for different 
equations of state
→ pulsars can be used to do nuclear physics!



  



  

Pulsar Emission

● Emission still not well understood, despite 50 years 
of research

● Basic picture is…
– Time varying magnetic field induces strong electric 

potential
– Charged particles are pulled from NS surface
– Accelerated along open magnetic field lines
– Emit via curvature radiation 

(synchrotron-like process in 
extremely strong B-field)



  

Pulsar Emission

● Wide variety of pulse 
shapes are observed
– Can be explained in 

terms of  simple 
phenomenological 
models

● Individual pulse shapes 
vary

● Average profile observed 
to be very stable



  

Canonical Properties

● Pulsar rotation slows with time
– In rotation power pulsars this is the primary 

source of energy

– In magnetars magnetic field decay powers high-
energy emission

● By assuming pulsars radiate like dipoles in a 
vaccuum certain properties can be inferred
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Interstellar Dispersion

● The ISM is an ionized plasma with refractive index

where np~ few kHz << nobs for typical electron 
densities

● As a result, group velocity of radio waves 
vg(n) < c 

– Lower frequencies travel more slowly than higher 
frequencies
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Interstellar Dispersion

● This leads to a delay in arrival time for different 
frequencies of a broadband signal

where DM is the column density of electrons along 
a line of sight
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Interstellar Dispersion

Figure credit: Handbook of Pulsar Astronomy Lorimer and Kramer

● If we naively sum over 
frequency, pulses will 
be completely smeared 
out

● We must shift each 
frequency channel 
appropriately before 
summing



  

Interstellar Dispersion

● Intra-channel dispersion will still cause smearing

● Minimize by using many frequency channels 
(incoherent de-dispersion) 

● Remove completely by operating on complex voltages 
(coherent de-dispersion)

Δ tDM=8×103 sec (
Δn

n
3 )



  

Coherent Dedispersion

● Observed voltage is a time domain convolution 
(frequency domain multiplication) of intrinsic 
voltage and transfer function

V ( f )=FT [v (t )]

V o (f +δ f )=V i( f 0+f )⋅H (f 0+ f )

H ( f +δ f )=exp [ 2 π i
(f 0+ f ) f 0

2 k DM f 2 ]



  
Images courtesy of Paul 
Demorest



  

Interstellar Scattering

● Imhomogenieties in the ISM lead to multi-path 
propagation  

Figure credit: Handbook of Pulsar Astronomy Lorimer and Kramer



  

Interstellar Scattering

● Scattering is strongly dependent on frequency 
(~ n-4) and is not easy to mitigate
– May be the limiting factor in searches of some 

regions, e.g. the Galactic center and certain globular 
clusters

● Mitigate by going to higher frequencies



  

Scintillation

● Multi-path propagation can lead to constructive and 
destructive interference
– Modulates intensity of the pulsar in time and 

frequency on short and long time scales

● Equivalent to optical “twinkling”
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Observational Modes

● Two primary observing modes

● “Search” modes → high time resolution spectra
– Searching for new pulsars

– Resolution of single pulses

– Fast radio bursts

– Simultaneous observations of multiple pulsars

● “Timing” modes → phase-folded spectra
– Observations of known pulsars



  

Pulsar Timing (The Basics)

 Timing is one of the most powerful techniques 
for studying pulsars

 It takes advantage of the clock-like nature of 
pulsars
 Deviations from the expected arrival time of a pulse 

contain useful information

 Let's go through timing schematically...
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Timing Models

● Time of arrival (TOA) can be predicted from a model 
for pulsar rotation and other effects
– Period, spin-down
– Position, parallax, proper motion
– Binary orbital parameters
– The interstellar medium (ISM)
– And more...

● Model is coherent in rotational phase
– Every single rotation is accounted for

● Deviations from predicted arrival times used to update 
/ improve model parameters



  

Timing Models

f(t) = f0 + f (t – t0) + ½ df/dt (t – t0)2 + …

● Must be transformed to an inertial reference frame…

● In order:
– Topocentric (observatory) TOA
– Clock corrections (Earth rotation, relativistic, etc.)
– Dispersion delay
– Roemer delay (geometric)
– Shapiro delay (spacetime curvature)
– Einstein delay (time dilation / gravitational redshift)
– For Solar system and pulsar binary (if applicable)

tSSB=t topo+tcorr−k DM/ f 2
+ΔRS

+ΔSS
+ΔES

+ΔRB
+ΔSB

+ΔEB



  

Pulsar Timing

Disagreement between 
model and data

Figure credit: Handbook of Pulsar Astronomy Lorimer and Kramer



  

Pulsars as Clocks

f = df/dt,  at some reference t0
f(t) = f0 + f (t – t0) + ½ df/dt (t – t0)2 + …

● Spin period can be measured to ~δ/Nrot

– For MSPs observed over many years, Nrot~109

● At 2018-05-20 13:30 EDT the frequency of PSR 
J0437-4715 is/was

173.687945250858 ±

   0.000000000004 Hz



  

Timing Uncertainty

● Individual TOA error is roughly δ/(S/N)
– Measured via Fourier domain cross correlation

– Narrow profile features are good

● Often interested in long-term predictability
– Want small scatter in residuals
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Optimal Frequencies for Pulsar Timing

● Moving to higher frequencies, wider bandwidths 
can give substantial improvements in residual RMS

● Pulsar and telescope dependent!

Lam et al. (2018)



  

Folding

● With an accurate timing model, data can be phase 
folded in real-time
– Reduces data rate, simplifies later processing



  

Searching for Pulsars

● After de-dispersion frequencies are typically 
summed to create a time series

Where are the pulses??



  

Searching for Pulsars

● In practice, single pulses are often below the 
noise floor

● Most pulsars are found via Fourier-domain 
searches
– Care must be taken to account for Doppler 

shifting of pulse period due to binary 
acceleration

● Searches are often the most computational 
intensive part of a search



  

8.8 ms pulsar

60 Hz RFI



  

● Individual pulses are sometimes visible



  



  

Millisecond Pulsar Timing Arrays

● GWs will cause a quadirpolar angular correlation 
signature

● Requirements: 10-100s ns residuals, full sky 
coverage, lots of pulsars, precise ISM 
measurements

Image credit: NANOGrav

The Hellings-Downs Curve

Image credit: David Champion



  

The nHz GW Universe

● Galaxies merge, so should their supermassive BHs

● Gravitational radiation will take over as dominant mechanism of 
energy loss

● Orbital periods of few years correspond to nHz GW frequency
– This is the PTA band

● More exotic sources are also possible (e.g. cosmic strings)



  

Observational Signatures

● Different source classes have different structure in 
residuals

● Sensitive to fGW ~ nHz / λGW ~ 1017 m

Image credits: NANOGrav



  

Complementary Gravitational Wave 
Detectors



  

NANOGrav

● North American PTA
– Senior/affiliated researchers at over two dozen institutions 

(US, Canada, Europe)

● Funded by NSF Physics Frontier Center ($14.5M over 5 years)
– Portion of funding supports GBT operations

● Currently time 45 pulsars at GBT and Arecibo
– 500 (GBT) + 800 (AO) = 1300 hrs/year
– Does not include pulsar searches!
– Each contributes 50% of overall GW sensitivity

● International collaboration through IPTA

 Physics Frontiers Center



  

Sources of GWs – Stochastic 
Background

Arzoumanian et al. 2018, ApJ, 859, 22

● Ensemble of binary BHs will give rise to a stochastic 
GW background
– Amplitude depends upon merger rate, BH 

coupling to environment, eccentricity 
distribution

● Current limits are in an 
interesting range given 
astrophysical uncertainties

Bottom line: detection expected within 
~3 years

More pulsars, wideband feeds, and 
higher cadence all improve sensitivity



  

Sources of GWs – Stochastic 
Background

● Ensemble of binary BHs will give rise to a stochastic 
GW background
– Amplitude depends upon merger rate, BH 

coupling to environment, eccentricity 
distribution

● Current limits are in an 
interesting range given 
astrophysical uncertainties

Bottom line: detection 
expected early next decade

higher cadence all improve sensitivity



  

Sources of GWs – Individual Binaries

● Individual binaries will appear at 
~constant GW frequency

● “PSF” depends strongly on sky-
location
of best-timed pulsars
– Full-sky coverage and 

distribution of pulsars is 
essential!

● Detection of single sources 
will most  likely come later
this decade

Arzoumanian et al. accepted by ApJArzoumanian et al. accepted by ApJ

Single sources from a snapshot 
population (Mingarelli et al. 2017, Nat. 
Astr., 1, 886)



  
  Demorest et al. 2010, Nature, 467, 1081D

Most highly cited GBT paper (1,550+)

M
wd

 = 0.500(6) M⊙
M

psr
 = 1.97(4) M !⊙

Inclination = 89.17(2) deg!

Full Shapiro Signal

No General Relativity

Full Relativistic Solution

Amplitude ∝ Comp. Mass
Narrowness ∝ Inclination

Conjunction

Subatomic Physics



  

Subatomic Physics

Rules out most or all EOSs
with exotic material in the cores



  

Latest Results

NANOGrav timing reveals another 
massive (> 2 Msun) NS, 
pointing to “hard” EOS

Cromartie et al., submitted to Nat. Astr.



  

Strong Field GR Tests

● Double Pulsar is the premier system for studying 
strong-field GR
– Light from one pulsars passes within 10,000 km 

of the other

● Seeing 2nd order post-Newtonian effects

Courtesy of Michael Kramer



  
  Demorest et al. 2010, Nature, 467, 1081D
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Subatomic Physics

Rules out most or all EOSs
with exotic material in the cores



  

Testing the Strong Equivalence 
Principle

Image credit: Ransom et al. (2014, Nature, 505, 520)

● PSR J0337+1717: First MSP 
in a stellar triple system
– Discovered in GBT survey

● Three body dynamical 
effects cause secular 
changes in orbital 
parameters
– Allow us to precisely 

solve for the geometry 
and masses of all stars 
and orbits

● All bodies fall at the same 
rate (?)

● MSP & inner WD falling in 
gravity of outer WD



  

Testing the Strong Equivalence 
Principle
● Violations parameterized by differential 

acceleration

Currently dominated by systematics

Sensitive to Solar wind DM variations

Current best limit on differential 
acceleration 
Δ = 10-6

100x improvement over Lunar ranging 
tests

Look for Archibald et al. (early 2018)



  

Testing the Strong Equivalence 
Principle

● Violations parameterized by differential acceleration

● Currently dominated by systematics

– Sensitive to Solar wind DM variations

● Current best limit on differential acceleration 
Δ = 10-6

– 100x improvement over Lunar ranging tests

Archibald et al. (2018)
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