Galaxy Cluster Science: 5-10 year view of the GBT's Role

Brian Mason (NRAO) Green Bank Observatory Transformational Science Workshop October 16, 2017

x-ray bremmstrahlung

Galaxy Clusters

Galaxies + Hot Intra-Cluster Plasma + Dark Matter

* Excellent view of density variations * Some Spectral Information — but not useful in lowdensity regions (outside cluster core) or hi-z

Sunyaev-Zel'Dovich Effect (SZE)

 * Outstanding sensitivity to hot gas
 * Redshift-independent: effective / tool at high-z
 * requires sensitive detectors

Abell 1689: HST + Chandra

We can learn about our cosmology by studying the abundance and properties of these extreme halos as functions of Mass and z.

Max Planck inst. Springel et al 2005; Dark Matter Only

Atacama Cosmology Telescope (Cerro Toco)

South Pole Telescope (SPT)

SZ Selected Clusters

2008: zero

2011:ACT (23) + SPT (26) + PLANCK (169+20)= 238 1/2 to 3/4 of the clusters found by ACT & SPT were previously unknown (missed by Abell, RASS, etc.).

Atacama Cosmology Telescope (Cerro

pe (SPT)

SZ Selected Clusters

2008: zero

Like nearly all SZ instruments these have low resolution (~1') and cannot usefully resolve the ICM.

The GBT @ 3mm (9") can

2011:ACT (23) + SPT (26) + PLANZZO)= 238 1/2 to 3/4 of the clusters found by ACT & SPT were previously unknown (missed by Abell, RASS, etc.).

MACS 0744+3927 [z=0.69, M-Y outlier]

Korngut et al. 2011

14" SZE Imaging reveals an M ~1.5 shock *evident in x-ray data a posteriori

Other MUSTANG SZ results

SZE reveals high-pressure structure not seen in previous x-ray data.

100 ksec XMM follow-up observation + 3hr ALMA Cycle4 observations obtained

MACS 1206-0847

RXJ1347-1145

Mason et al 2010 Romero et al. 2017

CSO+BOLOCAM SZE observations @140 & 268 GHz (Sayers et al. 2013) show cluster B to be a "line of sight Bullet cluster" [+3200 km/s]

First detection of the kinematic SZE in an individual object

Mroczkowski et al. 2012 VanWeeren et al. 2015

-0.1

-0.2

-0.3

-0.4

-0.5

-0.6

-0.7

-0.8

-0.9

Other MUSTANG SZ results

SZE reveals high-pressure structure not seen in previous x-ray data.

100 ksec XMM follow-up observation + 3hr ALMA Cycle4 observations obtained

CSO+BOLOCAM SZE observations @140 & 268 GHz (Sayers et al. 2013) show cluster B to be a "line of sight Bullet cluster" [+3200 km/s]

First detection of the kinematic SZE in an individual object

Mroczkowski et al. 2012 VanWeeren et al. 2015

2017	Dark Energy Survey
2018	5,000 sq.deg. optical
2019	Survey
2020	Chandra
2021	(degrading)
2022	
2023	
2024	XARM
2025	ASTRO-H/ Hitomi roplocomont
2026	Πιοπιτεριαcement
2027	
2028	
2029	
	Athena?
KEY:	X-ray Optical SZE

Advanced ACTpol & SPT3G

10k-pixel class millimeter survey cameras

Simons Observatory

100k-pixel class millimeter survey cameras

eROSITA

1st X-ray all-sky survey since ROSAT 30x deeper

eROSITA currently in Moscow being integrated with SRG spacecraft

 GOAL: characterize dark energy by mapping massive halo density to z~1.5

detect > 2k massive galaxy clusters @ z > 0.8
25" FWHM, ~100 photons/cluster @ z=1

High-z clusters are very hard to study with x-ray or optical data — resolved SZE provides dynamical state, pressure profiles, masses

Ferrari et al. (2011)

MUSTANG SZE + GMRT 600 MHz show a strong connection between shockheated thermal & nonthermal ICM phases

Astrophysics with the SZE

ALMA Cycle 4 Lacy et al.

Possible outflow SZE

MUSTANG-2

U.Penn (Devin, Dicker, Stanchfield+)

NRAO (DAQ & control software; analysis software; receiver rotator, dewar)

NIST (detectors & MUX)

Detectors funded by NSF-ATI in 2015

- 64 pixels -> 215 pixels
- 42" FOV —> > 4' FOV
- greater sensitivity per beam

Available in Feb I GBO call for proposals (shared-risk in collab. w/PI)

OMC 2/3 Orion "Integral shaped Filament"

5' x 15'

MUSTANG-2

MUSTANG-2 Commissioning observation of SZE in

(winter 16/17)

2h integration time on source

40 minutes onsource (commissioning winter 16/17) <image><text>

Available in Feb I GBO call for proposals (shared-risk in collab. w/PI)

MUSTANG-2 SZ Science

From accepted proposals currently in the GBT observing Queue:

*more accurately determine the **masses and ICM pressure profiles in high redshift (z>1) clusters** which are very difficult and expensive to study with x-rays (17A-358, 17B-218)

*provide 10" resolution imaging of SZ-selected clusters discovered in ACT equatorial survey, **observationally quantifying scatter and bias in M-Y relationship**. (17B-334)

* cluster astrophysics: detect unknown shocks in the intra-cluster medium; probe shock mechanics (17B-266); probe AGN bubble composition (17A-340); study thermal/non-thermal ICM phase connections (17B-314)

* measure ICM pressure profiles in Weak-Lensing selected cluster sample (17B-101

* measure **ICM turbulence** from SZE pressure fluctuations (17B-082)

Summary

- SZE imaging has moved beyond single #s or detailed study of only the most extreme single cluster. We can trust our images and start learning from them!
- X-rays alone provide an incomplete view of the Intra-cluster medium and clusters' dynamical state
 - high resolution SZ data will provide essential information for maximizing the cosmological returns from existing & ongoing cluster surveys
- Looking to the future: there is abundant SZ science at 10" resolution
 - ALMA Band I in the south
 - Large cameras on Large mm single dishes: GBT@3mm
 - having a robust, sensitive, high-resolution SZ imaging capability routinely available will transform the field.

end

SPT SZ Decrement Map (resolution = 1'.2)

Chandra (resolution = 1") Weak Lensing mass map

Markevitch / Clowe+

Plagge et al. 2010

Real (cycle 2) ALMA observation

- Note: the region here is 56" in radius (twice the diameter of the 12-meter array's primary beam).
- * Compton-*y* model seems to give a reasonable reduced χ^2 .
- * Now working to model the signal more fully.
- Upgrades to ALMA including Band 1 & Band 2+3 receivers will allow for larger scales to be recovered.

Mock ALMA observation

- * Left: Compton-*y* model, zoomed in. Circle is 2.7' in diameter.
- * Right: Mock ALMA Band 3 observation, down to ~7 μJy RMS.

Most of the energy in AGN and starburst winds is in hot (~10⁷⁻⁸K) gas.

Too diffuse to detect in X-rays, but feasible via the SZ effect.

Claims of detections of QSO winds from stacking: Planck, ACT or SPT data, but contamination is a problem in large beams.

Hyperluminous quasars and starburst winds may just be detectable with 10-100 hour observations using current telescopes e.g. ALMA (shown), VLA or GBT with tens of micro-K sensitivity on scales of a few arcsec in the 2-10mm bands.

Possible SZ hole (or at least good

X-Ray Cavities/Bubbles

Abell 478 (Sun et al. 2003)

MS0735.6+7421 McNamara et al. 2005 Chandra/VLA composite

AGN outflows carve out holes in the cluster plasma. Resolved SZ can probe the composition of the medium inside x-ray cavities.

~540h useful 3mm/4mm observing time per year

NRAO

In 2010, 1776h of science at > 18 GHz were scheduled on the GBT

see GBT memos 267, 269; and other DSS & PTCS

memos

Weather at Green Bank good for 3mm observations for 1000-2000hrs per year

Frayer ()

Ν

2014 ANASAC Meeting

NRAO

GBT Beam

2014 ANASAC Meeting

Simons Observatory

10 m

Large Aperture Telescope Camera

\$40M grant from the Simons Foundation and the Heising-Simons Foundation.

6 meter diameter Cross-Dragone Telescope ~1.7 arcminute resolution at 150 GHz

Up to 80,0000 Detectors

Small Aperture Cameras

- 30-50 cm apertures
- ~ I degree resolution.
- CMB polarization

Early 2021 Commissioning

Aye, there's a rub: systematics matter

Without astrophysical uncertainties

with astrophysical uncertainties:

First cosmological constraints from ACT SZE survey

Sehgal et al. 2011 — used only 9 rich, optically confirmed clusters

These will continue to limit what we learn from larger, future samples. (see e.g. Dark Energy Task Force report, 2006)

Flux (mis)

1.50

1.00

0.80

0.00

-0.50

RXJ1347

13:47:30.0

Right Ascension

Right Ascension

MUSTANG SZ maps of 13 CLASH clusters (+A1835) Romero et al. in prep.

Reese et al. 2002; BIMA (30 GHz, 20 hours) merger in progress and near