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1 Introduction

On January 22, we performed tests on the GBT Equipment Room IF electronics
in an attempt to isolate the source of near sinusoidal baseline ripples that show
up from time-to-time. We injected a stable noise source into Converter Modules
or into Sampler/Filter Modules, and simulated position switched observations
by running a series of scans using the spectrometer in 200MHz mode. During
the course of these tests, we induced small changes in the length of coaxial ca-
bles connecting various pieces of equipment by inserting short coaxial adapters.
This introduced dramatic ripples in the baselines (Figure 1), calculated by the
usual methods. We felt that it is important to understand how the ripple is
introduced. This report describes modeling of two ports connected by a trans-
mission line, measurements taken in the system, and an investigation into the
required stability of phase length that these results imply.

2 Modeling of Two-Port Networks

2.1 Equations

Figure 2 shows a signal-flow representation of two two-port networks, Net A
and Net B, connected by a lossless, matched transmission line. The scattering
parameters s;; and sgo are input and output reflection coefficients of the net-
works. Parameters so; and s;5 represent the forward and reverse transmission
coefficients. The s-parameters are complex values that, in general, vary with
frequency. The delay of the lossless, matched transmission line is represented by
a transmission coefficient in phasor notation: e/#!, where 8 = 27/) and [ is the
electrical length of the transmission line. In Figure 1, complex voltage signals
incident on the network ports are represented by a;, and signals reflected from
the ports by b;.

We are interested in a4/a;. The square of the magnitude of this quantity is
the transducer power gain of the cascaded networks. The signal-flow diagram
allows us to write equations for the signals leaving and reflected from each port:



az = a1s214(1 — s114) + ba2s224 (1)
as = aze’”! (2)
as = agso1B(1 — s118) + basp (3)
We will assume a matched load, so by = 0. Hence,
bs = azsiiB (4)
b2 = b3€jﬁl = agsnBejBl (5)
Substituting (5) and (1) into (2),

az = & (ars014(1 — s114) + aze’'s1155224) (6)
Distributing,
a3 = a15214(1 — s114)e’™ + azsiipsazae’™ (7)

and solving for as,

s214(1 — s114)e?"!
as =a : 8
s 1 1 — 5118522467281 ®
Substituting (8) into (3), we obtain the quantity of interest:
as _ s9148218(1 — 5114) (1 — s115)eP! )

a1 1 — s224511 €728

Equation (7) shows that ag, the input signal to Net B, consists of the input
signal a; modified by Net A and delayed by the transmission line, plus ag
(from an earlier time) reflected by s115 and by s224 and delayed by two passes
through the transmission line. As will be seen in the next section, this dual
reflection sets up an interference pattern that introduces ripple in the cascaded
network frequency response, a well-known result. The affect on baselines of
changing cable length, as might be introduced by temperature fluctuations, is
also determined.

2.2 Numerical Models

Appendices A, B, and C are Mathcad worksheets showing three numerical ex-
amples typical of GBT situations. The main points to be drawn from these
illustrations are:



e The transmission line embedded between non-zero reflection coefficients
introduce passband ripple with characteristic frequency of 57, where c is
the velocity of propagation in the line. The ripple amplitude is set by the
product of s22A and s11B.

e If the line length changes, the passband ripple shifts in frequency. If
this happens, say, between (or during) two position-switched scans, the
frequency shift in ripple pattern introduces ripple in the baseline obtained
by the ratio of the two scans. The amplitude of the baseline ripple is
proportional to the length change (for small changes), as a fraction of
the wavelength of the signal on the line. For example, the appendices
show that to keep baseline ripple below 0.1% when the transmission line
is operating between 20dB return losses, the line electrical length must be
stable to better than 1.44° ()\/250) at the highest passband frequency.

These results may be used to set specifications on the required phase stability
of interconnecting cables, based on the return loss seen at each end and on the
frequencies present on the cable. Changes in electrical length of cables may be
induced by temperature changes, by flexing, and by poor connections. We can
see that the GBT system design has made these requirements quite challenging
because of the relatively high frequencies and broad bandwidths used between
various subsystems. The following section discusses the types of cables used for
long signal runs on the GBT.

3 GBT Cables

Three types of coaxial cables are mainly used for IF and RF signals in the GBT
receiving systems.

141 Semi-rigid The solid teflon dielectric in these cables exhibits a relatively
strong negative temperature coefficient, giving cable assemblies a delay
coefficient of about p = 90ppm/C near room temperature. Cables made
from this material are generally less than 1 meter long. To achieve /250
stability at 8GHz and 1 meter length, the coefficient implies a temperature
stability of just over 1C. The equation for AC is:

ac <A (10)
pl
where Al is the maximum change in cable length that will achieve the
required baseline stability.

Heliax FSJ1-50A The polyethylene foam dielectric in this cable has a temper-
ature coeflicient much smaller than teflon. Cable assembly temperature
coefficient is typically 10ppm/C. This type is used in the GBT Receiver
Room for IF cables between the front-ends and the IF Rack, and lengths
can be 4 meters. To achieve A\/250 stability at 8GHz on a 4 meter length
of FSJ1-50A, temperature stability of just over 3C is required.



Belden 1673A Conformable Coax Belden does not provide a temperature
coefficient, but the cable uses solid teflon dielectric, and hence likely has
a coefficient similar to 141 semi-rigid. It is used for jumpers in the Equip-
ment Room. For example, IF jumpers between the AnalogFilter Rack
and the Specrometer Sampler Rack are of the 1673A type. These cables
are about 6 meters long (electrical) and carry up to 1.6GHz signals. To
achieve A/250 stability at 1.6GHz on a 6 meter length of 1673A, temper-
ature stability of 0.9C is required.

4 Summary

This report develops a means to obtain phase stability requirements for long
cables used in spectroscopy. It appears that some of the baseline ripple seen in
GBT position switched observations may be explained by temperature fluctua-
tions which induce electrical length changes in long interconnecting cables.

A thorough review of each of the many cases is needed, to better pinpoint
where problems may arise, and to help decide how best to make improvements.
However, from the cases calculated in the previous section, it can be seen that
long cables with solid teflon dielectrics are problematic.
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Figure 1: Data taken with the GBT Spectrometer. Baselines are shown for two
pairs of scans. Between the scans used to generate the green trace, about 4cm

was added to the cable between the SamplerFilter module in the AnalogFilter
rack and the input to the Spectrometer sampler rack.
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Figure 2: Schematic representation of two networks connected by a lossless,
matched transmission line.
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f:=0.80,0.801.. 1.00 Frequency in GHz
len:=300 Cable length in cm. c:=30 Speed of light in cm/nsec in air.

b(fyi=2p.L
Cc

delay(q) :=cos(q) +]j -sin(q)

For 2-port A: For a specific simple example, Net A and
Net B are representated by s-parameters for
sl11A :=0.0 s21A =10 a lossless network with flat frequency response
and reflection coefficients of 0.1 at the ends
s12A :=0.0 s22A :=0.1 of the transmission line. That corresponds to

a 20dB return loss.

For 2-port B:
s11B :=0.1 s21B:=10
s12B :=0.0 s22B :=0.0

The cascade transfer coefficient:
_(1-s11A)(1- s11B)-s21A -s21B-delay(b(f) -len)
s21(f) = 1
1— 22A -s11B-delay(2:b(f) len) @)

The coefficient if the cable length is increased by d

_(1- sl1A)(1- sl1B) s21A 21B-delay(b(f) (len+ d))

21d(f,d) :
9 1— <22A s11B-delay(2:b(f)-(len+ d)) @

The power gain of the cascaded network is the square of the magnitude of s21:

Mags21(f) := (| s21(f) |)? Mags21d(f,d) := (| s21d(f,d) |)°

The following Graph plots the cascaded network frequency response with three cable lengths.
The peak-peak ripple is about 0.17dB for the specific reflection coefficients in this example, and
the characteristic ripple frequency is given by c/(2len). The ripple pattern shifts in frequency as
the cable length changes.
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If the response with zero dis considered as a Reference spectrum, and with non-zero d Signal
spectra, then the graph below plots the (Sig-Ref)/Ref baselines, for dequal to zero, 1/8. 1/4,
and 1/2 times the mid-band wavelength (which is 33.3cm in this example).
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Note that the baseline ripple amplitude peaks at d=1/4th the mid-band wavelength.

Say we want max baseline ripple of 0.1%. How much dis allowed?
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The answer is: A change of cable length of 0.12cm induces baseline ripple of 0.1%. That is
1.44 degrees (or 1/250) at 1 GHz, the high end of the band. In this regime of small changes,
the baseline ripple amplitude scales almost linearly by cable length changes. For example,
d=0.012cm yields baseline ripple of 0.01%.
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f:=0.80,0.801.. 1.60 Frequency in GHz
len:=300 Cable length in cm. c:=30 Speed of light in cm/nsec in air.

b(fyi=2p.L
Cc

delay(q) :=cos(q) +]j -sin(q)

For 2-port A: For a specific simple example, Net A and
Net B are representated by s-parameters for
sl11A :=0.0 s21A =10 a lossless network with flat frequency response
and reflection coefficients of 0.1 at the ends
s12A :=0.0 s22A :=0.1 of the transmission line. That corresponds to

a 20dB return loss.

For 2-port B:
s11B :=0.1 s21B:=10
s12B :=0.0 s22B :=0.0

The cascade transfer coefficient:
_(1-s11A)(1- s11B)-s21A -s21B-delay(b(f) -len)
s21(f) = 1
1— 22A -s11B-delay(2:b(f) len) @)

The coefficient if the cable length is increased by d

_(1- sl1A)(1- sl1B) s21A 21B-delay(b(f) (len+ d))

21d(f,d) :
9 1— <22A s11B-delay(2:b(f)-(len+ d)) @

The power gain of the cascaded network is the square of the magnitude of s21:

Mags21(f) := (| s21(f) |)? Mags21d(f,d) := (| s21d(f,d) |)°

The following Graph plots the cascaded network frequency response with three cable lengths.
The peak-peak ripple is about 0.17dB for the specific reflection coefficients in this example, and
the characteristic ripple frequency is given by c/(2len). The ripple pattern shifts in frequency as
the cable length changes.
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If the response with zero dis considered as a Reference spectrum, and with non-zero d Signal

spectra, then the graph below plots the (Sig-Ref)/Ref baselines, for dequal to zero, 1/8. 1/4,

and 1/2 times the mid-band wavelength (which is 33.3cm in this example).
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Note that the baseline ripple amplitude peaks at d=1/4th the mid-band wavelength.

Say we want max baseline ripple of 0.1%. How much dis allowed?
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The answer is: A change of cable length of 0.075cm induces baseline ripple of 0.1%. That is
1.44 degrees at 1.6GHz. The broad fractional bandwidth of this example exhibits variation in
ripple amplitude across the band. In this regime of small changes, the baseline ripple amplitude
scales almost linearly by cable length changes. For example, d=0.0075cm yields baseline
ripple of 0.01%.
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f:=5.90,5.901.. 6.10 Frequency in GHz
len =300 c:=30 speed of light in cm/nsec

b(f) 1= 21
C

delay(q) :=cos(q) +]j -sin(q)

For 2-port A: For a specific simple example, Net A and
Net B are representated by s-parameters for
sl11A :=0.0 s21A =10 a lossless network with flat frequency response
and reflection coefficients of 0.1 at the ends
s12A :=0.0 s22A :=0.1 of the transmission line. That corresponds to

a 20dB return loss.

For 2-port B:
s11B :=0.1 s21B:=10
s12B :=0.0 s22B :=0.0

The cascade transfer coefficient:
_ (1-sl1A)-(1- sl1B)-s21A -s21B-delay(b(f)-len)
1— 22A -s11B-delay(2:b(f) len) @)

21(f) :

The coefficient if the cable length is increased by d

(1- s11A)(1- s11B)-s21A -s21B-delay(b(f)-(len+ d))

21d(f,d) :=
0 1— 22A -s11B-delay(2:b(f)-(len+ d)) )

The power gain of the cascaded network is the square of the magnitude of s21:

Mags21(f) := (| s21(f) |)? Mags21d(f,d) := (| s21d(f,d) |)°

The following Graph plots the cascaded network frequency response with three cable lengths.
The peak-peak ripple is about 0.17dB for the specific reflection coefficients in this example. The
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If the response with zero dis considered as a Reference spectrum, and with non-zero d Signal

spectra, then the graph below plots the (Sig-Ref)/Ref baselines, for dequal to zero, 1/8. 1/4,

and 1/2 times the mid-band wavelength (which is 5cm in this example).
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Note that the baseline ripple amplitude peaks at d=1/4th the mid-band wavelength.

Say we want max baseline ripple of 0.001. How much dis allowed?
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The answer is: A change of cable length of 0.02cm induces baseline ripple of 0.1%. That is
1.44 degrees at 6GHz.



