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SINGLE SIDEBAND, DOUBLE SIDEBAND, OR
MIXED INTERFEROMETER RECEIVERS

Karel H. Wesseling

Summary

SSB and DSB interferometer receivers are compared on the basis of their

relative advantages and disadvantages.

A mixed system is proposed which has greater flexibility and has most of

the advantages of both systems without some of their drawbacks. This new system

might provide partial answers to present VLA problems, mainly in the areas of

data handling and delay switching.

In the appendix a detailed calculation of the system behavior given for

the case of a mixed SSB/DSB receiver.

1. Comparison of SSB and DSB Receivers 

1. 1 The receiver output function.

By receiver output function we will understand the normalized response of

an interferometer receiver to one source of radiation, as a function of the relative

source position given by T and the way the receiver operates on the antenna terminal

voltages.

We first specify a receiver block diagram with its associated 1.6. frequencies

and passbands. (See figures 1 and 2.) The normalized receiver output functions

then are:
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1.2 Delay considerations.

Looking at the envelope function, we see that the envelope is wider, for

equal total RF passbands, for the SSB situation. The limiting case is where in the

DSB receiver f. becomes equal to 13/2. The envelope functions to compare in this

limiting case become:

sin 2a sin a 
SSB: and DSB: cos a2a a

These expressions are equal to each other for each a.

With a small i. f. bandwidth compared to the sideband separation, however,

the SSB envelope is considerably wider (up to 100 percent in practical cases) than

the DSB envelope. Whether this is a desirable feature or not remains to be judged

from case to case.

For the Westerbork Synthesis Telescope (referred to hereafter as WST) with

only 4 MHz i. f. bandwidth, this has been one point in favor of SSB reception, allowing

for example bigger delay steps.

Looking at the interference pattern functions, we notice that the receiver

delay Td does not appear in the expression in the DSB case, but that it does, multi-

plied by the effective first intermediate frequency f il , in the SSB case. Consequently,

in the SSB case one is limited in the choice of delay steps to multiples of one wave-

length of the intermediate frequency, if the interference pattern phase is not to be

changed when stepping the delay.

Moreover, every delay error (deviation from multiple of one wavelength)

appears in the interference function. For the WST, for example, this leads to a

1. 5 x 10 -5 accuracy requirement per degree allowable phase error. Aiming at r

phase accuracy in this part of the system requires already a delay cable temperature

stability of ± 1. 5 °C. In the DSB case we are completely free in the choice of a delay

step. The accuracy requirement, again for the WST, would have been about one or

two orders of magnitude less stringent.
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1. 3 Effective intermediate frequency,

To consider the importance of this quantity we rewrite the interference

pattern expression for the SSB receiver as

cos fC0ii T - CO. (7" 
T

d) (P)

If the receiver delay was always exactly right (i. e., rd = T), then the effective

intermediate uld not influence the interference pattern expres-
11

sion. However, because the receiver T d has to be stepped in full wavelength

increments, the co. is important. Errors in this frequency cause phase errors.
11

Again, for the WST this leads to a worst case i. f. accuracy requirement of 5 x 10
-3

per degree phase error. 
1

In the DSB case the effective intermediate frequency does not appear in the

interference pattern.

L 4 Local oscillator phases.

Both first and second 1.o. phases appear in the interference pattern expres-

sion of the SSB receiver. In the DSB receiver the phase of the first 1.o. is impor-

tant but every phase error after the mixer causes a shift in the envelope only. This

shift can be compensated for by an appropriate opposite delay shift, if necessary. In

general the envelope is wide enough to tolerate phase errors up to some 20 0 . This,

at first glance, seems to be in favor of the DSB system, but for this receiver as a

consequence, intended phase swing can only be done at the first local oscillator.

In general this is rather inconvenient. First, because it has to be done at a high

frequency (around 3 GHz); second, because it has to be done at or near the focus of

the individual interferometer elements, requiring long distance telecontrol; and third,

because it might upset a phase lock system.

An error account for a SSB interferometer receiver may be found in BCAP:

ITR 40-66.



Intended phase swinging makes lobe or fringe processing possible, which

in turn can deliver a considerable data-system simplification. With the SSB re-

ceiver this processing can be done in the central control building at much more

convenient second 1.o. frequencies.

1. 5 Sine-cosine reception.

Simultaneous sine and cosine reception gives a /2 improvement in sensi-

tivity. It also gives a more accurate fringe-phase when the fringe frequency

becomes zero.

Simultaneous S/C reception is possible for both SSB and DSB receivers,

but in the DSB case, it needs pre-mixer signal and 1. o. power division and sepa-

rate 1, f. return and delay cable systems. If in this case no r. f. amplifier is used,

no improvement in sensitivity is obtained.

In the SSB case, splitting in sine and cosine channels can be done at the

second mixer, requiring only an extra correlator channel. S/C reception may also

be done on a time sharing basis, in both SSB and DSB receivers, but without the

/2 sensitivity improvement. This requires a 90 0 phase switch in either the first

or the second 1. o. in the SSB receiver, and in the first 1. o. line in the DSB receiver

Unless two i. f. return channels and separate mixers are used, this simple scheme

might not always be possible in interconnected multi-Interferometer systems. It is

actually only possible in interferometer systems where interferometer elements

from one group are correlated exclusively with elements from the other group and

vice versa, and correlations between elements from one group are avoided. This

is the case for the WST and the Cambridge one-mile radio telescope.

1.6 Tied array operation. 

Tied array operation is said to occur if all element outputs of a system are

added in phase (tied together), forming a beam of some shape at any moment. This

operation is advantageous from the point of view of electronic system complexity.

The new Mills Cross of the Sydney University operates in this mode.
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With DSB receivers only one beam at the time can be formed, whereas with

SSB receivers multiple beam operation is simple to implement, requiring only extra

backends. Intermediate frequency return and delay cables are the same for every

receiver (every beam). Are spectral line observations necessary at some moment

in the future and is the number of independent correlators high, as in the VLA,

then tied operation might be an answer.

L 7 Sensitivit to man-made interference and 1. o. noise.

In DSB receivers, the width of the envelope asks for an as low as possible

intermediate frequency. On the other hand, 1.o. noise sidebands, mixer crystal

noise and man-made interference ask for an as high as possible intermediate fre-

quency. Because no image filter is present, straight through radiation of interference

at i. L is not unlikely and requires careful construction of the r. f. parts of the sys-

tem. Furthermore, very good shielding and careful decoupling of power lines is

necessary. The part of the cables leading to the focus, without precautions, acts

as a A/2 tuned aerial for medium wave broadcast. Although this probably mainly

affects the total power component it might prove troublesome.

Because of better r. f. filtering and a higher i. f. the SSB receiver is better

in this respect.

1. 8 H-line reception.

In the detection of the line of neutral hydrogen and of other lines too, we

essentially have to do with a non-uniform, asymmetrical spectrum of unknown posi-

tion in the frequency domain.

DSB requires symmetrical passbands around the first 1. o. For this reason

only SSB reception is possible. This was another — the most important — considera-

tion in the choice of SSB for the WST. See BCAP: ITR 35-65.
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L9 Resume/.

Reviewing the merits of both systems, the SSB system is clearly at best at

the r. f0 and first 1. f. portions of the interferometer receiver system up to the

second mixer located in the central control building.

It provides an easy way of obtaining S/C reception and tied array operation,

it has relative freedom from interference, and lobe processing in the central con-

trol building is possible. Remember: Lobe stopping is at present planned or in

operation on nearly all large interferometer systems.

Furthermore, SSB is the only possibility for H-line reception.

The DSB system is optimal in the delay switching portion of the receiver,

and it does not require accurate i. f. passband control.

For interferometer systems of moderate complexity (with a reasonable num-

ber of correlator-data channels) and with maximum baselines of the order of 1. km

both SSB and DSB receivers are entirely feasible. The choice becomes more or less

a matter of taste, the SSB probably having a slight advantage over the DSB receiver

because of its greater flexibility.

SSB is chosen for the new Cambridge one-mile radio telescope, the new

Christiansen array, the new Mills Cross, the WST and the RRE interferometer,

for example.

DSB receivers are on the Cal Tech, NRAO and CSIRO-Parkes interferom-

eters.

For complex systems and large baselines as in the case of the proposed

NRAO-VLA two important considerations make the choice very difficult. On the one

hand is DSB reception almost imperative from the point of delay tracking, on the

other hand gives SSB the direct possibility of lobe processing (stopping or speeding

up), S/C reception, etc. , making SSB reception very desirable.

The mixed SSB/DSB system, now to be described, has SSB where it is

mostly needed and DSB where that system is desirable.
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Mixed SSB/DSB Interferometer Receiver

For a block diagram and passband and 1. o. definitions, see figure 3.

The normalized receiver output function in this case becomes, as is

derived in the appendix:

sin 77-13(T - Td)
+-CO . T T

d
) cos 1( CO4R

SSB/DSB 71-B(T - Td)
 cos 

12( 1
)T

2

envelope interference pattern

From this expression we see that the envelope as well as the interference pattern

are essentially DSB. However, the second 1.o. phase appears in the interference

pattern function. This system has the following characteristics and possibilities:

a. The system is SSB up to the second mixer in the central

control building and second 1.o. phase moves the inter-

ference pattern, thus 8/C reception, lobe processing and

H-line work are an easy possibility.

b. First intermediate frequency is high, giving added inter-

ference protection and relatively high insensitivity to first

Lo. noise.

c. Because the first i. L may be any frequency, it is possible

to transmit more than one receiver output over the same

f. return cable by frequency multiplex.

d. After the second mixer one may eventually choose SSB

the way (H-line).

e. The overall receiver behavior is DSB, giving easy delay

clicking, lower delay cable loss and al. o. determined

interference pattern frequency.

f. The pre-second mixer passband has to be flat, and has to

be wide enough to let the second i. f. passband determine

the system passband.

Having both S and C receivers requires separate delay

channels, but the same i. f. return is used and is needed
only once. The delay channels, however, have to meet
only DSB specific .tions.
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Mixed SSIVDSB Interferometer Receiver Performance Calculation

Figure 3 gives the assumed receiver bandp:;ss, their location and shape and

the position in the frequency domain of the local oscillators. Arbitrarily, a first

o. frequency lower than the receiver passband is assumed. With minor changes

a first 1.o. frequency above the passband can be considered. All passbands are

supposed to be rectangular, giving the simpler calculation. Other bandpass shapes

are possible, effecting only the envelope of the receiver output — or correlation func-

tion. Figure 3 also gives the essential parts of the receiver block diagram. Because

it is not intended here to include an error account, only perfect performance is con-

sidered. A starting point has been th t the element terminal voltage for both of the

interferometer halves is the same, but in general appears earlier on one element

than on the other, depending on the relative source position. In other words, if the

voltage on one terminal is U(t), the voltage on the other terminal is shifted in time

over an amount I' seconds, giving U(t T). Volt._ . e linear mixing and amplification

is assumed throughout. No finite proportionality factors due to conversion loss,

amplifier and antenna gains, etc. , are taken into consideration. Normalization wil

be done at the end.

Following S. O. Rice (13STJ, Vols. 23 and 24), a band limited noise voltage

U(t) at the antenm , terminals can be represented by a Fourier series of discrete

frequencies

x = N
4

=
M 0 

x = Ni 

c
x 

cos (co
xt

where: co = 2irx Af

c
x
	;2g f Afj

1/2

g(fx) = noise power density spectrum

(N4 - N i) Af = f -f

= a phase angle selected at random from the range (0, 210
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If we consider the interferometer to oper te over a finite time interval., we

may dispose of taking the limit. The error in supposing the noise bandwidth still

finite is negligibly small in any practical case. In our situation where the noise

spectrum is rectangular, all c x ' s are equal, and put to c. In the sum boundaries

N
1
 will correspond to f N

2
 with f

2' 
etc.

In the A-channel the noise volt.:e U(t) is acted upon as follows:

L Multiplicative mixing with cos co

J 
t, co n < w, results in:

O x
N

4

C cos (u)
xt +

) cos (.0 t

2. After the first 1. f. filter-amplifier we are left with the difference frequencies

only:
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x
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X 1

3. Second multiplicative mixing with cos Lo

t 2
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4. filtering as indicated in fig. 4 in the second i. f. filter amplifier:
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5. The "folding over" process taking place in the second mixer and amplifier and

essential in DSB operation is treated as follows:

Put y = 2 (li +22) — X ; we may then write
N4

_ip,

---i

C COS ( CO 

Y
(.0t — t) t — n t — (p

,
 fL,

)Ci
cO 

,C2 2 — Y)
y = N
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xt +

- co a t - w t)
X 2

Now putting y x again and summing we get:
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_X2
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1 	2

n —wn 2 + c0x)
2)L, — x X ..X._ 

6. Delaying by zero seconds does not change the expression. Performing the same

operations on the noise in the B-channel we get:
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The multiplier takes the product of the A- and B-channel noise output voltages. The

following four products result:
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Working these expressions out into sum and difference frequencies, all the sum fre-

quencies in these expressions contain t in their arguments, thus giving zero output

after the integrator. So do the difference frequencies, except when x = y. The re-

mains of the four double sums a), (3), 7), 6) in that case are:

{1. 

x co e — co T +(w - 2co - 2co - co21_ )c
-
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Taking a) and 6) together delivers:

C
2
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X _e2 X /i d
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/3) and iy) together:

II) c2 cos (co
11

+ 
0)12) 

T + (I) + 
x 

+ COS (CO - w - CA) (T - T
cl)21 -X 1

The second cosine terms in both sums are equal. However, in the first (I) sum all

terms add up in phase; in the second sum (II) they add up with random phase. In the

first case the total sum goes with N, where N is the total number of terms; in the

second case it goes with '■iN. As we can make N as large as we like, we can make the
second sum as small as we want, relative to the first sum. In the following we, for
this reason, neglect the second sum (II) .

I is a sum over a finite number of cosines and can be calculated exactly. The

easiest way, however, is to let Af -0 . 0. Where we sum between fixed frequencies ;

and f
4
 this gives us:

f
4I g cos

f
3

+ T + co ) cos f(CO -
2

- co ) (T - T
A d

with

C
2

 = 2g Af O> 2g df

Solving this integral we finally arrive at the following formula which represents the

normalized receiver output function:

sin 71-B(7. - T

d

)

71-13(T ?
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cos CO (T - T
d

) cos f(0..) + T + (p.7.R

SSB/DSB i2 ,e2
- 

CI.

The extra B in the denominator is put there for the purpose of normalization. Defini-

tion of B and co. as given in figure 3.
12
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