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1. Introduction
=MD MIECNIMICIMMO MI,M10=CO■M.M31=•, i;MIIMMEM

These measurements are part of the program which has been initiated

in * rder to test the NRAO telescopes under extreme operating conditions.

"Extreme conditions" mean that the telescope is operated at a wavelength where

there is already a substantial reduction in gain and aperture efficiency due

.7
to the RMS deflection V

/7
d2 of the reflector. Most of the formulas used in the

following sections have been discussed or derived in two earlier papers, [11,

r21.

The measurements were started (on March 15, 1964) using a superhetero-

dyne receiver which was borrowed from the Naval Research Laboratory in

Washington, D. C. This radiometer received both signal and image frequency.

The L.O. was tuned to 14.5 GHz. The 85(I)-ft. telescope turned out to be still

a very useful instrument at this sh rt wavelength. It, therefore, was decided

start some radio astronomical observations, the result of which will be

communicated elsewhere. At the end of the measuring period the setting of the

reflector of the 85(II)-ft. telescope was just completed. The receiver was

then mounted for six days (beginning on May 5) in the new telescope and the

most important characteristics of this telescope were also measured.

For these measurements a horn feed was used whose edge taper (free

space taper not included) is -14 dB as compared to a taper of -16 dB of those

feeds normally used at NRAO. The path difference between the ray from the

focal point to the edge and that to the vertex of a paraboloid is given by
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A - D
g

- tg , where Q is the aperture angle.
4 2

The space attenuation A of a ray under an angle 8 with the central ray is

given by the relation

A = 20 log sec 2 	, in dB.

For @ 60' we arrive at a free space taper for the edge ray 2.5 dB larger

than that for the central ray. All antenna measurements have been done with

the E-plane of the feed oriented in N-S direction.

2. Beam Efficiency and Aperture Efficiency at = 2.07 cm

The antenna temperature of Taurus A, reduced to zenith distance z =

and corrected for atmospheric extinction and polarization, is

(1) TA
I
(Tau) = 13.16°K

The corresponding antenna temperature measured with the 85(11)-ft. telescope

is

(2) T
AII

(Tau) = 1.03 T

AI 
(Tau)

The flux density of Taurus, as obtained from our analysis of the spectra of

the strongest nonthermal sources [4] is

(3) (Tau) = 510.10- 26 1411m2Hz
14.5 GHz
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The HPBW of the 85(I)-ft. telescope, as measured with the planets Venus and

Jupiter, is

(4) 0 = 3.35 min of arc
Al

This value is also obtained using Wade's semiempirical formula. Taurus has

an approximately gaussian distribution with minimum and maximum HPW's

= 2.6' and 0' = 4.2', respectively. With the correction factors

2' = 1.133 0' 8" [1 + W2/02]-1/2 v2/g21-1/2
S s s A s A -

2 /29 w2/021 r, g”2/92s s = r,
s A - 	s A

valid for gaussian distributions Di and a circular main beam with main beam

lid angle 9m = 1.133 q one obtains the relations

92kTA
 

n

S  mV X27113 m n;

2kTioi 
2s

S =
A g'

Integrating the antenna temperature over the main beam area yields the formula

([2] eq. 2).

2k
= ------- Jr T ) dE din

X2nB main A

region

(5)

(6a)

(6b)

(7)
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With the numerical value if T
(E,n) d dr) = 319°K (min of arc) 2 and the

above given values one finds

{0.342

0.358

With the relation between aperture efficiency and beam efficiency

(9) A = 0.76 in

we find for the aperture efficiency

(8a)

(8b)
T1

B
=

(eq. 7)

(eq. 6a)

3. The RMS Reflector Deviations
■••■•••11.11MIUMMD IMICIPIMM/ MMIIMMMINIONIMOMP)

The best values for the aperture efficiency of the 85(I)-ft. tele-

scope at various wavelengths are given in the following table.
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Table 1
amehoormlimMerftware

11111111.110M11114.11.3

Wavelength Aperture efficiency Estimated error

The measured and weighted RMS reflector deviations are given in the follow-

ing table (compare also El)).

Table 2
Isoile....1111.000111.000

r---_..-..______ .111.11■0. 1

II RIvIS reflector deviation from

1---

photogrammetric measurement

1 Weighted for feed taper
L----------------

: Effective RMS reflector
, deviation '
. ,.

--.—...........—.......--...----...---.-...-..,......-..--
z = 0' z '= 90° '

,

C11.1.................1...............P......... '

3,16 5.71 ■

'

.

•

..............

2.75
_______________4______

85(1)-ft. t
1.75

85(11)-ft.
,

011.01.01111•130 0......1/............P...................

4.17
,

1.92 (85(1)-ft.)

1.83 ( 85( II) -it . )

' :

...:

!
,,

RMS reflector deviation of '
, the 85(11) -foot telescope
: as measured by Wade .

2.14
,
,
,
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The aperture efficiency decreases with increasing RMS phase error

V(7 according to

n
A

(X) = exp {_62}
Ao

d2
with 82 = 16r2 

.X2

1
A

1 is the aperture efficiency of the undisturbed reflector. It is ob-

tamed by plotting log (TIA) over 1/X 2 and calculating the best fitting

straight line through these points. We found

(12) = 0.59
A

o

In the same way the effective reflector deviation can be found which led

to the value 171; = 1.75 mm in Table 2.

The aperture efficiency as a function of wavelength has been cal-

culated using eq. (11), (12) and the RMS deflections at z = 0° as given in

Table 2. It is quite obvious that the photogrammetric survey yields a

much too high RMS deviation, whereas Wade's measurement of the 85(II)-ft.

reflector is in better agreement with the effective RMS deviation de-

termined by purely high frequency measurement*,

If the telescopes are tilted from zenith to horizon the aperture

efficiency decreases. This is a very general feature of most radio tele-

scopes, since their reflectors have been in most cases set at zenith position.

01•1.2.•11ftworamnama,
1111•6111.11OP

*Wades measurements have been made for the 85(11) reflector, but are not
weighted for the antenna pattern. From the fact that the aperture ef-
ficiency of this telescope at z = 0" is only 3% higher than the correspond-
ing value of the 85(I)-ft. reflector, it can be concluded that the two
reflectors have approximately the same RMS deviations at zenith.



The change in aperture efficiency can be determined by measuring point

sources at various hour angles (and hence at various elevation angles).

The antenna temperature of a point source is directly proportional to the

aperture efficiency apart from the influence of atmospheric extinction.

If T
A
 is the antenna temperature measured at z = 0

0
, then the antenna

temperature at any zenith distance z is

F(z)
T (z) = TAPA A

with p the zenith extinction coefficient; F(z) the air mass function.

Adopting log (11,--14.5 GHz) = -0.001 and F(z = 80
0
) = 5.6, one obtains

F(z) = 0.9. That means that the atmospheric extinction causes at z = 80°

and for X = 2.07 cm an apparent change in the aperture efficiency of 10%.

The measured values have, therefore, to be corrected for extinction. The

result of our measurements is presented in the form of two curves in fig.

1. The aperture efficiency changes between zenith and horizon position

by 40% (85(I)-ft.) and 10% (85(II)-ft.), respectively.

This gain change could be caused by either a systematic defocusing

of the feed or by an increase in the RMS reflector deviation. If d is the

effective RMS deviation at zenith and d + Ad is the effective RMS deviation

at zenith distance z, then

11A(z) t Ad(2d + Ad)

(0) = exp 1672

and for Ad « d,

d = X

2 

log r,
A

(0)1.9
A

(z)1
A

ameS•1•000110111110.1,111011.1MIN.INOMMII

2d -----16r2

(13)

(14)
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flA(C))Inserting in this equation d = 1.75 mm and log -------- 0.224 for the
T1A(9°°)

85(I)-ft. and 0.063 for the 85(II)-ft. telescope, one obtains Ad = 0.17

and 0.078, respectively, for the increase in the RMS reflector deviations

between zenith and horizon positions. The values d + Ad (90') are given

for the two telescopes in Table 2. It is assumed here that the decrease

in aperture efficiency is entirely due to an increase in the RMS reflector

deviation. The alternative possibility to explain the deterioration in

the antenna characteristics by defocusing is discussed in section 5.

4. The Error Pattern

The theoretical behaviour of the error pattern of a radio telescope

caused by random deviations of its reflector has been discussed in [2],

section 3. We will adopt an RMS reflector deviation of /7 = 1.8 mm, since

most of the measurements have been made at zenith distances of about 20

to 40'.

The average antenna temperature of the center part of the moon

measured during one lunation, is T= 114.5°K. Assuming the brightness

temperature of 210°K, one obtains the beam efficiency 71; 3 = 114.5/210 = 0.545,

whereas the beam efficiency measured with a point source is T) = 0.35. The

beam efficiency of the undisturbed reflector is obtained from eqs. (12) with

(9) , = 0.775. Calculating the ratio
Bo

0.195
= = 0.46

0.425

We notice that the left side of Di, eq. (17) can no longer be considered

to be << 1 and hence [2], eq. (18) has to be written in the form



(15a)

_9_

In 
/1B °

- T1B -1/2
( as. IN worcrommocia.mmim,

11B (3:"' 1139

1.094.103 VR Id < X/12.566

1.375.104 .\/ d 2
/R Id > X/12.566

where R, here the radius of the moon, has to be inserted in minutes of arc.

Remembering that d > X/12.566 and inserting the values for andrim, , 7-4, ,L,
D

O
 

D

we finally obtain

(15b) ,e 1.20 m

Eq. [2], 14 yields then a side lobe level of -16 dB and eq. r2), 13 yields

the ratio 8
e
/8

A
 = 10.3 for the HPBW's of error and diffraction pattern.

With OA = 3.35' follows
e =

Two different attempts have been made to measure the power pattern

of the 85-ft. telescopes. Figure 2a and b show drift curves of Taurus A

through the H-plane of the two telescopes. Although the main beam is con-

siderably broader due to the finite gaussian shape of Taurus, the figures

show clearly that the side lobes are attenuated by about -14 dB, which is

2 dB less than predicted by theory.

At very short wavelengths, where the antenna temperatures of most

radio sources are very low, the measurement of the power pattern becomes

a real problem. It has been suggested, therefore, to use drift curves of

the sun or the moon to determine main beam and first sidelobes of a radio

telescope.

The theoretical problem consists in solving the antenna convolution

integral, which might become rather difficult if the sidelobe level is

high. In the case that the brightness distribution of the sun or the

moon can be approximated by a step function and the angular diameter of the

main beam and sidelobes of the antenna are so small that the problem can
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be treated as a one dimensional problem, a relatively simple solution of

the integral equation can be obtained.

The antenna convolution integral can be written in the form

-fa*
A ' -11) = B T dv

where 11B is an effective beam efficiency, T the maximum brightness tem-

perature of the sun or the moon, *(E,n) the brightness distribution function

(*max = 1) and f(E,71) the unknown antenna pattern. Assuming now that the

antenna pattern can be approximated by a function f(, 'r) = f 1 ( ) f2(11)

(which is always the case for a gaussian function) and that the distribution

function depends only on one coordinate Niq t,19 *(E) the integration in

11 can be performed and the convolution integral yields

+a°

(16) TA(t) 71 'T0I(11) f fi (E') \it (E

wi th (n) = 1 tin

Figures 3a and b show drift curves measured with the 85 ft. tele

scopes at X = 2.07 cm, Which can be approximated by the integral equation

(16). The angular coordinate describes the position of the center of

the antenna beam relative to the center of the moon's disk (E n = 0).

dashed curves in this figure have been calculated by convolving a gaus-

sian antenna pattern with 0,A = 3.35' with a disk with 16' radius. The

quite considerable deviation of the measured curves from the calculated

curves show that either the antenna pattern deviates strongly from the

gaussian approximation or the distribution of the radiation temperature

of the moon deviates strongly from a disk distribution. We assume now

that the moon has really a disk distribution and try to calculate the

antenna pattern, Differentiating eq. (16) we obtain



dTA( t) +00

0
fd fl(')
_m

(17)

.11Bir I(o fl.( 0

considering the fact that --- * = 5(E - E 2 ) (Dirac-function) and
dt

the convolution f i ( V)* 8 ( t7) = f1(0.

Each drift curve of the moon yields consequently two approximations

of the power pattern. The differentiated curves have merely to be nor-

malized to unity. Fig. 4a and b show the results of these calculations.

The HPBW obtained from calculating the best fitting gaussian curves agree

pretty well with the corresponding values obtained from drift curves with

the planets. The sidelobes, however, are considerably higher than would

be expected from the drift curves fig. 2a and b. This may be due to the

fact that the brightness distritution of the moon deviates from the step

function assumed in the derivation of eq. (17).

This method is of special importance for measurements of the antenna

power pattern in the mm-wave range. F. Low supplied a drift curve of the

sun through the NRAO, 5-ft. telescope at a wavelength of I= 1.2 mm (fig.

5a). Using eq. (17) we derived the main beam pattern of the 5-ft. tele-

scope shown in fig. 5b. The HPBW of the telescope, as obtained by averaging

the two sets of points obtained from the east and west limb, respectively,

yields Q
A
 = 3.8 min:of arc. The HPBW expected from theory would be

O
A
 = 3.3 min. of arc. We believe that by averaging the results obtained

from five or ten drift curves would yield a fairly good result, since

then most of the fluctuations in the differentiated curves, which are mostly

due to noise fluctuations in the original drift curves, could be eliminated

by the averaging process.
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2 p2
1 = 1 - +

18
(19b) G/G

o =

Both equati ns are plotted in fig. 6.•
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5. The Effect of Axial  Defocusing of the Antenna Feed
.••3

We call Af the distance between the phase center of the feed and
ax

the focal point of the paraboloidal reflector. As a result of the axial

defocusing a quadratic phase error is introduced (Appendix eq. I,1).

27(18) \k(r)r) 2 with p = Af
ax

 (1-cos 0
o

)

p has the meaning of a phase difference between central and edge ray. For

not too large phase errors, the effect on the antenna characteristics can

be described by a decrease in gain and aperture efficiency and an increase

in HPBW. Some calculations have been made on both effects, the results

of which will be shortly reviewed.

a. Gain reduction

Our calculations in Appendix I, a, lead to the following results

sin pal 2
(19a) G/G =

p/2
= 1 - [3

2
/12 + .. uniform illumination

... tapered illumination 1.2)

Bracewell 151 gives the quadratic approximation of eq. (19a). Cheng

derives as a lower limit for the gain reduction [6].

(20) G/% = (I-m 2/2) = 1-m 2
9 m ‹.< 1

m is defined as the maximum phase deviation from the average phase value

across the aperture plane. Hence,
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\fr = 7 .f dr rav

1

r 2/2 .1 dr r = pi /2 and m 
=

13- = /2max av

Inserting this value into eq. (20) and comparing the result with eq. (19a)

shows that m has to be taken 1/\773— of its value (in the case of uniform

illumination) to get agreement between eqs. (19a) and (20). In the case

of a tapered illumination m has to be taken V-773 of its computed value

to get agreement between eqs. (19b) and (20).

b. Beam broadening
ONMWORItallif=0,3=0. 00 OMIM=IMMKillMI 7NMOMMO

Various computations of the beam broadening as a function of the

quadratic phase error 32, introduced by an axial feed displacement, are

discussed in appendix I,b. If we use the quadratic approximation for the

beam broadening

W/Q = 1 + a32A A

we find values for the constant a varying between 0.002 and 0.06. The

numerical computation of Cheng and Moseley [7] which seems to yield the

most reliable results, leads to a value of a = 0.01. Their computations

have been made for a feed taper (1-r2)2.

If we focus the antenna with an extended radio source like the sun

or the moon, we have to take into account not only the decrease of ap-

erture efficiency in the direction of the electrical axis (as in the case

of a point source) but we have to consider also the increase in the HPBW

and the increase in the level of the first sidelobes which are caused by

the axial defocusing. This can be clearly seen from fig. 7a and b, where

focussing curves for the 85(I)-ft. telescope are shown, measured at 6 and

2.07 cm wavelength, respectively. The curves (a) have been computed from

eq. (19b); the measurements with a point source agree fairly well with
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( 2 1b) T = 2 GT
A 4rr m M
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these curves. In the case of the 6-cm measurements the HPBIAT of the tele-

scope (11 min. of arc) is about 1/3 of the diameter of the moon. Con-

sequently only a fraction of the first sidelobe of the telescope is con-

tained within the apparent diameter of the moon. The experimental result

that the relative antenna temperature of the moon decreases more slowly

with axial defocusing than the relative antenna temperature of a point

source must be mainly due to the beam br

of the moon is given by the relation

P?
(21a) 0111MI MIND

TM

The effective source angle 9 becomes in this case approximately p, P

The beam efficiency can be expressed by 71 = q /2 =y a' 0/411, so that
m R m

we can rewrite eq. (21a) in the form

The antenna temperature of a point source decreases proportional to G. For

small phase errors we can use the quadratic approximation G = G (1-b32).
0

In the case of an extended source whose diameter is at least two times the

HMV' of the antenna, the relative antenna temperature decreases proportional

to the product PG. Since
m
 Q2, can write for the quadratic approxi-

In A'

mation P
m

= 2 (1 + 2aP 2 ). Computing the product we obtain
MO

P
m
G = 2 G [1 - 2a) 3 2 2ab34]

m0 0

Eq. (19b) yields for b = 0.055. From the measured change in the antenna

temperature of the moon at X = 6-cm, we find for A = 0.018. Figure 8

shows some computed quadratic approximations of the beam broadening, the

solid curve has been derived from the observations of fig. 7a, using

(22)
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for G(p) the rigorous equation (19b). One sees that for larger phase errors

the beam broadens considerably stronger than would be expected from the

quadratic approximation.

Our calculations in Appendix I show that the beam broadening depends

very strongly on the taper of the feed pattern. The voltage patterns of

various feeds used in the measurements are shown in fig, 9, together with

some convenient and often used approximations for the tapered feed pat-

terns. The free space taper has been added to the original feed patterns.

Fig. 7b shows the same focusing curves as fig. 7a, but measured at

2.07-cm wavelength. The HPBW of the 85-ft telescope is, in this case,

only 3.35 min. of arc, so that about the first four sidelobes are contained

within the apparent disk of the moon. The deviation between curve (b) (which

corresponds to the 6-cm observations with the moon) and the relative change

of the antenna temperature of the moon at 2.07-cm is due to the increase

in the level of the first four sidelobes.

At very short wavelengths it is hard to focus an antenna with a point

source, since in this wavelength region the only strong radio sources are

the sun and the moon. It has been suggested, therefore, to use these

sources for the anteana focusing at very short wavelengths. Our observa-

tions in fig. 7a and b show, however, that the symmetry line of the focusing

curves obtained with the moon do not coincide with the focal point which

is found with a point source, but lies between 0.3 and 0.5 wavelength closer

to the reflector.

If the decrease in gain observed at both 85-ft. telescopes should

be caused by an axial feed displacement rather than by an increase in the

RMS reflector deviations, the axial defocusing should be about 1 wavelength

in the case of the 85(I)-ft telescope and about 0.3 wavelength in the case
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of the 85(II)-ft. telescope. The photogrammetric survey yields a change

in the focal length of the best fitting paraboloid of about 4-cm. The

contour map representation of the reflector deviations at zenith (fig. 10a)

and at horizon (fig. 10b) reveals in addition a very strong astigmatism

of the reflector at small elevation angles.



the ray reflected at the p int x,y is proportional to sin 0 in the case•
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Appendix I
GullOCOOSIOIOIXONICOOOLOICOMOO.ONOMMOD

Some calculations on "axial defocusing"

a) Gain reduction
..........00OqilmO4oNIOGoMpo.D,OMo.00MOMW.MO..OWOa.00mDmOdio.

We call 0 the angle between the symmetry axis of the paraboloidal

reflector and a ray drawn to the point x,y on the reflector surface. It

can be easily shown that the phase difference between the central ray and

of a radial defocusing and proportional to cos 0 in the case of an axial

defocusing. Since

X x$sin 0 - ;..
f 2f3

os 0 - -
( 2 x(

c
4

2f 2f

the phase difference increases proportional to the square of the normalized

distance r = x/(D/2) in the case of an axial defocusing, and proportional

to ar + br 3 in the case of a radial defocusing.

The maximum difference in pith length occurs between central ray

and edge ray and is in the case of axial defocusing

Al = Af
ax

(1 - cos 0 )
max

Afax is the difference between the phase center of the feed and the focal

point of the reflector,
o
 is the aperture angle. The phase error across

the aperture as a function of the normalized distance r is then

2n
(1,2) If(r) r2 with p = Af (1 - cos g )ax

and
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The voltage pattern of a circular aperture with the aperture field dis-

tribution F(p, ') is(18], page 192).

D/2 2n jkP sin 0 cos (0-(P?)
(1,3) g(0,0 =J. Jr F(

p
,p')e pdpdp'

... jp102

Introducing the quadratic phase error we can write F(p,0') = A(p,p')e

and obtain for the secondary pattern in the Fraunhofer region

D/2 2n jkp sin Q cos ((p -p') -i3p2
(1,4) g(Q,0) = 1 Jr A(P,0')e e pdpdoi

Performing the integration for the case of a constant illumination of the

aperture A(p,p') = const. yields

1 -3 2

(I,4b) g(u) = 2 1 j
o
(ur) e rdr

RD
with U = - sin Q

If we are only concerned with the antenna gain in the direction

of the electrical axis (u = 0), we find for eq. (I,4b)

(I,5a)
1 -jpr 2 	-J3/2 sin(P/2)

g(0,13) = 2 Jr e rdr = e
P /2

and for the power pattern

rsin(P/2)- 2

13/2 12

This is the formula usually used to calculate the gain variation

as a function of the on-axis position of the phase center of a feed in

the case of constant illumination. In order to get an idea how much this

relation will be changed by a tapered illumination, we assume an il-

lumination A(r) (1 -r 2). (I,5a) then takes the form



+ - e-:3131
1

p p 2
-sin (13/2) 2 2

--..-----.. + j _

Ip72 P
= 2

sin 13

(I,6b) f(043) = g(0,3). g*(0,13)
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(I,6a)
1 -j3r2 1 --jpz

g(0,13) = (1 - r 2) e rdr = 2 f (1 z)e dz

and we obtain for the power pattern

132
- awremo

18

These results show that gain and aperture efficiency decrease more

slowly in the case of a tapered illumination. Both eqs. (1,5 and 6) are

shown in fig, 6.

b) Beam broadening—__—__—_—

We consider again the simplest case of uniform illumination.

But now we have to solve equation (I,4b) for the far field pattern of a

circular aperture with quadratic phase error for values of the variable u

at least up to the order of u , the value of u at the half power points

of the pattern. Writing eq. (I,4b) in the form

(I , 7a)
-13 1 j13(.1 r2)

g(u) = 2e I e J
o
(ur) rdr

it is possible to relate the integral

(1,,7b)
Jp 2

g(u)e =
P 

ru
1

 (p,u) Ju2(13,u)1

to the lommel functions



2p
u (13 u) = J

u)

(

213 )3 J3(u)

11

2

f(p,o) = 1 - 1632 lim
1.1 0

f0(U)

- p2/12
 [

1632 2J1(u)J3(u)

p2/12 
etrawirosatmeess o

J(u)-2
0.000000000.0000

4
(I,11a) f(p,u)

114
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(1,8)
1

= p (ur) cos [13(1 r 2)] rdr
0 0

1
U 2 ( ,u) = p f ,T (ur) sin [13(1 r2)1 rdr

o

for which the series expansions exist

U
2 ( 3,u)

(214
J2(u) - - J4 (u) +

u

And we obtain finally for the power pattern

(1,10)
4

f(p,u) = pU2 (p,u) + U2 (13,u)3c3, 2

As one expects

-
=4 J (u) 2 

- 16132 2,1
1 (u)J3 (u) J2(u)

U4 U4

and
f(o,u) = ri(u1;

In order to calculate the HPBAT of the broadened beam we have to renormalize

the poliiér pattern

Expanding the Bessel functions and breaking off after the quadratic term

yields after some calculation



(Au)2
f(11 1) = 1/2 = f(u) + Au f'(u

o
) + - f"(u ) +

2
(1,13) *
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(I,11b) f(p,u) fo(u) 3 2/12 u2 u41

1 - p 2 /12 - p 2/12 4 96

We call u the normalized angular coordinate, at which the power pattern

of the broadened beam has dropped to 1/2, and find the following equation

for u neglecting the term with u4.

{1
f (u ) =0 1 2

3
2

U2
ammlim

-

12 4 /

u2
Inserting here the usual gaussian approximation f(u) = exp

o (1.2 u )2

with u
o
 the normalized angular coordinate corresponding to the HPBK of the

undisturbed

(I,12a)

and

(I;12b)

main beam, we can calculate the main beam solid angle

p4)
1 + o.43 2 _ 0.16 -

12

0' = 0 (1 + m513. 2 - odo38p4)
A A

P g . 2
m m

Another possibility to calculate approximately the increase in HPINT

consists in expanding the antenna pattern f(u,p) in a Taylor series. Let

u = u
o
 + Au be the argument at which f(u 

'
13) = 1/2. We then calculate1

Au by solving the equation

This leads to

(I,14a) u
1
/u

0
	1 + 0.002 p2
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if only f t (u ) is considered, and to

(I, 14b) u
1
/u

0
	1 + 0.003 32

if f"(u
o
) is considered also. Comparison with our experimental results shows

that the beam broadening conforming to eqs. 14 is too small, an effect which

is probably due to the slow convergence of the Taylor expansion.

Cheng [6] gives an upper limit for Au

m2
Au<

2

g(u)

g (u)
du 0

(1,15)

Inserting for the voltage pattern the gaussian approximation g(u) =

'if(u) = exp f- u 2/2 (1.2u0 ) 2 }, we obtain Au<0.72 m 2u . The discussion of

eq. (20) suggests to replace m by m/Nrj for the case of constant illumination

and by m\/7/3 in the case of a (1 - r 2) tapered feed pattern. We find in

the case of constant illumination:

uiu
o =A 'A

0 = 1 + 0.060 p 2 for a gaussian main beam

U
1 o
/u = OV0 = 1 + 0.057 3 2 for a Bessel function repre-

AA

sentation of the main beam

and in the case of a (1 r 2) taper

u
1
/u =

A'07
A

0 = 1 + 0.040 3 2 gaussian main beam

u
1
/u = 01/0 = 1 + 0.038 3 2 Bessel function representation

AA



(I , 18)
d(2n)
evonowe smio [g 0 (

n! dun
g(u) =

n =‘0
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Silver (r8], page 189) gives an expression for the voltage pattern

in the presence of a quadratic phase error, which is written in the form

of a series expansion of derivatives of g o(u), the voltage pattern of the

focussed antenna.

Breaking off the series after the third term* we get

(I,19a)
(2)g ( u ) = g (u) - j3 g u) p2g (4)(u)

2 0

and consequently the power pattern

(I,19b) f(u) = D0. 2(u) 32 fg0(u)go(4)(u) K12)(01
o

It has to be borne in mind, however, that the formula is only valid

for a linear aperture (including a square aperture which can be treated in

a similar way).

As an experimental result we find a beam broadening which can be

approximated by

(1,20) OVO 1 + 0.02 132
AA

This shows that the analytically derived results yield either too high or

too small values for the beam broadening. A natural step is to compute

better approximations using numerical methods. Cheng and Moseley 17] con-

sidered the necessary defocusing of an antenna in order to obtain far field

*Silver included in his formula only the second derivative, which leads to
a wrong approximation. We are indebted to Dr. J. Ruze to have pointed out
to us in a private communication that the fourth derivative has to be in-
cluded.
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characteristics in the Fresnel zone. They calculate for a feed pattern

taper (1 - r 2 ) 2 a beam broadening, which can be approximately represented

by

(1,20) QVG I 4. 0.01 i32
A A

The curve of this equation is also drawn in fig. 8.
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change or gain and aperture efficiency as a function of the phase
erfor introduced by an axial defocusing. The Afax/A, scale is valid for

F/D ratio of 0.42. The dashed and dash-dotted curves, respectively,
are the quadratic approximation of the rigorous functions.
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Contour map representation of the 85 oot reflector  z =
One contour interval 1. 53 mm.
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