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When estimating the refrigerator requirements for a cryogenic system, thermal radiation from the room
temperature dewar walls to the internal surfaces is typically the largest heat load. A radiation shield is
required that reduces the loading on the low-capacity stages of the refrigerator. Typically, the radiation
shield is thermally connected to the high-temperature high-capacity stage of the refrigerator. This load
is a function of the geometry of the outside dewar walls and radiation shield, along with the material
properties of each. This EDIR will examine the equations involved in the calculations and present
emissivity measurements on metals used for the radiation shields.

Many resources are available which develop the concepts for thermal radiation transfer. The relevant
equations for this analysis are the black body heat transfer equations and the modified gray body
equations.

Black Body Equations:

The warm surfaces emit thermal radiation in a black body spectrum at wavelengths that are a function
of temperature, as shown in the plot. The spectrum of interest is shown in the plot below for a 300°K
and 270°K black body. Material properties at these wavelengths are significant.
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Radiation Heat Transfer Equation

The differential equation for the net radiation on surface j from an enclosed black body with N surfaces
is:

dg; = o YR (T — Ti¢) dFgj_idA; (1)

where O is the Stefan-Boltzmann constant, differential dFdj_k is the view factor between surfaces, and

dA]- is the differential area (Rohsenow, Hartnett, & Cho, 1998). The view factor is a geometrical relation
and is complicated to compute for all but the most basic relations. A table of computed values can be
found: Link to View Geometries (Howell, 1982).

When only two surfaces are involved, equation one is simplified:
Qio2 = Ao TiFi; — Ao TiFy = Ao TYF (T = Ty) (2)
where

A; Fip= Ay Fpy.

Gray Radiation Heat Exchange

To accurately model the system, the differential heat-transfer equation is modified to account for
absorbed and reflected radiation. This relation assumes only diffuse radiation and doesn't account for
specular reflections. The following derivation is taken from the reference, where a more detailed
explanation can be found (Rohsenow, Hartnett, & Cho, 1998). Following the relevant derivation from
the reference is helpful in understanding and applying the general concepts,

dok = €k 0 T + Prdik (3)

dk = qok — dik (4)

where qy is the net flux leaving a surface, k, qq is the flux-leaving object, q;i is the flux impinging upon
an object, and py is the reflection coefficient.

dok = x0T + (1 — )ik (5)
qk = ;kek (6T — dox) (6)



And from the black body relation
QA = XiL; doj Fj_kA; (7)

= A 2L Qoj Ficej (8)

Substituting equation 5 into 8, and equation 5 into 4, gives:
Y (vig — (1 — €)Fkj)doj = €Ty (9)
Y (Vg — Frej)doj = A (10)

Since only the net flow of heat is needed, eliminating q;, and q,x in equation 10 with equation 6 allows
calculation of the net heat flow from the simplified gray body equation when T's are known.

Ykj 1-¢
]N=1(€_j] — Fij e_j])ql' = YL, (Vij — Frej)o Ty (11)

Ykj is the Kroneker delta function, which equals 1 when k = j, and zero otherwise. Given the emissivity

and view factors for a set of N surfaces, the net heat transfer for each surface, and any geometry, can be
calculated.

Planar Geometry or One Enclosed Surface

Equation 11 can be simplified for two surfaces and solved for the unknown parameters. For simple
planar geometries, or convex geometry (where one surface completely encloses the other), the view
factor is equivalent to the ratio of surface areas. This modifies the emissivity to give an effective
emissivity, derived from the above general equations. A common geometry for cryogenic dewars is two
concentric cylinders with radius ry, and r,, where r, > ry. The heat transfer equation has two solutions;
one for each surface. The net heat transfer is found by multiplying the solution of a particular surface by
the area of that surface.
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Thus, the net heat flow from surface one to surface two can be calculated from

Qz.—>1 = A1€;0( Tz4 - T14)
Radiation Resistance

From equations of gray body radiation, the concept of radiation resistance is derived. This method is
useful when analyzing heat flow for a limited number of surfaces, which are completely enclosed. This is
also useful for a series of flat or convex surfaces where no self radiation is exists. The net heat flow from
a surface, 1, is the difference in the black body radiation and the radiosity, J, divided by the radiation
resistance. This is the circuit analogy to heat transfer.

. (oT* =)
Q = —R
1-— €;

T A

Also, the geometry of the surfaces must be included with the addition of a view factor,

1
AiFiiq

giving at total resistance

Aje;  FioA;

For a series of parallel plates, the total resistance is

N
1-— 61 1 1—¢,
R, = + +
; : St A1F12 A€,y

with i, = 224 and A > A,
1




Radiation Heat Transfer Equation for Super Insulation

Layers of super insulation covering the radiation shield reduces the loading dependent upon the number
of layers of insulation and the emissivity of the material. The amount of reduction in loading can be
calculated from the last term in the equation below (Chen & Yu, 2008).

R=[1+(Z-1)5+3, 50

LlALET

, rather than , so that

€il'ji+14{ ii+14i

Equation 10 differs from the reference. Heat transfer from the hot surface to the cold surface is:

The cited paper includes the emissivity in the space resistance

4 4
_o(Ty —T2)
h—-c — R
where A. and £, are the area and emissivity of the cold surface, A, and £p are the area and emissivity
of the hot surface, Ajand &, are the area and emissivity of each insulating sheet. Consider a cylindrical

geometry, with Ai=A=A=1and &, = £, =E.=0.1. Adding 10 layers of super insulation increases the

radiation resistance from 10 to 110 and reduces the loading factor 11.

Emissivity Measurement

The challenge is to accurately determine the emissivity of metals. As the measurement emissivity

depends upon the surface roughness, wavelength and polarization, a wide range of published values

exist for this property. Eight samples, as indicated in Table 1 of metals typical for use in radiation

shields, were submitted to the NIST laboratory for reflectance testing (Hanssen & Whilthan, 2010).

Sample Material Surface Preparation Finish
1 OFHC Copper 1200 Grit Micromesh Bright Gold
2 OFHC Copper 400 Grit Wet/Dry Standard Gold
3 3003 Aluminum 600 Grit Wet/Dry Electroless Nickel
4 6061-T6 Aluminum 1200 Grit Micromesh Electroless Nickel
5 6061-T6 Aluminum 600 Grit Wet/Dry Unplated
6 304L Stainless Steel 400 Grit Wet/Dry Electropolish
7 304L Stainless Steel 1200 Grit Micromesh Electropolish
8 Brass Acid Copper Process Copper

Table 1: Metal samples for reflectance testing

Results shown for the samples are shown in Figures 1 and 2. It is concluded that a gold finish is

necessary for an emissivity of 0.05 or below. Most published results for the other materials indicate

much lower emissivity than measured by NIST, thus using the published values will underestimate the

calculated radiation load. Finishes other than gold improved the reflectance over the unfinished

sample, but were less than the published values.




NRAO Sample Summary:
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Figure 1: Results of reflectance measurements from materials of Table 1.



0.8

Specular Reflectance

0.2}

0.6

0.4

Sample Reflectance Character

Specular Component
sz
7
i
'.‘:: - #1
s #
p #
s
W ;
2 4 6 8 10 12 14

Wavelength, ym

0.7+

0.6

0.5~

04

0.3+

Diffuse Reflectance

0.2

0.1~

16

Diffuse Component

W 2
_I;fJ

o mm— ST

2 4 6 8 10 12 14 16

Wavelength, pm

Figure 2: Measured reflectance characteristics from materials of Table 1.



Example Calculations

Model W-band Feed as Cone for Infrared Radiation Transfer.

View Factor for Cone gives the view factor for a right circular cone (feed) to base (window).

1

Fop, =———
c—b h2
1+(F)

Feoe=1- Feyp

Acone

Abase

Feop = Fpoc

W-band horn dimensions as modeled by cone and
=1.68 “

h=1.84"

r.,=0.406 " aperture radius

rwg=0.0355 " waveguide radius

a =0.217 rad. cone half angle.

T,=300 ° K

T=50°K

Surface Area of Cone =0.0015 m’ from 77, [\/(hz +13) — J(hz —12)— r,,,z,g]

Surface Area of Window =0.00033 m?, £=0.2 for the dewar wall and £= 0.1 for the radiation shield,

and&=1 for the window gives:

Quoc = 0.082 Watts

Modeling as a hemispherical hole underestimates the contribution from the window:

Qu_e = 0.055 Watts

As does modeling as parallel plates:

Qe = 0.030 Watts



K-band Focal Plane Array (KFPA) Dewar

Figure 3. Model of KFPA dewar: two concentric cylinders, where the smaller cylinder is atop the larger
one.
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€ = 2
€, +€(1 — eo)ﬁ

Qo‘—n = Aiéic( T(‘)l- - Ti4)

Tw=300"°K
T.=50°K
And€& ;= 0.11 for the dewar wall (sample #6 material) and £ ,= 0.11 for the radiation shield (sample #3
material). The end plates add ~7 watts, giving the total:
Qo = 33 Watts

This exceeds the first stage capacity of the Model 350 refrigerator of 25 Watts. Adding four layers of
super insulation, which consists of an aluminized mylar bonded with polyester scrim. Nominal thickness
is 3.5 mil (1/2 mil for the mylar + 3 mil scrim).

Metallized Products, Inc., 37 East Street

http://www.mpirelease.com/

Winchester, MA 01890
Phone: 888-MPI-8088

Fax: 781-729-9093



The radiation resistance with £= 0.1 increases from 0.021 in?to 0.12 in%. Indeed, the initial cool-down

of the KFPA was unsuccessful, until four layers of super insulation were added to the radiation shield,
reducing the load to

Q,-, = 6 Watts

Conclusion

Modeling of the radiation loading in cryogenic dewars with programs such as Mathematica accurately
estimate the heat load for different geometries. Care must be taken in selecting view factors that best
describe the geometries involved. With the proper selections, a series of equations are solved for the
net heat flows, given the temperature for each surface. The greatest error is from the unknown
reflectance (emissivity) of the materials. Measurements of this property indicate that the gold plated
surfaces are near published values over the wavelength of interest. The other coatings are typically less
reflective than the published values.
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Picture of Emissivity Measurement Samples. Sample 1 is top left, going in order, with sample 8 to the

bottom right.
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Mathematic Code for Solving Heat Transfer Equation

ClearAll[eq, q,€,q,T, hc,r,0,FV]
FV; , = 1; where 1 is the inner wall of a cylinder and 2 is the outer wall;
FVl,l = 1 - FVLZ;

r
FVZ,I =,
)

FVZ,Z = 1 - FVZ,l;

For[k = 1,k < 3,k + +,eqy
2

1—¢
= E ((KroneckerDeltalk, j]/€; — FVy ; E—j)qj — (KroneckerDelta[k, j] — FVk_]-)a?"]-4)]
J

j=1

heatsolutions = Solve[{eq; == 0,eq, == 0}, {q1,q2}]

oryTie e, — oy Ty e €y (ory Tf — oy THe €
ﬁ

Hg1 > ————— n Q2 = n
€1 — 1€ TTE167 €1 —T€; TTE16
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