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ABSTRACT

We outline some aspects of the observational theory and practice of calibrating and
observing spectral polarimetry using cross-correlation, with emphasis on measuring the
Stokes V required for Zeeman splitting. We consider two cases: (1) crosscorrelating a
dual-linear feed, and (2) using a dual-circular feed with a hybrid and crosscorrelating
the resulting linears. We derive the Mueller matrices for these cases; they are
completely derivable from astronomical measurements, and we discuss the techniques
required. We provide two catalogs of polarization results for sources that can be used
as single-dish calibrators, one for 1420 MHz and one for the 4 15 GHz region.

With crosscorrelation, both the amplitude and phase of the system must be
accurately calibrated with noise injection. As we discuss in sections 3.2 and 4.9, we
require a correlated cal that can be injected in three different ways: into both channels
simultaneously, and into each of the two channels independently. For the dual-linear
case it is convenient for the relative phase to be approximately the same as that of a
linearly polarized astronomical source. For the dual-circular/hybrid case the cal phase
should be adjusted to zero output in one of the post-hybrid linear channels.

The injected noise is similar in character to what we are trying to measure; this
means that it should not be turned on during an observation. Rather, it should be
turned on briefly before and after each observation. It should be strong enough so that
a brief integration produces accurate results.

Polarization measurement by cross correlation requires phase stability. All local
oscillators must be phase stable with the same requirements as used in interferometry.
Traditionally this is not a consideration for spectrometers. We found that an oscillator
in the spectral processor was not phase stable.

It is almost impossible to know the polarization response of a cross-correlation
polarimeter without a known source. For linear polarization we can use astronomical
calibration sources. However, for circular polarization we need a local radiator, such as
a helix; because it is used only to establish the sense of polarization, it need not have
exquisitely high polarization purity.
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1. INTRODUCTION

We write this memo in terms of our interest in Zeeman splitting, which needs the Stokes
V (circularly polarized) component. The traditional method for measuring Zeeman splitting
with single-dish radio astronomy is switching between the two circular polarizations. This
method developed historically because it is conceptually simple and can be used with almost any
spectrometer. However it is not the optimum technique. For best performance the switch must be
placed in front of the first amplifier, where it adds noise. Also the accuracy of the polarization
adjustment is usually not very high.

In radio interferometry, it is well known that the most accurate way to measure circular
polarization is to cross correlate two orthogonal linears. This technique can also be used with
single dish spectroscopy if the spectrometer has the capability. While this technique eliminates
the noisy switch, it has a basic calibration requirement: at the input to the spectrometer, one
must know the relative phase of the two linear polarizations. This is equivalent to calibrating the
difference in cable length for the two polarizations.

At the GBT, feeds below 8 Gliz are intrinsically linearly polarized and the straightforward
crosscorrelation described above applies. However, above 8 GHz the feeds are intrinsically
circularly polarized and there is no polarization switch before amplification. To generate the
Stokes V there are two options: (1) polarization switch after amplification, or (2) generate linear
polarizations with a hybrid and correlate these two linears.

Method (1) has the basic technical requirement that the gains of the amplifiers before
the switch be identical. Otherwise, a replica of the Stokes / appears in the switched Stokes V
spectrum. Method (2) has the same requirement plus one more: the phase difference between the
amplifiers should be zero. Stennis (1999) has investigated the stability of these amplifiers in the
laboratory and found that both the relative gain and phase are stable. Thus either method should
work.

Based on our recent observing experiences, we prefer method (2). Firstly and most
importantly, it allows one to derive Stokes V by cross correlation instead of differencing the
two circular polarizations, which are large numbers. This means that the bandpass correction
operates only on the Stokes V itself, which in turn means it need not be known accurately—in
spectropolarimetry, Stokes V is weak and the errors are always dominated by noise and other
instrumental effects. We note that the bandpass shape comes mainly from the i.f. portions
of the system, which come after the hybrid; this means that, indeed, they do not enter the
cross-correlation spectra except as a gain error. Secondly, method (2) provides all Stokes
parameters and one has after-the-fact control over the polarization calibration by frequently using
a correlated noise source. Thirdly, spectral lines can be linearly polarized, for example if they
are in absorption against a linearly polarized radio source; if one doesn't measure this linear
polarization and some linear leaks into the circular, then one observes pseudo-circular and has no
idea that it might result from such leakage. Method (I) provides none of these advantages.
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This memo discusses some basic aspects of the theory and practice of these calibrations. It is
based on our experience using the spectral processor in three observing sessions with the 140 foot
telescope and on one extensive session at Arecibo in February 1999. Two of the 140-foot sessions
were at 1.4 GHz (Apr 1998 and Jan 1999), crosscorrelating two linears, and one at 9.5 GHz using
a dug-circular feed and hybrid (May 1999). We learned about small instrumental effects that can
affect the astronomical measurements unless they are properly calibrated and equipment details
that need to be accounted for in the calibration. We also measured the polarization properties of
linearly polarized sources so that they can be used as calibration sources.

We begin in section 2 with a description of the 4 x 4 Mueller matrices and their associated
Jones matrices, which relate the output to the input Stokes parameters for the various elements of
the system. Section 3 gives the Mueller matrix for a linearly polarized feed and section 4 derives it
for a circularly polarized feed with hybrid. Section 5 discusses the practical details of calibrating
the relative phase. Section 6 discusses the relevant hardware aspects of the spectral processor.
Section 7 discusses our experiences and results relevant to the hardware, with emphasis on the
problems. Section 8 presents our catalogs of calibration sources for 1.4, 4, 8, and 14 GHz, together
with the observational and data reduction techniques.

2. OUR SCHEME OF MUELLER MATRICES

The key to making accurate polarization measurements is calibration of the four Stokes
parameters. Generally, any device has a Stokes-parameter transfer function that relates the output
parameters Sow to the inputs S. This is called the Mueller matrix M:

Sout = M • S1. (1)

Here S is the usual 4-element Stokes parameter vector

V

The Mueller matrix is a 4 x 4 matrix in which all elements may be nonzero. In the usual way, we
write

5= (2)
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The matrix elements are just the partial derivatives, for example

MN

	

	 (4)
u, V

The observing system consists of several distinct elements. Each has its own Mueller matrix.
Here we consider four, which we consider in sequence as seen by the incoming radiation. We
have the feed matrix MF, the first-amplifier matrix MAi, possibly a hybrid matrix MH, and the
second-amplifier matrix MA2. Sometimes additional matrices are required to convert measured
quantities to the standard definitions. The system Mueller matrix is the product of them all in
the proper sequence; for our four including the hybrid, Mtot MA2 • MH • MA1 • MF.

We derive these matrices by considering how the devices affect the amplitude and phase of
the voltages in the two polarization channels. We represent the two complex voltages by a vector,
and each system component has a voltage transfer function which is a 2 x 2 matrix. These are
referred to as Jones vectors and matrices (Tinbergen 1996). Each Jones matrix has its Mueller
matrix counterpart. It is straightforward to relate the two types of matrix, once we first define
how we measure and calculate the Stokes parameters from the voltages in the two polarization
channels. Below we consider the dual-linear and dual-circular cases separately.

While discussing definitions we emphasize Stokes V. We follow the IEEE definition, namely

V = LCP — RCP (5)

where LCP means left-hand-circular polarization. LCP is generated by transmitting with a
left-handed helix, so from the transmitter the E vector appears to rotate anticlockwise. From the
receiver, LCP appears to be rotating clockwise.

Astronomical sources don't exhibit much circular polarization so we must define the sense of
V by radiating a calibration signal with a helical radiator, being sure to account for a reversal in
sense upon each reflection. One sets mvv. = ±1 depending on the results.

(3)



-5-

3.  THE GBT BELOW 8 GHZ: THE MUELLER MATRIX FOR AN
INTRINSICALLY LINEAR FEED + AMPLIFIER

3.1. The Mueller matrix

For a good feed the Mueller matrix has important symmetries. "Good" means that we get
acceptable accuracy with the first-order expansion of the Jones matrix (e.g. equation 8 below).
Heiles (1999) has treated this case in some detail, so here we just provide the results and a quick
summary.

We take the Jones matrix identical to that for a dual-circular feed in equation 8 below, with
the exception that the subscripts (R, L), which designate the orthogonal circular polarizations, are
instead (X, Y), which designate orthogonal linears. We calculate Stokes parameters as follows:

I = ExEx EyEy (6a)

= ExEx — EyEy (6b)

U = ExEy EyEx (6c)

iV = ExEy — EyEx (6d)

where i = and the bar over a symbol indicates the complex conjugate.

With astronomical measurements we cannot separate the feed from the amplifiers. Rather,
we can only determine their product. Retaining the first-order terms only, it is

MA-FF MA • MF =

1 Ee cos EE sin
Ag 1 Ae cos Ac sin

EE c05 —L€ cos 1 -46,0
EE sin —& sin AO 1

(7)

Here Ag and AO are the relative gain and phase difference between the amplifier chains in the
two polarization channels; the other parameters describe the feed and are defined below after
equation 10. Owing to gain uncertainties we cannot accurately determine the elements on the top
row observationally. However, we can obtain the remaining elements from observation by using
the rotation of parallactic angle as a linearly-polarized source moves across the sky and performing
least square fits.
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3.2. Calibrating MA+F with noise injection

If the noise is injected between the feed and amplifier, then the only nonzero elements in
MA+F are the amplifier terms Ag and AtP. If we inject noise Tara into only one channel then it
is equivalent to 100% linear polarization in Stokes Q so (I, Q) = (+1, +1)Tord for injection into X
and (I, Q) = (+1, —1)T,Li into Y. Application of MA+F shows that subtraction of the two cases
for both 'out and also Qou t provides a direct measurement of Ag. Alternatively, injecting equal
uncorrelated noise into both channels simultaneously gives (I, Q) = (+1, 0)Tcal and the deflection
of Qout again provides a direct measurement of Ag , while the deflections ( Uout , Vout ) provide AO.

To summarize, we can calibrate the amplifier terms of MA+F with a correlated noise source
whose output can be disconnected from each channel separately so that we can make the following
three measurements: cal into both channels, cal into L only, cal into R only. We regard this as
preferable to using uncorrelated noise, because it is difficult to produce equal uncorrelated noise
in the two channels.

4. THE GBT ABOVE 8 GHZ: THE MUELLER MATRICES FOR AN
INTRINSICALLY CIRCULAR FEED, AND A HYBRID

4.1. A good circular feed

Here we follow Stinebring (1982), who followed the procedure of Conway and Kronberg (1969)
in writing the Jones matrix:

[

EL,out = 1 fi ei`h
EL,in

E
R,out E2e—i02 1 ER,in

Here the f. 's represent undesirable cross coupling between the two polarizations. This equation
assumes that the device under consideration is "good", meaning that we need only retain
first-order terms in the voltage gain (but we allow the phase to be arbitrary).

For a dual-circular feed, the incoming sky radiation encounters a feed whose nominal outputs
are voltages EL and ER. If we insert a hybrid, then the hybrid's output is equivalent to a
dual linear feed and converts the voltages to their linearly polarized counterparts Ex and Ey.
This interchanges the definitions of Stokes (U, V) in terms of the voltages (as in equation 6,
for example). To avoid confusion, we temporarily forsake using (I,Q,U, V) and instead use
(So, S 1 , 52 53 ), which we define as follows:

(8)

So = EAEA+ EB EB (9a)

SI = EAEB EBEA (9b)
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iS2 = EAEB — EBEA (9c)

53 = EAEA EB EB • (9d)

As before, Sou t = M • Sin. If the system components were perfect, then with the circularly
polarized feed before the hybrid (I, Q, U, V) = (So, Si , 52, 53) and after the hybrid the order is
different, (I, Q , V, U ) = (So, S1, S2, 53).

With these equations, it is only a matter of a little algebra to calculate the feed's Mueller
matrix (this could also be found by a suitable reduction and rearrangement of Stinebring's
equation (A.5)):

MF =

1 EE cos Ef sin 0
E€ cos 1 0 —Ac cos
Ef sin 0 1 —Af sin

0 Ac cos Af sin 1

(10)

where E€ cos = fi COS 01 f2 COS 4)2; Ee sin = fi sin ch f2 sin 4)2; Ae cos = fi cos 01 — f2 cos 02;

Ae sin = Ei sin 01 — E2 sin 02 • The good feed is described by only four independent parameters.

One curious comment: the central 4-element submatrix is a rotation matrix that represents
an error in position angle of linear polarization. To first order, the nondiagonal elements are
zero, which means that the absolute position angle has no uncertainty. This is in contrast to
the dual-linear feed, where voltage coupling between the probes makes the nondiagonal elements
nonzero. However, any such advantage for measuring linear polarization is illusory, for two
reasons: First, with respect to what direction is the position angle measured? Second, amplifiers
are necessary, and they introduce phase uncertainty as discussed below.

4.2. The first set of amplifiers

The two polarization channels may or may not go through a hybrid, which converts dual
circular to dual linear. However, before the hybrid each goes through the first amplifier chain with
gains GLi,Ri = ( 1 + gLi,Ri) and phase delays —0L1,R1; here the subscripts L and R denote the
circular polarizations and the "1" denotes the first set of amplifiers. To characterize these we rely
on careful calibration to make g and iti) small. Retaining only the first-order terms, the associated
Jones matrix is

[

E
L,out = + + EL,,in

E
R,out 0 1 -I- g Ri + Ri ][ ER,in



1 0 0 Am.
0 1 —,aoki 0
0 A'rki 	1 0

AM. 0 0 1

MAI = (12)

[ A,out

EB,out

1

[ —41 + A2) X2

+ Ai) + Xi ][ EA,in

EB ,in
(14)

and the associated Mueller matrix is
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where Agi = gLi— gra and A01 = Ll R1; also, we have eliminated a factor (1 g Li + gm)

from the diagonal terms because it can be taken care of by intensity calibration and when applied
to the off-diagonal terms it is second order.

4.3. The first-amplifier-feed combination

We may or may not use the hybrid. In either case, the incoming signal will first go through
the combination of the feed and the first amplifiers. We cannot separate the feed from the first
amplifiers, so we calculate the combination. In keeping with our previous approximation of
retaining only first-order terms, we obtain

MAl+F = MA1

1 Ee cos EE Sill Agi
Ee cos 1 —,Ae cos

• MF = Ee sin ZSaki 1 —.Af sin
AE cos Zic sin 1

(13)

This matrix has only six independent parameters. It is convenient and helpful that, in this
approximation, the matrix elements are caused either by the feed or the amplifiers, but not both.

4.4. The hybrid

The hybrid adds the two incoming voltages, each with a 1
2
r-- phase shift. We assume, also,

that the hybrid is imperfect and has small residual losses A and phase shifts x in each output.
Including these imperfections to first order only makes its Jones matrix

and the associated Mueller matrix is



1  Ax -AA -AA -
AX 1 EX -EX
-AA Ex -EA 1
AA Ex -1 -EA

Mhybrid (15)

0 1 -A02 0

0 A/P2 1 0

Ag2 0 0 1

MA2 = (16)

-9-

where EA = Al 1-A2 , AA = A1-1 , Ex = X1+2X2 Ax = X1-2X2 
Again, we have eliminated a factor

(1 + Al 42-A2 ) from the unitary elements because it can be taken care of by intensity calibration and
when applied to the other elements it is second order.

The last two unitary elements do not lie on the diagonal because the hybrid's function is to
exchange dual-circular for dual-linear polarization. Note that -1 instead of +1 appears in the last
row; we will deal with this later.

4.5. The second set of amplifiers

After the hybrid the two polarization channels again go through amplifier chains, and these
have transfer matrices that are identical to those of the first set of amplifiers. Thus the associated
Mueller matrix for the second set is

1 0 0 Ag2

4.6. The Mueller matrix for the whole system with hybrid

The Mueller matrix for the combination of feed, first amplifier, hybrid, and second amplifier
is the product of the individual matrices:

Mtot = MA2 • Mhybrid • MA1-1-F • (17)

Even though the hybrid matrix is complicated, retaining first-order terms only makes things fairly
simple:
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FH —G2 Gi

FH 1 'P i 
— W2[ 

Mtot
G1 T 2 HF

G2 gfi —1 HF

where

G i = gi — AA (gain cliff of amp 1) (19a)

G2 = LS.g2 + AA — Ee sin (gain cliff of amp 2) (19b)

= 6,01 + Ex (phase diff of amp 1) (19c)

= 4642 + Ex + Ae cos (phase cliff of amp 2) (19c1)

FH = Ee cos d-Ax (feed gain + hybrid phase) (19e)

HF = —EA + Ae sin (hybrid gain + feed phase) (19f)

We have endeavored to make the notation meaningful, using G and If for terms containing
amplifier gain and phase differences, F and H for feed and hybrid coupling and phase. We have
made the amplifier terms prominent with boldface and large Greek letters; they will probably
dominate because they are active components and can change with time.

We emphasize that this matrix applies to the Stokes parameter set S in equation 9 and
because of the hybrid they are not in their usual order. To be explicit, for equation 18 the ordering
is

(18)

Note that Mtot is characterized by six independent elements, the same number that
characterizes a feed/amplifier combination without a hybrid. Even though this is a more
complicated system, this fact is not so remarkable because the total system is characterized by its
own Jones matrix and, after all, the total system is equivalent to a linear feed plus amplifier.



1 0 0 0
0 1 0 0
0 0 0 —1
0 0 1 0

MTOT Mtot • (22)

1 FH —G2 G1
FH 1 'Pi —gf 

2

—G2 —ilf
i 1 —HF

G1 112 HF 1

MTOT = (23)

4.7. Summary: a conventional writing of the total system Mueller matrix

As astronomers, we prefer to ignore the details of which component is responsible for which
matrix element in equation 18 and, moreover, to write it in the more conventional form in which
the Stokes parameters are in the usual order (equation 2). This requires interchanging S2 and 53

above, so we designate the resulting total system matrix as MT0T with the subscript in capital
letters. Specifically, then, we define

.rout

Qout

Uout

Vout

= MTOT
Q in
Uin

(21)

where the primes indicate the measured values and the unprimed parameters the astronomical
ones. This is also where we fix the —1 in equation 18:

Carrying out the multiplication, we obtain

This matrix MTorr has exactly the same form as the Mueller matrix in equation 7, which
is for a dual-linear feed plus amplifiers. This identity of form is not surprising because we can
consider the combination of the dual-circular feed, first amplifiers, and hybrid as a dual-linear
feed; we add the second amplifiers and the system is conceptually identical. This similarity is
fortunate, because just as without the hybrid, all of the elements of the total system matrix can
be determined observationally and there is no advantage in trying to determine the elements of
each system component separately. There is one difference between this case and the dual-linear
feed. Here, Stokes Q is derived from the voltage products and U from the power differences; the
opposite is true for the dual-linear feed.
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4.8. Interpretive discussion of MT0T: practical effects of nonzero matrix elements

In real life the largest terms in MToT will normally be the ones associated with the amplifiers,
G and T.

Zeeman splitting produces weak circular polarization, a weak Stokes V. Matrix elements in
the last row are relevant here, and the first two are large because they are associated with the
amplifiers. Of these, the term G i is most serious because it represents coupling between Stokes
I and V, and of course I > V. The term T2 represents coupling between linear polarization and
V; even if 112 is large, it won't affect V much because spectral lines exhibit little if any linear
polarization.

During our May99 run, we found G i 0.08. This is large, and would be fatal except for
the fact that Zeeman splitting produces a Stokes V that looks like the frequency derivative of
the line seen in Stokes I—the famous "S-curve". It is easy, reliable, and accurate to separate
the derivative from the line itself in a least squares fit, because the two are nearly orthogonal.
The major deleterious effect of nonzero G i is an increase in noise, which arises because the noisy
bandpass shape appears in the replica of Stokes I that appears in V; the bandpass shape gets
removed with the least squares fit, but the noise remains.

If one wanted to measure linear polarization of a spectral line, then there are several important
terms arising from the amplifiers. These terms are greatly simplified by eliminating the hybrid.

4.9. Calibrating MT0T with noise injection

If the noise is injected between the feed and amplifier, then only nonzero elements in Mimi,
are the amplifier terms (G 1 , G2 ) and (T i ,T 2 ). We can calibrate these terms by suitable injection
of correlated and uncorrelated noise. We consider several cases:

(1) If we inject equal amounts of uncorrelated noise into both channels, then all Stokes
parameters except I are zero. Application of MT0T shows that the deflections of (Uout , Vout)
provide direct measurements of (G2,G1).

(2) If we inject noise T 1 into only one channel then it is equivalent to 100% circular
polarization in Stokes V so (1", V) = (+1, -1-1)T 1 for injection into channel L and
(I, Q) = (+1, –1)T,i1 for channel R. Application of nrcyr shows that for either case
U

out provides G2 and 0,out provides 1F2 (doing both cases is not necessary). Also, the deflections
of (Iota, Vout ) are identical and subtraction of the two cases provides G i . In summary, doing both
cases provides measurements of (G i , G2, T 2 ) but not Ti.

(3) If we inject equal amounts of correlated noise into both channels, then this is equivalent
to linear polarization with a position angle that depends on the relative phase. In our May99 run,
this cal phase was adjusted to give Q = 0 and (I, U) = (+1, -1-1)T,L1 . Application of MT0T shows
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that the deflection Qt provides and Knit provides G1 . Note that this scheme with Qt is the
only way to obtain However, in the final analysis T i determines position angle on the sky and
its absolute value must be determined astronomically.

In summary, we can use cases (1) and (2) to calibrate the amplifier terms of MT0T, i.e. use
a correlated noise source whose output can be disconnected from each channel separately so that
we can make the following three measurements: cal into both channels, cal into L only, cal into R
only. We regard this as preferable to case (1) because it is difficult to produce equal uncorrelated
noise in the two channels.

4.10. Calibrating the noise source and the complete Mueller matrix using
astronomical sources

The above section describes the calibration procedure injecting noise just after the feed.
However, the noise source is not a primary calibration standard. Furthermore, it cannot calibrate
the properties of the feed. These aspects require calibration using astronomical observations.
These are fully discussed by Heiles (1999); below we give a brief summary.

5. PRACTICAL CONSIDERATIONS

5.1. Observational determination of the Mueller Matrices

The elements on the top row of the Mueller matrix are not easily measurable because they
reflect the imperfections in the system that convert polarized intensity, which is small, to total
intensity, which is large. Moreover, as we track a source the zenith angle changes. The effective
telescope gain depends on zenith angle, at least because of atmospheric attenuation and possibly
because of variations in telescope gain because of time, temperature, or gravitational distortion;
even if they are small, these effects are likely to be at least comparable to the imperfections of
cross-polarization coupling. The resulting covariance between parallactic angle and telescope gain
makes the top-row elements underivable directly from observations.

This gain uncertainty has one additional ramification. It affects not only Stokes I but the
other Stokes parameters as well—they all scale directly with the telescope gain. These gain
variations would affect the least square fits. This effect is probably not important in practice, but
we can easily avoid this problem by using the Stokes parameters expressed in units of I, i.e. using
fractional polarization.

To measure the elements of the Mueller matrices one follows the prescription of Heiles (1999)
in detail; here we provide the briefest of summaries. One selects a sample of linearly polarized
calibration sources and does ON-OFF measurements from horizon to horizon, which maximizes
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the position angle coverage by parallactic angle. One assumes the sources have zero circular
polarization. By performing least square fits, one determines the measured polarization of each
source.

For the intrinsically linear feed, the system's linear polarization directions are determined by
the mechanical mounting of the feed and a cross-coupling term. These should be small, so unless
one is interested in highly accurate absolute position angles one can neglect these corrections
and avoid relying on previously-determined source position angles; with this, the calibration is
completely internal. However, for the intrinsically circular feed the system's directions depend
on the relative phase difference between the two circulars. Therefore, proper calibration requires
knowledge of the calibration source position angles of linear polarization. Apart from this
difference, the details of the fitting are similar to those for the intrinsically linear case, and we
won't take the space to describe them here but instead refer to }Telles (1999).

One must take care to include all Mueller matrices that describe the various components of
the complete system. For example, at Arecibo the definition of Stokes parameters in the on-line
datataking software differed from the conventional one and we had to define an additional matrix
in which one of the elements is —1. It is important to obtain final Stokes parameters that are
defined conventionally, and it is best to incorporate all corrections into the final matrix so that no
additional ad-hoc corrections are required.

5.2. Deriving the relative phase using astronomical sources

In this section we describe how to derive the relative phase of a correlated signal. We assume
linear polarizations, but the discussion applies equally for circulars.

We denote the signals from the two orthogonally linearly polarized feeds by X and Y. The
spectral processor provides the Fourier transform-derived cross product power spectrum. This
consists of the real and imaginary portions of the cross power spectrum, which are precisely 90
degrees out of phase; we denote these by Re(XY) and Im(XY). We need Re(XY) to correspond
to Stokes U and Im(XY) to Stokes V. In this case, linear polarization would produce output only
in Re(XY) and circular in Im(XY). This is exactly the condition we need to attain by calibration.
To perform this calibration, we use a source of correlated noise in the two channels—a correlated
noise source, or CCAL.

If we observed an unpolarized continuum radio source, then XY = O. Some continuum
sources have significant linear polarization; in this case, XY is nonzero. If we observe a selection
of linearly polarized sources and plot the results in the [Re(XY), lin(XY)] plane, we obtain
something like Figure 1, which are actual observations for three sources each observed at 12
position angles over a range of 360°, during our Jan99 run. These data exhibit a well-defined slope
and go through zero (almost). Note in particular that the slope is independent of the position
angle of the source polarization and also of the feed. The slope depends only on the relative phase
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between X and Y as they enter the spectral processor, and because the correlated signal from the
linearly-polarized source hits the two feeds at the same time no matter what the position angles
are, the phase difference between X and Y is constant.

PHASE—UNCALIBRATED Im(XY) vs Re(XY) FOR 3 SOURCES and CCAL

-1.0 -0.5 0.0 0.5 1.0
Re(XY)

Fig. 1.— Im(XY) versus Re(XY) for three linearly polarized sources (3C227, 3C270, 3C273) and
also for the CCAL. Each source was observed at 12 different feed position angles that covered a
range of 360

0
. Squares and dotted lines are for IF1, pluses and dashed lines are for IFO. The phase

differences AO for IFO and IF1 are -10.0° and -9.5°, which are equal to within the uncertainties,
and the angles OSRC are 0.3° and 40.8°, the small value of OsRc for IFO is pure happenstance.

In Mueller matrix terms, the slope is tan- 1 mvu and the zero offset caused by MVIlinVQ)InUI.
The slope does not depend on the details of source polarization or feed position angle, as long as
the polarization is linear. Rather, the slope depends on the relative phase delay between the feeds
and the spectral processor, which depends on the difference in cable length. It is this relative phase
delay that we need to calibrate. The data in Figure 1 are sufficient to calibrate this relative delay.
These astronomical data are primary calibration data because they are absolute measurements of
astronomical sources and sufficient, in themselves, for this calibration.
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Although these sources provide primary calibration data, using them for system calibration
on a routine basis is inconvenient. From the practical standpoint, we always prefer to calibrate
with a noise source that can be turned on and off because it is quick and convenient. To calibrate
the phase difference, it is clear that we need a source of correlated noise at the feed. This is a
secondary calibrator because it must be calibrated by comparison with astronomical sources.

5.3. Deriving the relative phase using the correlated cal

If we inject correlated noise into the two channels with the CCAL, then there is perfect
correlation and XY is large. If the relative phase of this correlated noise, as injected into the
system, were the same as the relative phase of correlated noise from linearly polarized astronomical
sources, then it would produce points that lie on the slope defined by those sources. However, such
a zero-difference condition is difficult to achieve. Thus the CCAL points define a different slope.

In Figure 1, we show independent results for identical observations with the two IF channels
IF1 and IFO. For each IF, the CCAL points form an angle OCCAL and the source points eh-r SRC •

The difference between these two angles AO = OSRC OCC AL is the same for the two IF's because
it depends only on the details of how the CCAL is injected, for example the exact cable lengths
connecting the CCAL to the two system inputs. If these details are unchanged, then AO should
remain constant (and indeed we found it to be constant, both at Green Bank and Arecibo).
Suppose we determine this angle accurately by an extensive series of observations of linearly
polarized sources. Then we can calibrate the system with the CCAL, because when we determine

GC AL it is the same as determining

5.4. A practical point: least square fitting the points in Figure 1

It is conceptually easy to fit the source points in Figure 1 with a straight line and determine
their slope, and then do the same for the CCAL points; this provides the necessary quantity
AO. However, the details of the least square fitting process do not favor this particular method.
One reason is that the least-square fitting process regards the points on the horizontal axis as
the independent variable, measured with high accuracy, and those on the vertical axis as the
dependent variable, measured with low accuracy; it does not treat the two sets of data impartially.
Moreover, suppose for example that ç5SRC 90

0
; then the least square process, which assumes

that the points on the horizontal axis are the well-known independent variable, breaks down
completely.

A simple alternative that works well is to transform the variables and plot the difference
D = [Re(XY) — Ina(XY)] versus the sum S = {Re(XY) Im(XY)]. In this space, the angle of
the points from the horizontal axis never exceeds 45° and, moreover, neither Re(XY) nor Im(XY)
is favored. If the slope of the least-square fitted line of D versus S is B, then it is clear that the

SRC •
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corresponding angle in Figure 1 is given by

1 –B
tanck. 

1-1- B •

5.5. Phase variation across the observing band

The system phase varies across the observing band. Figure 2 shows the CCAL deflection over
a 10 MHz bandwidth for two scans near the beginning and end of the Jam99 observing run. The
phase variation in the two scans is nearly identical apart from a constant offset. The phase changes
slowly with channel number by a total of about 40

0
. This change is mainly linear with frequency.

Such a linear phase change is produced by different cable lengths in the two polarization channels.
For spectral line observations it is crucial to account for this in the bandpass calibration. For
continuum observations at wide bandwidth, the cable lengths must be made sufficiently identical
to avoid cancellation of the correlated signals within the band.

PHASE OF THE CCAL DEFLECTION, UCAL OFF

(24)

Fig. 2.— Frequency dependence of CCAL phase OccAL in IF1 for 10 MHz bandwidth versus
spectral channel number for two scans near the beginning and end of the week's observing run.
The small spike in channel 128 comes from a polarized calibration signal radiated from a vertex
antenna.
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There also seems to be a nonlinear aspect to the phase variation with frequency. This appears
to mimic the bandpass shape in that it changes most rapidly at the edges, so it probably occurs
within the spectral processor, presumably because of small differences between the filters in the
two channels.

5.6. Another practical point: a robust least square fit of the phase versus frequency

Mostly, the phase varies linearly with frequency, and one wants to determine and remove this
slope. Here we are discussing th SRC and OCC AL , not their difference AO, which should be almost
independent of frequency. To determine this slope, the knee-jerk response is to linearly fit OCCAL
to frequency. However, this isn't straightforward because Occ AL suffers sudden wraparound jumps
of 2r when it crosses the boundaries —7r or 7r. We offer the following robust prescription.

First, from Figure 1 realize that

CC AL = tan
-1 rin(XY)1

Re(XY)

which means that sin Occ AL = Im(XY) and cos Ckcc AL = Re(XY"). We write

OCC AL = A + B f (26)

where f is the r.f. frequency and (A, B) are the constants we need to determine. Write

cos(A B f) = C cos(Bf) D sin(13f) (27a)

sin(A B f) = cos(Bn sin(Bf) (27b)

and determine (B , C , D,C 1, D'). Including B in a standard least-squares is distasteful for two
reasons: firstly, it's a nonlinear least-squares fit; secondly, B is likely to be indeterminate because
B f probably won't change much across the observing band.

To deal with this in a robust way perform the following steps in sequence:

(1) Estimate an approximate value for B. This parameter depends on cable length differences
and should remain constant with time. For a well-constructed system it is small. If Occ AL doesn't
change much over the observing band, such as in Figure 2, it's OK to use B = O.

(2) Using this estimated value for B, fit for (C, DI) in equation 27. Note that these are
linear least squares fits.

(3) Use the fit to equation 27 to define the residuals

(25)
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[ Ccos(Bf) + sin(BP1
R = CCAL — tan- 	(28)

C cos(Bf) D sin(Bf)

R contains a residual slope that reflects the error in your estimate of B. These residuals are
centered on R = 0 and should all lie well within the range r. Because there are no sudden
jumps from wraparound, the slope can be obtained from a linear least squares fit.

6. THE SPECTRAL PROCESSOR

6.1. DESCRIPTION

The Green Bank spectral processor is a Fourier-transform spectrometer whose digital
hardware computes real-time FFT's on the baseband voltage samples of any receiver's IF signal.
The spectral processor contains two FFT engines with a common clock and timing circuitry. Each
FFT engine can accept 1, 2, or 4 sampled IF inputs to produce spectra with 1024, 512, or 256
frequency points, respectively, from each IF. The complex voltage spectra from the two FFT
engines may be cross multiplied as shown in Figure 3.

IF to Baseband
Convertor

___ 6-Bit
Sampler 

IF to Baseband
Convertor

IT to Baseband
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Sampler 
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and
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B*B

Engine

WI
Engine

IF to Baseband
Convertor

- 6-Bit
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Fig. 3.— Spectral Processor block diagram

When only the self-products are computed (A*A and B*B in Figure 3) the total FFT
bandwidth of each engine is 40 MHz (80 real mega-s.mples per second) which may be divided
between the 1, 2, or 4 IF inputs. In other words, if 4 IF samples are being accepted by one FFT
engine, the maximum bandwidth of each IF spectrum is 10 MHz. If both self- and cross-products
are computed, the total bandwidth must be 20 MHz or less.
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Our polarization measurement tests used 2 IF's on each FFT engine (Al, A2, Bl, and B2),
each with a bandwidth of 10 MHz, and all products were computed and stored. The signal from
one linear polarization was split and sent to inputs Al and A2, and the other polarization was
sent to B1 and B2. Both spectrum pairs, Al/B1 and A2/B2 were centered at the same frequency
as a redundancy check on the independent IF components and samplers.

Let g be the ratio of the gain of channel A to the gain of channel B as a function of frequency
across the spectrum. Then, if A and B are connected to orthogonal, linearly polarized feed
outputs, the Stokes parameters may be computed from the spectral processor output spectra as
follows:

I=A*A-I-gB*B (29)

=A*A—gB*B (30)

2vgRe1A*B1 (31)

V = —2AgirnIA* B1 (32)

There are a number of calibrations and corrections that must be applied to the data before these
equations are valid. Those corrections are the subject of other sections of this report.

At the two FFT outputs, the relative phase of the signal that is correlated between channels
A and B is given by

rinjA*B1 
Phase = arctan 

RejA*Bi
(33)

This phase depends on the cable lengths, relative phases of the synchronous or common LO's, and
the filter phase shifts in the two IF channels. This instrumental phase must be measured with a
common noise signal injected into the input to the two receiver channels.

A mystery that has been with the spectral processor since its inception is that, for a correlated
input signal, the amplitude of the correlated output is almost always less that the sum of the
self-products of the same signal in channels A and B. A typical loss is a few percent, but it
can be as high as 10%. This loss is corrected in the calibration procedures, but its existence is
bothersome. At various times during the life of the spectral processor attempts have been made to
associate the loss of correlation with input signal level, combinations of IF modules, input signal
phase, and other variables, but the puzzle remains.

6.2. INTERNAL L.O. AND ELECTRONICS PHASE STABILITY

There are two local oscillators in each IF convertor section of the spectral processor. The first
is a tunable LO (230 to 660 MHz) that converts an input signal with a frequency anywhere between
70 and 500 MHz to an intermediate IF that is either the upper or lower sideband of 160 MHz.
The second LO is fixed at 160 MHz and converts the signal to baseband with a single-sideband
mixer. Both of these LO's use a 5 MHz signal from the site maser as a phase reference.
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Any phase noise in either of these LO signals will cause a loss of coherence between two IF
channels so we suspected this as the source of coherence loss mentioned above. To test this we
injected a common CW signal into the input of two IF sections at a frequency that converted to
100 kHz at baseband. The two 100 kHz signals were then compared with an oscilloscope. The
largest peak-to-peak phase noise between any two IF sections was 40 degrees or about 8 degrees
rms. This would explain only about 1% loss of coherence so it does not appear to be the major
cause of correlation loss. When a common LO signal was substituted for the internal variable
oscillators the phase noise dropped to less than 5 degrees peak-to-peak. This indicates that most
of the phase noise is coming from the internal variable LO's.

During our first observations in April 1998 we saw a number of substantial phase calibration
jumps of as much as 40 degrees from one day to the next. To determine whether these phase
changes were happening in the spectral processor electronics we measured the relative phase of
a common noise signal through channels Al and B1 and channels A2 and B2 over about two
hours while the temperature of all or part of the electronics was varied by opening and closing
rack drawers and covering individual IF drawer vents. No relative phase changes greater than 1.6
degrees were measured.

On the first day of the January 1999 observations a substantial phase jump was seen in the
calibration of the Al/B1 IF pair as measured with the correlated noise cal. The phase of IF pair
A2/B2, which was connected to the same IF signals at the same frequency, was stable during this
period. For second and following days of this run and for the May 1999 run we used a common
external oscillator for the variable LO of IF channels Al and B1. No further phase jumps were
seen.

6.3. TRANSFER CHARACTERISTICS

To check the linearity of the samplers (six-bit A/D's) in the spectral processor we took a
series of spectrum measurements at different input power levels to the samplers while the telescope
was looking at cold sky. The input power level was varied by changing the IF attenuators in the IF
to Baseband Convertor modules. These attenuators have nominally 1 dB steps and are accurate
to about 0.1 dB. The input power levels were varied from about 6 dB below the normal operating
level to about 6 dB above. The measured power transfer functions for the four IF channels are
shown in Figure 4.

The horizontal axis in Figure 4 is the log of the relative input power to each sampler as
determined by the attenuator setting. The points for the four IF channels are arbitrarily offset
in the horizontal direction for so that they are not confused in the plot. The vertical axis is the
log of the output power of the FFT as measure by the median power of the 512 channels in each
spectrum. The straight line associated with each set of measurements has a slope of one and is
adjusted to have a zero average vertical deviation from the plotted points. To the extent that
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Log of input power (arbitrary zero)

Fig. 4.— Spectrum output power as a function of input noise power. The normal operating point
for the A/D's is at log(outputpower) 6.55 on this graph.

we can rely on the attenuation values, all samplers appear to be linear over the measured range
except at the lowest input power.

During the sampler linearity measurements the uncorrelated receiver noise calibration signals
were switched at a 1 Hz rate, and separate spectra were recorded with the cal on and off. From
these two spectra and the laboratory value of the calibration signals for each receiver channel
we can compute the system temperature for each of the 512 channels in each spectrum. The
median system temperature for each IF channel as a function of spectral output power is shown
in Figure 5. The horizontal axis in Figure 5 is the same as the vertical axis in Figure 4.

As one would expect from the non-linearity at the lowest power points in Figure 4, the
measured system temperature is significantly higher for the lowest sampler input power. A weak
dependence of system temperature on sampler input power is seen at higher powers which indicate
a change in the slope of the transfer function of about 0.2% per dB of input power change. This
did not affect our polarization measurements significantly.

7. SUBTLE SYSTEM PROBLEMS AND/OR SURPRISES

7.1. INTERACTION BETWEEN THE CCAL AND UCAL

At 1.4 GHz, our 140-foot system had both an uncorrelated and a correlated cal, i.e. a UCAL
and a, CAL. The idea was to use the UCAL for amplitude calibration and the CCAL for phase
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Fig. 5.— Measure system temperature as a function of spectrum output power. The normal
operating point for the A/D's is at log(outputpower) 6.55 on this graph.

calibration. However, these cals interacted. Both the apparent amplitude and phase of the CCAL
were affected by the UCAL being turned on (Here, "phase of the CCAL" means the relative
phase between the two polarization channels X and Y.). Figure 6 shows this dependence in one
of the IF's. Here, the solid line at the top is the CCAL deflection with the UCAL off and the
dashed line just below is the CCAL deflection with the UCAL on; this difference is about 3.3%.
At the bottom, the solid line is the UCAL deflection with the CCAL off and the dashed line is the
UCAL deflection with the CCAL on; this difference is about 15%. The ratio of these percentage
differences is roughly equal to the ratio of the "other" cal intensities. This suggests a saturation
effect; however, the middle sawtooth shows the system temperature changing on and off three
astronomical sources. The sources have zero effect on the cal deflections, and the largest source
raises the system temperature by 14 K—about 2.5 times larger than the CCAL. Thus it is not a
saturation effect.

Not only does the UCAL affect the amplitude of the CCAL, but Figure 7 shows that it also
affects the phase. The phase of the CCAL changes by 0.9 degrees when the UCAL is turned on.
The phase is unaffected by a simple increase in system temperature from an astronomical source.

It is not easy to understand the reason for this interdependence. However, it exists. Given this
inescapable fact for this particular system, we cannot be confident of an absence of interdependence
in any future system.

This need not be a problem. As we discussed in sections 3.2 and 4.9, there is no reason to
use two different cals. At Arecibo we used only a CCAL. The phase of the CCAL was adjusted
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INTERACTIONS OF COAL AND UCAL
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Fig. 6.— CCAL and UCAL deflections with the other cal both on and off for IFO, versus scan
number (with arbitrary zero subtracted). The left-hand vertical axis is for the upper and lower
pairs of solid and dashed lines, which show the CCAL and UCAL deflections with both the other
cal both on and off. The right-hand vertical axis is the total system temperature: While these
measurements were going on, the telescope was moving on and off continuum sources and the total
system temperature was changing, shown by the solid sawtooth.

to provide approximate linear polarization, with AO = th,SRC OCCAL 2°. This turned out to
be a very convenient situation because it made the Mueller matrix elements mvu,MUV small and
thereby simplified the calibration. We note, however, that making AO small is not essential.

One more point. The interaction between GB's CCAL and UCAL underscores the desirability
of following the basic philosophical tenet in astronomical measurements, to wit: never measure
more than one signal at a time. Thus, when calibrating, use only one calibrator at a time. And
more importantly, when observing, never inject the extraneous calibration signal. Injecting excess
noise for calibration purposes not only increases the system temperature, but it also puts the
system slightly off balance, moving it away from the operating point at which it was calibrated. In
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PHASE OF COAL WITH UCAL BOTH ON AND OFF--IF0

Fig. 7.— CCAL phase with the UCAL both on and off for IFO. The left-hand vertical axis is for the
solid and dashed lines, almost superposed, which show the CCAL phases with the UCAL both on
and off. The right-hand axis is for the phase difference between these states, shown by the wiggly
solid line. The arbitrary scan numbers are the same as those in Figure 6, and the constancy of the
CCAL phase difference indicates that it is unaffected by system temperature variations.

other words, one should compare the source deflection S with the cal deflection C. This departs
from the past NRAO practice, used in the 140-foot 1024-channel antocorrelator, of comparing

C with C.

7.2. NONZERO XY FOR AN UNPOLARIZED SOURCE

As discussed in section 8.1, the Au coefficient of the least square fit for the position angle
variation of the Stokes U in equation 36b represents the Mueller matrix element mu I . One uses a
similar equation to find my/.

These imperfections impact spectral polarimetry measurements, as most easily illustrated
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with the absorption spectrum of a strong unpolarized source. Figure 8 shows the example of the
21-cm line absorption spectrum against Cas A. Cas A is polarized to only a very small degree—we
measured it to be 0.19% ± 0.06% polarized during our continuum source survey. However, in
the spectral measurement there are much larger 1% replicas of the absorption line in the XY
spectra. In the Re(XY) spectrum the source goes positive (niu 1), making the absorption line look
negative, and the Im(XY) spectrum is the other way around (mv/).

XY PRODUCTS, CALS OFF, ON CAS A

128 256
SPECTRAL CHANNEL NUMBER

Fig. 8.— 21-cm line absorption against Cas A, 1.25 MHz bandwidth. The left-hand vertical scale
is for the XY products and the right-hand scale for XX -I- YY.

When observing Zeeman splitting, classically one removes the effect for the line alone in a
least-square fitting process. There are two advantages of knowing and correcting for the Mueller
matrix. Firstly, this after-the-fact empirical correction becomes much smaller. Secondly, correcting
for the matrix elements removes artifacts from not only the line but also the continuum. For
example, Figure 8, shows that there are nonzero XY products lying outside the line whose spectral
shape mimics the shape of the spectral processor's input filters. These are mostly removed with
the Mueller matrix correction.
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7.3. NONZERO XY WHEN NO SOURCE IS BEING OBSERVED

Nonzero XY products also occur when observing no source whatsoever, at the  1% level.
Figure 9 shows the normalized XY spectra of these nonzero products with 10 MHz bandwidth.
Here the amplitudes of the two XY products follow the bandpass shape quite closely, particularly
at the ends, and also the phase varies much more rapidly with frequency than does the CCAL
deflection. Again, these rapid frequency variations strongly imply that this residual correlation
occurs within the spectral processor itself.

XY PRODUCTS, CALS OFF, BLANK SKY

1 28 256 384 512
SPECTRAL CHANNEL NUMBER

Fig. 9.— XY spectra of system noise, with no correlated input noise, for 10 MHz bandwidth. The
two XY products are normalized to the sum XX + YY and are shown by dotted and dashed lines.
The left-hand vertical axis gives the scale for the intensity of the two products and the right hand
their relative phase, which is shown by the solid line. The spike at channel 128 is the correlated
signal from the vertex radiator.

This effect has no obvious ramifications for observing except that the astronomer should do
on-off measurements to subtract it away—and one needs to subtract it away. It is important to be
aware of this because otherwise one might be tempted to rely on the cross-correlation being good
enough to eliminate the necessity for an "off".
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7.4. LOSS OF CORRELATION FOR CORRELATED SIGNALS IN THE
SPECTRAL PROCESSOR

The spectral processor is known to lose some correlation on correlated signals. This means
that the XY outputs are smaller than they should be. In Mueller matrix terms, this means that

( muu, mvv) < 1.

We noticed this effect on our survey of linear polarization of astronomical sources. We derived
the linearly polarized flux by least squares fitting observations at twelve different position angles
(covering a range of 360

0
, spaced by 30

0
). We used two different data sets: one was the difference

between the source deflections in the orthogonally polarized feeds and the other was the deflection
of the correlated signal of the two feeds. Both sets should measure the same thing, except that the
position angles on the sky differ by 45°. However, the polarized fluxes from the correlated signal
were systematically smaller than from the difference. This is evident in Table 1, which lists our
results: for sources with two listings observed during Jan99, the first line shows results derived
from the difference and the second from the cross product.

For a straight average of the 18 sources having significant polarized flux, the cross product
polarized fluxes were systematically smaller than the difference fluxes by 8.3% ± 1.5%. In other
words, ( muu, mvv) 0.92. From the practical standpoint of astronomical measurements, this
is an unfortunate but not terribly serious effect. All polarized fluxes should be increased by this
amount and the signal/noise is degraded somewhat.

8. A SURVEY OF LINEAR POLARIZED SOURCES AT 1420 MHZ

8.1. THE LEAST SQUARES FIT TO POSITION ANGLE

Suppose a linearly polarized source has polarized intensity Ps and position angle Os . Then the
two linear-polarized Stokes parameters are

Qs = P8 cos(208) (34a)

= Ps sin(298 ) . (34b)

If we observe this source with our orthogonally linearly polarized feeds oriented at angle PA,
then it is clear that the observed Q and U are

Q obs = Q, cos(2PA) + U sin(2PA) (35a)
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U068 = —Q, sin(2PA) (la cos(2PA) . (35b)

Here, Q066 is obtained from the difference between intensity (XX — YY) and U06, from XY.

If we do least squares fits as follows:

Qob, = AQ BQ cos(2PA) CQ sin(2PA) (36a)

Uob, = Au Bu cos(2PA) -I- Cu sin(2PA) , (36b)

then by simple identification on a term-by-term basis we have

Q, = BQ = —Cu (37a)

Us = CQ = Bu (37b)

In the ideal world, AQ Au = 0. In the real world, they are nonzero. For a dual-linear feed,
the departure of AQ from zero (a nonzero rricii ) is a simple scale error in the relative calibration
of XX and YY. The departure of Au from zero (a nonzero mu') indicates a residual XY
correlation.

8.2. DERIVING P, AND 88 : PROPAGATION OF ERRORS

This is basic statistical analysis; for an arbitrary result R(BC) the fundamental equation is
a (R)2 = [S26

(
B

)
2

+
 P- 20-(c ) 2 1 . So firstly, for the source's polarized intensity P, = (B2 + c2)1/2,

we have

a(p8)2 B2 0.(B)2 -I- C
2 6,(c)2

(B2 + C2)

and for the particular special case in which a(B) = a(C), then we have

0. (p8)
2 0.(B)2

Secondly, for the position angle given by tan(20 8 ) = we have

(38)

(39)
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.7(2042 B2C(C)2 C20*(B)2
(B

2 + C2)2

and, for the same special case with a(B) = cr(C), we have

o(B)2
04208\2 = 

(B2 + C2) •

This research has made use of data from the University of Michigan Radio Astronomy
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Table 1. POLARIZATION RESULTS: SOME SINGLE-DISH CALIBRATORS AT 1420
MHZ

Source a
1950 61950 S, Jy P., Jy %Pol 98

3027 00 52 44.9 68 06 06 6.65 0.93 7.02 ± 0.03 131.9 ± 0.5
3027 00 52 44.9 68 06 06 6.65 0.82 6.15 ± 0.35 131.8 ± 1.8

3C27 sp 00 52 44.9 68 06 06 6.65 0.52 3.9± • • 122.3± ...

3029 00 55 00.7 -01 40 30 5.21 1.15 11.01 ± 0.65 171.6 ± 0.4

3C29 00 55 00.7 -01 40 30 5.21 1.10 10.52 ± 0.28 171.6 ± 0.4

3C33 01 06 14.2 13 03 37 12.53 1.81 7.09 E 0.42* 68.6 ± 0.9*

3033 01 06 14.2 13 03 37 12.53 1.76 6.92 ± 0.35 * 	67.4 ± 0.7*

3041 AO 01 23 54.7 32 57 36 3.5 0.42 6.0 48.9

3C98 03 56 11.0 10 17 41 10.25 1.05 5.10 ± 0.15 72.0 ± 0.8
3098 03 56 11.0 10 17 41 10.25 0.96 4.70 E 0.10 71.0 ± 0.6

30123 04 33 55.2 29 34 14 45.16 0.45 0.50 ± 0.19 * 	140.2 ± 5.5*
30123 04 33 55.2 29 34 14 45.16 0.33 0.36 ± 0.13 * 	153.4 ± 5.1*

30138 05 18 16.5 16 35 26 8.88 1.11 6.81 ± 0.41 176.2 ± 1.1
30138 05 18 16.5 16 35 26 8.88 1.05 6.48 ± 0.11 176.9 ± 0.3

3C144-TAU 05 31 31.0 21 59 17 895.50 14.68 0.82 ± 0.08 87.9 ± 1.6
3C144-TAU 05 31 31.0 21 59 17 895.50 13.92 0.75 ± 0.09 86.0 ± 2.5

ORION-A 05 32 44.0 -05 24 54 389.65 0.86 0.11 ± 0.10 • • •

ORION-A 05 32 44.0 -05 24 54 389.65 0.94 0.12 ± 0.14 • • •

30147.1 05 39 11.0 -01 55 36 57.78 0.69 0.60 ± 0.30 * 	84.0 ± 7.2*
30147.1 05 39 11.0 -01 55 36 57.78 0.68 0.59 ± 0.10 *	84.5 ± 2.4*

P0736+01 AO 07 36 42.6 01 44 00 2.9 0.48 8.2 103.4

30227 09 45 07.8 07 39 09 7.18 0.74 5.14 ± 0.37 142.4 ± 1.0
30227 09 45 07.8 07 39 09 7.18 0.66 4.56 ± 0.06 144.8 0.7

30227 sp 09 45 07.8 07 39 09 7.18 0.47 3.3± • • • 146.7± • • •
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Table 1-Continued

Source cv1950 61960 S, Jy Pa, „ly %Pol 98

3C270 12 16 51.2 06 06 13 17.20 2.62 7.62 ± 0.30 122.1 ± 2.3
3C270 12 16 51.2 06 06 13 17.20 2.63 7.63 ± 0.17 122.3 ± 1.5

3C270 sp 12 16 51.2 06 06 13 17.20 2.22 6.3± • - 128.1± •

3C273 12 26 32.9 02 19 39 49.77 1.23 1.24 ± 0.04 149.7 ± 0.9
3C273 12 26 32.9 02 19 39 49.77 1.17 1.17 ± 0.06 151.0 0.7

3C274 12 28 17.8 12 39 50 213.56 4.27 1.00 ± 0.05 144.5 ± 5.6
3C274 12 28 17.8 12 39 50 213.56 3.89 0.91 ± 0.09 144.5 ± 6.3

3C274.1 12 32 57.0 21 37 06 2.64 0.77 14.52 ± 1.70 * 	149.9 ± 1.7*
3C274.1 12 32 57.0 21 37 06 2.64 0.61 11.61 ± 0.37 * 	152.6 ± 0.5*
3C274.1 AO 12 32 57.0 21 37 06 2.64 0.67 12.8 158.6

3C286 13 28 49.7 30 46 02 14.78 2.74 9.52 ± 0.16 27.4 ± 0.1
3C286 13 28 49.7 30 46 02 14.78 2.60 9.04 ± 0.13 27.4 ± 0.2
30286 AO 13 28 49.7 30 46 02 14.78 2.86 9.7 28.8

3C286 sp 13 28 49.7 30 46 02 14.78 2.34 7.9± - 34.3± • • •

P1414+11 14 14 27.3 11 02 16 4.14 0.82 9.89 ± 0.22 25.4 ± 3.1
P1414+11 14 14 27.3 11 02 16 4.14 0.78 9.45 ± 0.15 26.4 ± 0.2

3C336 AO 16 22 33.5 23 52 06 2.7 0.15 2.7 29.1

3C348 16 48 40.1 05 04 28 43.69 1.37 1.57 ± 0.17 * 	57.0 ± 1.5*
3C348 16 48 40.1 05 04 28 43.69 1.27 1.45 ± 0.09 * 	57.1 ± 0.8*

3C348 sp 16 48 40.1 05 04 28 43.69 1.31 1.5± 68.1± - • •

M17 18 17 33.0 40 35 02 558.25 9.60 0.86 ± 0.02 81A*1.3
M17 18 17 33.0 40 35 02 558.25 8.49 0.76 ± 0.02 82.8 ± 0.7

W43 18 44 57.0 -01 56 36 140.50 3.04 1.08 ± 0.15 * 	85.1 d 1.9*
W43 18 44 57.0 -01 56 36 140.50 2.78 0.99 ± 0.12 * 	86.5 ± 1.7*

3C399.1 AO 19 14 00.0 30 14 23 2.7 0.56 10.3 53.6

3C405-CYG 19 57 44.5 40 35 02 1654.90 16.88 0.51 ± 0.05 175.7 ± 6.3
3C405-CYG 19 57 44.5 40 35 02 1654.90 17.54 0.53 ± 0.06 178.3 ± 1.5
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Table 1-Continued

Source a 1 950 51950 S, Jy P8, Jy %Pol 0,

3C433 sp 21 21 30.6 24 51 18 11.68 1.67 7.1± • • 136.0± • • •

CTA102 sp 22 30 07.7 11 28 23 6.37 0.65 5.1± • • 105.3± • • •

3C452 sun 22 43 33.0 39 25 28 14.40 2.74 9.52 ± 0.16 27.4 ± 0.1
3C452 sun 22 43 33.0 39 25 28 14.40 2.60 9.04 ± 0.13 27.4 ±0.2

3C452 sp 22 43 33.0 39 25 28 9.71 1.22 6.3± • • 13.9± • •

3C454.3 22 51 29.4 15 52 56 13.56 2.09 7.69 ± 0.55* 67.8 ± 1.0*
3C454.3 22 51 29.4 15 52 56 13.56 1.81 6.67 ± 0.22 * 	68.0 ± 0.5*
3C454.3 AO 22 51 29.4 15 52 56 13.56 1.57 5.8 70.6

CAS-A 23 21 07.0 58 33 48 2032.00 10.97 0.27 ± 0.18 4.2 ± 8.8
CAS-A 23 21 07.0 58 33 48 2032.00 7.72 0.19 ± 0.06 4.5 ± 2.7

Note. - Column 1 is the source name, column 2 and 3 the 1950 equatorial coordinates, column 4 the flux
density S in Jy (S = stok2es ,

) column 5 the polarized flux density Ps = (Q,2,-1- 0) 112 in Jy, column 6 the percent
polarization (defined as-1-91--.

5
LP -), column 7 the position angle.

Note. - Sources listed twice were observed during Jan 99. The first listing was derived from the Stokes Q
(the difference between orthogonal linear polarizations) and the second from the Stokes U (the cross-correlation
of the two linears). The letters "sp" means that the source was observed during the Spring 1998 observing
period; uncertainties are not available and the data somewhat less accurate than in Jan 1999. "sun" means that
the observations were severely affected by the Sun and should not be trusted, and in particular that the errors
are almost certainly underestimates.

Note. - Most results were derived from at least two 12 position angle datasets at the 140-foot telescope. For
them, the quoted errors are derived from the differences among those datasets. For results whose errors have
the superscript * there was only a single 12 position angle dataset and the quoted errors are too small.

Note. - Sources followed by "AO" were observed at Arecibo during Feb99; their results should be more
accurate than the 140-foot results.
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Table 2. SOME SINGLE-DISH CALIBRATORS AT 4.8, 8.0, and 14,5 GHZ

Source a1950 61950 Scg S8.0 514.8 P4.8 P8.0 P14.5 04.8 08.0 014.5

NRA05 00 03 40.3 -06 40 17 2.2 2.7 2.3 3.5 3.5 5.0 40 20 20
3C48 01 34 49.8 32 54 21 5.40 3.56 1.84 4.02 5.17 6.62 104.0 113.7 115.2
3C58 02 01 52.0 64 35 06 29.3 28.0 23.1 5.6 5.5 5.5 163 177 7
3C66B 02 20 01.9 42 45 54 3.26 1.78 0.81 3.63 3.6 2.5 70.5 79. 94.
P0218+35.7 02 18 04.1 35 42 32 1.3 1.2 1.2 2.5 2.0 7.0 20 40 50
3C10 02 22 32.0 63 51 42 15.5 8.0 1.7 0.5 1.0 2.5 110 140 110?
3083.1 03 15 00.0 41 41 12 1.8 1.1 0.6 5.5 6.0 6.5 110 115 120
3C84 03 16 29.6 41 19 52 22 21 19 0.05 0.05 0.05
NRA0140 03 33 22.6 32 08 37 1.6 lA 1.7 4.0 4.5 3.0 60 45 50
3C93 03 40 51.6 04 48 22 0.87 0.59 0.32 7.5 7.4 10.6 139.2 131. 134.
4C76.03 04 03 58.6 76 48 54 2.8 2.2 1.5 0.5 2? 3.0 0 100? 50
3C138 05 18 16.5 16 35 27 3.8 2.8 1.5 10.5 11.0 11.0 170 170 170
P0521-36.5 05 21 12.9 -36 30 17 8.0 7.5 5.0 3.5 2.2 2.0 75 70 70
3C144 05 31 31.0 21 59 17 596 560 430 5.0 6.8 9.9 141 146 152
3C147 05 38 43.5 49 49 43 7.5 5.5 2.8 0.3 1.0 3.0 0 150 50
3C153 06 05 44.5 48 04 49 1.32 0.81 0.40 3.94 5.1 5.2 52.3 50. 54.
3C196 08 09 59.4 48 22 07 4.3 2.6 1.2 2.3 2.0 2.0 120 150 160
P0836+71.0 08 36 21.5 71 04 22 2.3 2.6 2.3 7.0 4.8 4.0 100 105 125
3C207 08 38 01.8 13 23 06 1.3 1.3 1.3 3.0 3.0 2.0 25 20 15
3C216 09 06 17.3 43 05 59 1.6 1.3 1.1 1.5 1.5 2.0 90 0 150
3C219 09 17 50.7 45 51 44 2.4 1.4 0.8 3.0 4.0 2.5 145 140 130
3C245 10 40 06.1 12 19 15 1.61 1.33 0.98 8.38 7.00 5.10 33.0 27.9 29.4
P1127-14.5 11 27 35.7 -14 32 55 3.8 3.3 2.6 3.5 3.5 3.0 160 160 160
3C273 12 26 33.2 02 19 43 37 44 48 3.3 3.5 3.0 170 155 148
3C274 12 28 17.6 12 40 02 71 49 29 0.48 1.6 2.9 40 87 53
3C280 12 54 41.4 47 36 32 1.66 1.07 0.54 7.64 8.2 11.2 44.2 51.2 53.2
3C286 13 28 49.7 30 45 59 7.37 5.53 3.53 11.09 11.46 11.82 33.21 33.13 35.21
3C330 16 09 16.2 66 04 30 2.24 1.32 0.64 3.59 4.2 4.0 131.5 132. 108.
MK-501 16 52 11.8 39 50 25 1.6 1.6 1.3 2.7 3.0 3.0 10 5 0
3C353 17 17 55.6 -00 55 54 22.2 15.5 5.2 4.4 87 79
3C390.3 18 45 45.5 79 42 45 4.4 3.1 1.5 6.0 7.0 4.0 25 25 25
3C395 19 01 02.2 31 55 12 1.5 1.5 1.3 4.0 3.5 3.5 65 45 30
P2005+40.3 20 04 13.1 40 20 34 2.7 2.2 1.8 4.5 2.5 2.5 20 50 60
P2014+37.0 20 14 34.6 37 05 03 3.5 2.5 0.9 7.0 7.0 7.0 103 125 135
3C452 22 43 32.8 39 25 28 3.14 1.82 0.63 7.14 7.0 5.9 121.4 159.6 173.

Note. - Column 1 is the source name, column 2 and 3 the 1950 equatorial coordinates, column 4-6 the flux density
in Jy (S - S tokes /

)
7 

columns 7 9 the percentage polarization (defined as 100x
"

1tri2zesd intensity .7) columns 10-12 the
position angle in degrees. Subscripts indicate frequency in GHz.

Note. - We perused the University of Michigan catalog (Aller et al 1996) and include all reasonably strong sources
whose polarization properties have not varied terribly much over the period 1990  1999.0. Sources with names in
boldface are stable and have typical uncertainties equal to a few or less in the last quoted decimal place; these values
were kindly provided by Hugh Aller. For the others, values were estimated by eye from graphs and uncertainties are
at least a few 0.1% in S, a few 0.1% in P, a few degrees in 0; some sources exhibit distinct time variability and the
user should check with recent observations. Most positions are from Kuhr et al (1981); some are from BDFL and
Simhad The Michigan database is on the web: http://www.astro.i.sa.urnscii.edu.-80/obs/radioteibudiotei.httnt


