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Abstract

Phased array feeds offer the possibility of more efficient use of large ra-
dio astronomy reflector antennas by providing more closely spaced beams
over a wide field of view and higher aperture efficiency in each beam than
have been realized with horn feeds. Phased arrays have been used exten-
sively in rapid scanning radars and shaped-beam satellite systems, but the
array design criteria for low-noise radio astronomy antennas are markedly
different, particularly as they affect array sampling density. Element spac-
ing in the focal plane must be less than lA for large FID reflectors and less
than about 0.7A for FID < 0.5. This rules out conventional horns as array
elements and imposes a limit on the array bandwidth. The receive-only
case of radio astronomy permit the use of a number of signal combin-
ing techniques that do not degrade system sensitivity. Problems of array
weight optimization, mutual coupling, and correction of reflector errors
are examined briefly in this paper.

1 Introduction
The straightforward extension of conventional reflector antenna feed techniques
to wide fields-of-view is to add more feeds in the reflector focal plane. However,
the physical size of even moderately efficient waveguide feeds dictates beam
spacings of two or more beamwidths. This leads to an undersampling of the
far field power by factor of at least 16 [1], [2]. Also, waveguide feeds are well
matched to the focal plane fields only near the optical axis of the telescope. The
efficiency loss and beam distortion due to off-axis reflector aberrations can be
quite severe.
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A number of papers have shown that phased array feeds are effective in
improving the efficiency of off-axis beams of large-aperture reflectors [3]-[8].
This work is quite relavent to the low-noise reflector feed design problem, but
it needs to be extended to optimization on the basis of signal-to-noise ratio
with simultaneous closly spaced beams. Very recently, Vilnrotter et al. [9} have
demonstrated a feed array for optimizing signal-to-noise ratio of a low-noise
system in real time. Their work is extended in this paper to include the effects
of coherent background noise (spillover) and more complete sampling of the
focal plane fields.

Phased array feeds have a long history of development for wide-angle scan-
ning of radar beams [10] and for shaped beams on satellite transmitters {11}414
but the design constraints on these systems are considerably different from those
on low noise radio astronomy antennas. Transmitting systems are restricted to
phase-only beam scanning, and the satellite systems are optimized for transmit-
ted gain over a chosen footprint.

Most array feeds contructed to date have used elements designed to optimally
illuminate the reflector as an independent feed. This has resulted in lost power
due to array undersampling because of the element spacing restrictions imposed
by the element selection. To realize the full potential of a phased array feed,
the reflector illumination pattern and secondary beam-forming operation must
both be accomplished primarily with optimized complex weights on the element
signals and only secondarily with selection of the element radiation pattern. In
fact, we will see that the restrictions on element spacing will severely limit the
choice of element pattern.

With one exception [9], none of the array feed designs in the literature have
taken advantage of the fact that some low noise reflector antenna applications
are receive-only, such as distant spacecraft reception or radio astronomy re-
search. This opens up a range of digital signal processing techniques that break
some of the constraints previously assumed in array design. The correlation
techniques commonly used in aperture synthesis work [15]-[17] may be applied
to the array feed problem to reduce data processing speed requirements and
to permit data reprocessing to form beams at any spacing and with a variety
of sidelobe properties without loss of information. The fundamental limits of
beam orthogonality and sampling theory [18]-[20] still apply, but they appear
in the guise of correlated signals or noise, instead of power loss.

A number of technical advances such as very low noise, ambient tempera-
ture amplifiers, small inexpensive cryogenic refrigerators, and affordable signal
processing on a very large scale need to take place before phased array feeds
see widespread use in radio astronomy [21], but these will certainly come. At
a few frequency ranges the technology already exists to build small arrays that
are competitive with low-noise waveguide horn systems.
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Producing a Far-field Beam from the Mea-
sured Coherence Function

From reciprocity, we know that we can transmit a wave with maximum far-
field gain by generating an electromagnetic field pattern in the focal plane of a
reflector antenna that is everywhere the complex conjugate of the fields produced
in the focal plane by a point source in the far-field beam peak. Again, using
reciprocity, we can show that the received and transmitted beam shapes are the
same, and the field pattern can be conjugately matched in any surface crossed
by the ray paths, not just the reflector's focal plane.

= Summation of Complex Voltages

v v

Figure 1: Beam power output by combining signal voltages from a small-element
focal plane array.

Let us generate the transmitted field in the focal plane by dividing the power
among a large number of electrically small antennas using power dividers and
phase shifters to losslessly produce the proper complex weight for each element
as shown in Figure 1, ignoring mutual coupling effects for the moment. The
same divider network may be used as a combining network in the receiving case
to produce a beam output. The mathematical equivalent of the combiner is

V = E wivi (1)
i=0

where Wi is the complex weight applied to the voltage, v i from element i.
Another method of forming a beam in the receiving case is to measure and

combine the vector products of the signals from every element pair in the array
as shown in Figure 2. This is the same as measuring the field coherence function
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Summation of Complex Cross Products

U00 01 UO2 ON 11 UNN

in the surface defined by the array. The relative advantages of these two schemes
will be discussed briefly below.

Figure 2: Beam power output from measurements of the focal plane field coher-
ence function.

Comparison of Figures 1 and 2 shows that the element-pair vector products
are given by

Ujjpii = WiV i Wj Vj (2)

where pii is the measured output of each element pair multiplier, and Uj i is
now the complex weight to be applied to each multiplier output. With a little
algebra

N N N
E Ujipii = E WiViWiVi = W04 E Wivi
i=o j=0 j=0

N N \--..ly N Nu..,..
E ivi = E L.,3=0 -t3.,, 1

v.N w = v.N w 231323 )
= i=0 1--/j=0 "Ai 1-4=0

(4)
"iVi i=0 i=oi 0 

and the fact that the sum over i is the same as the sum over j, an equation
emerges for the conversion of the coherence function measurements to the power
output of our array receiver.

2[N NN
P = E WiVi = E >i i=0 j=0

For each beam direction of the reflector antenna there will be a different set of
coherence weights, U 3 . Therefore, the summation in Equation 5 must be done
once for each beam direction in the desired field of view.

(3)

(5)
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Equation 5 makes no assumptions about the transfer function from far-field
to sample plane, but the problem of determing the Uj j matrices remains. If we
know enough about the reflector, we can compute its matrices using physical
optics. If some of the reflector aberrations are not known a priori, the matrices
may be solved for with the measured products, pij , using the "self calibration"
technique described by Cornwell and Napier [17].

If we assume that an extensive implementation of either of the beam-forming
methods in Figures 1 or 2 in analog hardware is impractical, we are left with a
prodigious signal processing task. The main difference between the two methods
is the number of hardware components required at each stage. in the signal
processing path and the data rates at each stage. The two methods require the
same number, N, of array elements, amplifiers, anti-aliasing filters, and digital
samplers.

The direct voltage combination in Figure 1 requires NB summing networks
and NBNE complex multipliers to form the products, W ivi , where NB is the
number of far-field beams formed, and NE is the number of elements required
to form one beam. Later sections will show that, approximately,

19 < NE < 100, (6)

and
(\riV73 + VICE )2 < N 1.5W NB + \Ma- (7)

All of these components run at a data rate equal to the RF bandwidth. Since
the total number of array elements will always be greater than the number
of beams formed, any spectrometer would be attached to the output of the
summing network, V, for each beam. Data rate decimation by post detection
video filtering must be done after the P = VV operation.

The field coherence measurement in Figure 2 requires NENI2 cross-
multipliers (correlators), nAr

B I2 complex-weight multipliers (thipii ) and NB
summation networks. The disadvantage of this configuration compared to the
one in Figure 1 is the large number of cross-multipliers and NE/2 times as many
weighting multipliers needed. Any generation of spectral information must be
done by making each cross-multiplier a multi-delay correlator. Hence, NENI2,
instead of NB, delay correlators are required for a spectrometer system. The
advantage of the correlation method is that, for the cost of an accumulator on
the output of each cross-multipler, the data rate in the weighting and summa-
tion stages can be greatly reduced. In many cases, the post-correlator part of
the beam formation can be done in a general purpose computer.

The data rate reduction in the weighting and complex summation stages
of the coherence measurement is Br/Ns, where B is the RF bandwidth, T is
the accumulation time, and Ns is the number of spectral channels. This can
range anywhere from 1 to 10 9 , more typically 105 . Another advantage of
the slower data rate and an implementation of weights and summation in a
general-purpose computer is that the correlation accumulator outputs can be
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stored and recombined with a choice of different weights to maximize various
far-field beam and system parameters. To do the same reweighting with the
direct combining network one would need to save the output from the sampler
on each array element. The ratio of storage data rates of the two systems would
be (2NINENB) x (BrINs), where N/NENB 1. (.131-11Vs) represents the
number of independent samples accumulated per spectral resolution element.

Since the radiation from the sky and the reflector beam pattern orienta-
tion usually changes slowly with time, all of the coherence measurements,
in Equation 5, do not have to be measured simultaneously. This permits a
trade-off between observing speed and the total amount of hardware required
to implement the scheme in Figure 2.

Finally, we should note that our assumptions of reciprocity do not preclude
the use of amplifiers ahead of the combining network in a receive-only system
such as is used in radio astronomy. In fact, losses in combining networks and
signal levels needed by practical signal multipliers require considerable gain early
in each element's signal path. With sufficient low-noise preamplification there is
no signal-to-noise penalty in reusing the signal from each element many times.

3 Array Element Spacing and Size
The field at any point in the focal plane of a parabolic reflector is the vector sum
of radiation arriving from all parts of the reflector. Maximum aperture efficiency
in this case requires that every element illuminate the entire reflector. For an
infinite array, the complex weights in Equation 1 or 5 that produce maximum
gain also cancel spillover radiation. In other words, the reflector is uniformly
illuminated without spillover if the maximum gain criterion is satisfied. An
array of finite size cannot provide maximum gain and minimum spillover si-
multaneously, so the weights are generally set to maximize the gain to system
temperature ratio (G/T) as discussed in Section 5

Neither the maximum gain nor complete spillover cancellation can be achieved
if the element spacing is large enough to produce a grating response within the
response pattern of a single element. For example, the grating response of an
infinite, uniform one-dimensional array will begin to appear at array end-fire
when the element spacing is

so ,
1 + sin Oo

where 00 is the half-angle of the broadside uniform beam pattern produced by
something like a sin xlx voltage distribution to the elements. Equation 8 is
simply derived from the property that, in the x = sine dimension, the array
beam is ±00 wide and periodic with a spacing of A/S. With a finite, one-
dimensional array, the spacing given by Equation 8 would put the 6 dB point
of the broadside response at 0 0 , and the 6 dB point of the grating response off

A
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the end of the array. The same criterion can be applied to a rectangular two-
dimensional array. In the examples to follow we shall use 00 = 48°, which gives
so = 0.574A. None of the array properties illustrated depend on this particular
value of 00 , however.

Notice that this grating response criterion is different from two commonly
found in the literature, which are that an unwanted grating respose not fall on
the reflector or that the grating lobe not appear for any narrow-beam scanning
angle. The array feed beam is normally fixed broadside to the array, and it is
made very broad (±00) by severely tapering the array excitation function.

A better array configuration is one on a hexagonal grid, since , this produces
the highest two-dimensional density of elements. The first grating response of
a hexagonal array appears at an element spacing of

Sh = (1 + sin GO cos 30°

because the element row spacing is closer by cos 30
0
 than it is in a rectangular

array. Figure 3 shows the two-dimensional radiation pattern of a 4.03A-radius,
127-element, hexagonal array with an element spacing of 0.67A and a complex
voltage distribution of Wi = J1 (27rri)/ri , where ri is the radial distance of the
ith element from the center of the array. The array voltage distribution scale
length was chosen for this sample pattern calculation so that the spacing is equal
to Sh. Hence, the peak level of the six grating responses at the edge of Figure 3
is 6 dB below the central pattern intensity.

Figure 3: Power pattern of a hexagonal array of semi-isotropically radiating
elements spaced 0.67A. The peak intensity of the six major sidelobes at the
outer boundary is -6 dB

A
(9)
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When the array is used as a feed for a reflector antenna, the effect of the
grating response is to reduce the spillover efficiency of the reflector system and
to increase the system temperature from ground radiation pickup. Figure 4
shows the ratio of the power in the main array response to the power in the
full hemisphere as a function of element spacing for array patterns like the one
shown in Figure 3. The integral ratio is of the form

roo P27r.

R(s) = Jo E (0) A(s 0 , 0) dO d0 
for/2 fo2r gem's,

( , 0) dO d0

where s is the element spacing, E(0) is the element power pattern, A(s , 6, (A)
is the array power pattern, and 00 has the same definition as above but now
appears as the integral limit of the main array response. The limit, 00 48°,
was chosen to be at the -9 dB level of the main array response. The solid line
in Figure 4 is for semi-isotropically radiating elements (E (0) = 1). The array
size in wavelengths was held constant, and the complex weights of the elements
were adjusted to maintain a constant main response width for computing R(s)
in Figure 4. The locations of the element spacing limits given by Equations 8
and 9 are marked on this figure.

(10)

1.05
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Figure 4: Integral of power pattern in Figure 3 as a function of element spacing
assuming a semi-isotropic element radiation pattern (solid line). The dashed
line is the same integral using the element power pattern shown in Figure 5.
The dash-dotted line is the spillover efficiency with the array weights adjusted
to compensate for the element pattern taper (see Section 4). So and Sh are the
grating lobe limits given by Equations 8 and 9.

Real antenna array elements do not have isotropic or semi-isotropic radiation
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patterns. The restriction of Equation 8 or 9 can be relaxed somewhat because
the grating response near the plane of the array will be suppressed by the
reduced response of the elements in these directions. The dashed line in Figure 4
shows the spillover efficiency integrals assuming the element radiation pattern
shown in Figure 5 and the same 00 . This particular element pattern is produced
by a sinuous planar antenna [22]. The taper introduced to the array pattern
by the element pattern is equivalent to the convolution of the array voltage
excitation pattern with the field or current distribution of one element.

aD
-o

(1)
t_

 — 1 0 —

— 1 5 —
a)

—20-

-25 -
0 30 60 90

Polar Angle (degrees)

Figure 5: Example element pattern used in computing array spillover efficiency
in Figure 4

The physical size of the element assumed in computing the dashed curve
in Figure 4 is about A/2. This means that the effective bandwidth of such an
array is about 0.5:0.7 = 1:1.4. The knee of the dashed curve can be shifted
to the right by using elements with a narrower radiation pattern than the one
in Figure 5. However, the size of the element must be increased to accomplish
this, and this increases the minimum physical spacing of the elements. Hence,
the bandwidth remains about the same. Large F D reflectors with small 9o
allow larger bandwidths approaching the limit of 1:2.31 as computed by setting
00 = 0 in Equation 9.

Can we supress the grating lobe by chosing the proper feed pattern and allow
the edge of the grating lobe to just touch the edge of the dish? The answer is yes,
only if the physical diameter, d, of the element required is < A/2 cos 30° sin O.
Rahmat-Samii et al. [23] present parameterized equations for relating the beam
pattern of four likely candidates for array feed elements to their physical size.
Of these, the cigar antenna has the smallest size for a given beamwidth. As an
example, take a reflector size such that 90 = 30°, and require the the edge taper
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be -15 dB. From their Figure 1 and Equation 9 we find an element diameter of
2.1A, which is nearly twice the allowable diameter of d 1.15A. A similar

calculation for 00 = 45°, the largest angle given in [23], yields a ratio of physical
size to required spacing of ,--, 1.7.

This is not to say that waveguide horns cannot be used as phased array
elements, as is amply demonstrated by a number of studies and implementations
[5141491414 It just means that these elements cannot simultaneously suppress
grating lobes and absorb all of the power crossing the focal plane. Another way
of looking at this limitation is that, when the element size (spacing) is large
enough to suppress spillover, grating lobes will overlap the main .array pattern
on the reflector. Then the array excitation function cannot be adjusted to
restore uniform illumination of the aperture.

Antenna elements whose size is significantly less than A break the physical
size versus spacing paradox because their pattern approaches P = cos 0, and
they permit spacings such that the grating lobe cannot exist at all. Another
way out might be to use end-fire arrays or other super-gain antennas whose
transverse size does not change with gain. However, these antennas are rather
narrow band and are subject to the fundamental limits of mutual coupling [20j
which increases with element gain for a fixed spacing.

4 Field Convolution by Finite Element Sizes
At first thought, array elements of A/2 or greater diameter appear to be poor
samplers of the focal plane fields because the field reverses phase on the scale
of AF/D, where FID is the reflector focal ratio. However, this is not a problem
as long as each element has a usable response to the signal from all parts of the
reflector. In fact, field convolution due to finite element size can be corrected
with appropriate element signal weighting. In other words, the illumination
taper due to decreased response of an element to the edge of the reflector can
be compensated by the array pattern.

The far field pattern of an array is the product of the point-source array
pattern and the pattern of an individual element. Since the electric field in the
plane of the array is the Fourier transform of the far field amplitude pattern,
the product of the array and element patterns is equivalent to a convolution of
the array and element fields in the array plane.

E
elem (a, 13)Earray (a , )8) =

f f(Eeteni(x ,Y) * Earray (X, y)) e—i5(x 'Y) dx dy (11)

where a = sin(0) cos(0), and = sin(0) sin(0), and the phase term 5(x, y)
carries the geometric phase delay for each element in the direction (0, 0).

If the array field , Eat rray(X , y), exists, whose convolution with Eelem(X 1 y) is
equal to the ideal array field, then the far field pattern given by Equation 11
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will be the same as the array far field without the element taper. This new
array field is given by the Fourier transform of the ideal array pattern divided
by the element pattern.

av(x'
array(a, /3) e_"(t/ 

13) 
dadO (12)f f EEde. (a , 0)

As long as Eeierrja, (3) has no zeros or very small values where the ideal
array pattern is finite, then a usable Ea' rray (x,y) exists. This is illustrated
in Figure 6 which shows the far field array pattern with and without element
pattern compensation. The dashed curve is computed with Wi J1(271-ri)/ri
array weights and an element pattern which is -12 dB at the 0 = 48°, a more
tapered pattern than shown in Figure 5. The solid curve is computed with the
same element pattern but using weights given by Equation 12.

The sharpness of the edge of the array pattern naturally depends on the
size of the array in wavelengths. Figure 7 shows array pattern cross sections
for three arrays of 4A, 2A, and 1.5A radii. The array sizes chosen for this plot
correspond to having 2, 3, and 6 hexagonal rings of elements around the central
element. Even one ring (7 elements) can offer significant improvement over the
pattern of a single element.

For a given array radius in wavelengths, the detailed shape of the main array
response, as shown in Figures 3, 6, and 7, depends weakly (±1 to ±2 dB) on
the shape of the outer boundary of the array and on element spacing. Since
the array voltage distribution is computed from the transform of Equation 12,
the far field phase front of the array is, by definition, perfectly spherical. Finite
element spacing has no effect on the phase pattern. Any deviation from a
spherical wave front in the element pattern, Edem(a, 0), is corrected through
Equation 12.

5 Optimization of Signal-to-Noise Ratio

There are a number of somewhat contradictory criteria that can be used to op-
timize the element weights of a phased array feed: reflector beam gain, sidelobe
level, spillover temperature, reflector beam shape, or signal to noise ratio. The
last criterion is the most common one in radio astronomy and is usually stated
as maximum G/T, reflector gain divided by system temperature.

Vilnrotter et al [9] used a form of the G/T criterion to establish signal
weights while allowing for the possibility that each element channel may have
a different internal noise temperature. Their signal-to-noise-ratio criterion is
identical to the conjugate field match criterion for maximum gain, if one assumes
that all channels have the same internal noise. One advantage of their scheme
is that they require no a priori knowledge of the reflector deformation from
a paraboloid. However, their method does not allow for system noise that is
coherent from element to element, except to remove it from the calculation of

gar
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Figure 6: Example of compensation for reflector field taper from the individual
element pattern with appropriate array weights. The dashed line is the reflector
illumination with an element edge taper of -12 dB. The solid line is the compen-
sated pattern. The reflector half-angle is assumed to be 00 48°. The element
spacing is 0.67A, and the array radius is 4.5A.

feed weights. They successfully made this simplification because their elements
saw very little common spillover noise, but this required that they undersample
the focal plane fields as explained in Section 3.

When there is spatially coherent noise in a phased array feed system, the
element weights affect the total system temperature much more strongly than
they do in the case where all noise, except from the measured radio source, is
incoherent. Specifically, we can scale the element excitation pattern to minimize
array spillover while maintaining good illumination of the primary reflector as
illustrated in Figures 6, 7, and 9.

External noise can be common to two or more array elements and not be
spatially coherent. For example, a uniform noise background near the main
reflector beam has no spatial coherence to the feed array and, hence, cannot
be cancelled with array weights. Spatial coherence can be natural (hemispheric
distribution of ground noise) or induced (blocked by the main reflector). Some
forms of induced coherence, such as scattering from feed support legs, is of little
practical interest because the scale length of the coherence is much greater than
size of the feed array. Vilnrotter et al reported element-to-element correlation
coefficients on blank sky on the order of 0.01, which they tentatively ascribe
to atmospheric radiation in the near field of the antenna. There would seem
be little spatial coherence from the atmosphere in the main telescope beam,
including its near field. More likely sources are primary and secondary reflector
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Figure 7: Cross sections of far field patterns of hexagonal arrays of different
diameters. The array radii and total numbers of elements are 4A, 139 elements
(solid line); 2A, 37 elements (dashed line); and 1.5A, 19 elements (dotted line).
In all cases the element spacing is 0.65A

spillovers which are distributed in sharp rings around the reflectors.
A brute-force search for optimum element weights is impractical, but some

powerful simplifying assumptions of axial or planar symmetry can be made for
symmetric and offset reflectors, respectively. Then, optimization of GIT is very
similar to the same task for a horn feed except that we have much more control
over the feed pattern. Start with the most uniform reflector illumination and
lowest array sidelobe levels consistent with the array size. Then scale the element
excitation pattern in the array linear dimensions for best G/T. Refinement
for spillover noise asymmetry can be added without much complication. The
spillover efficiency and reflector illumination pattern shown in Figures 4 and
6 indicate that low-noise, high efficiency systems are quite feasible with array
feeds. The problems of low amplifier noise and specific optimization of arrays
of various sizes are subjects for further work.

It may be worth repeating that optimization can be done after the fact and
repeated for different criteria, if the coherece function is recorded as suggested
in Section 2.

6 Out-of-Focus Arrays
The feed array is not required to be in the focal plane of the reflector as long as
the array intercepts nearly all of the reflected energy, and it adequately samples
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the complex field on the surface chosen for the array. In fact, the reflector does
not even need to have a focal plane to be a candidate for an array feed. A
spherical reflector is a good example [8].

The size of an out-of-focus array will be larger than one of equivalent effi-
ciency near the focus of a paraboloid, but the number of array elements required
to properly sample the larger field surface is not necessarily any greater. Fig-
ure 8 shows the field phase and amplitude patterns on a surface of rotation
whose vertex is 12A inside the focal point of a 100A-diameter paraboloid whose
focal length is 56A (190 = 48°). The surface, described by Equation 13, was
chosen to be close to a surface of constant phase for a far-field, on-axis source.

z = 12.0 — 0.0377r2 — 1.18 x 10-3r3 (13)

where z is the distance parallel to the paraboloid axis and r is the distance from
the axis, both in wavelengths.

C)
Q.

6.2) 1.4

0
4): 1.2

(/)

2 to
a

11 0.8

a-

-61C 0.6
z

E 0.4

-0

0.2

0
2 4 6 8 10 12 1 4

Distance from Paraboloid Axis (wavelengths)

Figure 8: Relative field amplitude (solid line) and phase in wavelengths (dashed
line) on the surface described by Equation 13 for a 100A, FID = 0.56
paraboloidal reflector. The dotted line shows the slope of the array surface
to which the element axes are normal.

Since neither the phase nor amplitude changes rapidly across the surface
described by Figure 8, the field may be sampled with relatively large elements
without undue convolution of the field pattern. Because larger elements have
narrower primary beamwidths, this is equivalent to saying that only a limited
area of the reflector contributes significantly to the field at any point on the
array surface. Hence, each element does not have to see the whole reflector.
The narrower element beamwidth is essential to suppressing grating responses
that will arise from the larger element spacing.
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Figure 9 shows the far-field pattern of an 11A-radius, 128-element, hexagonal
array on the surface described above using an element diameter and spacing of
1.75A. The element pattern was taken to be the same as in Figure 5 except for
scaling in angle by the ratio of 0.5:1.75. Compare this array pattern to the one
from the 139-element, 4A-radius focal plane array shown in Figure 7. We do
not have the option of reducing the number of elements further in the out-of-
focus array because the element size becomes large compared to the radius of
curvature of the array surface.

30 60 90
Angle from Array Normal (degrees)

Figure 9: Far-field relative amplitude (solid line) of an 11A-radius, 128-element,
hexagonal array on the surface described by Equation 13 using the phase and
amplitudes for each element shown in Figure 8. The dotted line is the reflector
aperture taper assumed in computing the fields shown in Figure 8.

One possible advantage of an out-of-focus array such as the one illustrated
here is that it has an intrinsically wider bandwidth ratio than the focal-plane
array (0.5:1.75 = 1:3.5 instead of 1:1.4). This assumes that a surface of nearly
constant phase exists for the reflector and that its radius of curvature is every-
where larger than the element size. It also requires an element whose primary
beamwidth scales inversely with frequency. The latter requirement may be im-
practical for the same reason that the physical size of an element grows faster
than its reciprocal beamwidth in the 0.5A to 2.0A diameter range as explained
in Section 3.
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7 Beam Scanning and Surface Error Correction
The reflector fields and array patterns computed in the examples shown so far
have assumed perfect paraboloid reflectors and on-axis reflector beams. How-
ever, none of the principles that have been used in the calculations depend on
these assumptions. Extending the analysis to imperfect reflectors and off-axis
beams is a small conceptual step. Changing the complex element weights to
match the focal area field from a distorted reflector is straightforward. How-
ever, if the fields are substantially redistributed by reflector aberrations the
number of array elements required to recombine most of the reflected energy
may increase substantially. This, in turn, requires more signal processing power
to construct a single beam.

To first order, field patterns near the focal area of a reflector are displaced
by AFID for each half-power beamwidth offset of the reflector beam. In the
absence of higher order phase errors, the number of array elements to form one
beam remains the same for all beams. The total number of elements required to
cover a given image area is the convolution of the single-beam array area with
the image area.

However, non-linear aperture phase errors convolve the undistorted focal
area field pattern with a function that is the transform of the aperture phase
error pattern. The extent to which the focal area fields are spread out depends
on the nature of the aperture phase errors [24]. Random surface errors produce
a convolving function with an error pedestal whose width is — AF/d, where
d is the characteristic scale length of the surface distortions. If d < D, the
error pedestal is much larger than the undistorted field area, and recovering
this power is impractical. The fractional power lost is 1 — exp(47re/A) 2 , where f
is the illumination-weighted rms reflector surface error [25].

Large scale phase errors, d D, produce convolving functions whose width
is roughly A6FID, where 6 is the average non-linear phase error in radians.
Aberrations well known to optics fall in this category: spherical aberration
(6 o( p4), coma (6 cc p3 cos(0)), and astigmatism (6 a p2 cos2 (0)), where 6
is the aperture phase error, p is the aperture radius variable, and ç5 is the
aperture azimuthal variable [26]. The focal plane redistribution of intensity due
to coma and astigmatism have been computed by Nienhuis and Nijboer [271429]
as summarized by Born and Wolf [26] and more recently by Hung and Mittra
{30] for coma. Coma is the dominant aberration for off-axis beams of symmetric
reflectors [31].

As an example, let us consider the number of 0.5A-spaced elements in a
hexagonal focal plane array required to include 80%, 90%, 95%, and 98% of the
reflected power as a function of beam offset. In the results shown in Figure 10
all of the power is assumed to have fallen within a radius of 16A (5025 array
elements) of the offset beam focal spot. Notice that the number of elements
required is not quite proportional to the conitguous area necessary to include
the stated power fractions, since elements near pattern nulls may be dropped
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Eaperture = 1.0 —
0.95(2p)2 

D2

5
(14)

from the count and outliers near peaks added. Also, optimum reflector sensi-
tivity (maximum GIT) requires somewhat different array configurations from
those computed here from purely gain considerations. The computed curves in
Figure 10 assume an aperture diameter of 100A, F1D = 0.5, and a mild roll-off
of the illumination near the edge of the aperture as given by

The taper efficiency using Equation 14 is 95%. Both axes in Figure 10 may be
roughly scaled to other focal ratios by (F D) 2 . With the assumed taper and
FID, the gain loss with a single waveguide feed would be approximately 6 dB
at 10 beamwidths offset [32].
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Figure 10: Number of 0.5A-spaced, hexagonal array elements required to collect
80% (crosses), 90% (stars), 95% (triangles), and 98% (diamonds) of the power
passing through the focal plane as a function of beam offset. FIcl = 0.5, D =
100A.

In practice, one might imagine using a signal processor capable of handling
a fixed number of elements to form one beam. For example, if that number were
50, Figure 10 shows that the aperture plane efficiency would range from 94%
on-axis to about 81% for a 10-beamwidth displacement. This is a considerable
improvement on the uncorrected efficiency at this beam displacement.

8 Mutual Coupling
In practice, the elements of a phased array are not completely independent. Any
one element will receive power directly from the incoming wave and indirectly
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from reflections of this wave from nearby elements. We can express the signal
at the terminals of any one element in an array as the sum of direct and indirect
signals

Vi = E (15)
j=0

where Ej is the complex field strength at element j, and Xij is the coupling
coefficient for a wave scattered from element j to element i. The phase and
amplitude of Xij depends on the angle of arrival of the wave, the reflection
coefficient of element j, and the coupling coefficient between elements i and
j, which may involve secondary scattering from other elements. Because the
latter two are very implementation-dependent and not easily computed, only a
few solutions of specific cases have appeared in the literature [33], [34]. A few
general statements are possible, however.

Pozar [35] showed that, in an infinite array, the far field pattern of an isolated
element can be replaced by a pattern that accounts for mutual coupling for the
purpose of computing the far field array pattern as given by the left hand side of
Equation 11. If the equivalent pattern is not near zero anywhere in the directions
of interest, an array excitation function can be computed through Equation 12
to compensate for mutual coupling. The infinite array assumption is invalid for
a real array, but one is led to conjecture that an array excitation function exists,
equivalent to the one in Equation 12, which takes array boundary effects into
account as long as none of the embedded elements in the array has a null in a
direction of interest. The study by Steyskal and Herd [36] lends support to this
conjecture.

Some types of arrays, such as waveguide apertures in an conducting plane
{34J, are unsuitable for use as array feeds because they have inherent nulls in
their far field patterns due to mutual coupling. Other types of arrays, such as
isolated dipoles [37], are inherently null-free, but the introduction of supports
can create null-producing mutual coupling.

In the absence of an analytical or numerical solution of the mutual coupling
properties of promising array elements, an empirical approach seems feasible.
This assertion is bolstered by examples of successful wide-scanning, dense, radar
and radio astronomy arrays. A small array, possibly one-dimensional, can be
built using the exact element geometry intended for the final array to check
for unacceptable mutual coupling effects. The far field pattern of individual
embedded elements may then be measured in the final array. These patterns
can then be used in a finite-array equivalent of Equation 12 to determine the
optimum array excitation function for each beam of the reflector system.
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9 Summary
Low noise, receive-only reflector antennas impose significantly different design
criteria and present more signal processing possibilities compared to those nor-
mally accepted in the design of wide-scanning-angle transmitting antennas. In
particular, low spillover is of great importance to low noise antennas, losses in
weighted-signal combining networks may be overcome with preamplification,
and cross-correlation techniques may be used in the beam forming process.
Phased array feeds offer the possibility of more efficient use of large radio as-
tronomy reflector antennas by providing more closely spaced beams over a wide
field of view and higher aperture efficiency in each beam than have been realized
with conventional feeds.

The main conclusions of this paper are:

• Array element cross-correlation signal processing is equivalent to RF signal
combining for beam forming and offers processing speed and flexibility
advantages. Beam forming may be done in digital hardware and repeated
with different signal weights, if the correlation function is integrated and
stored. The signal processing power required for high efficiency, large field
of view arrays is very high.

• The bandwidth of a phased array feed in the reflector focal plane is limited
to the range 1:1.3 to 1:2 for small and large FID reflectors, respectively,
due to grating lobes. Corresponding element spacings at the high fre-
quency limit of the band are 0.65A and 1A. The minimum spacing is
about 0.5A due to mutual coupling.

• Conventional feed horns as array elements cannot realize the full potential
of phased array feeds because their physical diameters are at least a factor
of two greater than the element spacing required.

• The taper efficiency of an array feed may be greater than the taper effi-
ciency of a single element with appropriate element signal weights.

• A good approximation to optimization of G/T may be done by simply
searching the linear array weighting scale length with only one or two
free parameters after an initial weighting function is computed from the
reflector angle and element pattern.

• Out-of-focus arrays are feasible, and reflector aberrations may be fully
corrected as long as the array is large enough to intercept an acceptable
fraction of the reflected power.

• Mutual coupling between the elements will affect the array pattern, but
this should be correctable by changing array signal weights, as long as the
coupling is not so severe that it introduces pattern nulls on the reflector.
Practical arrays without nulls have been demonstrated in the literature.
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