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Summary

There are in use at present three different ways of deducing the
receiver noise temperature TR from the measured Y-factor, each resulting in a
different value of TR . The methods differ in the way the physical
temperatures of the hot & cold loads, Th and Tc (usually room temperature and
liquid nitrogen), are converted into radiated power "temperatures" to deduce
TR from Y. Only one of these methods is consistent with Tucker's quantum
mixer theory and the constraints of Heisenberg's uncertainty principle.

Introduction 

After talking to people at the 1996 Symposium on Space Terahertz
Technology, it was clear that there was some confusion, or at least difference
of opinion, on how to deduce the noise temperature of a receiver from the
measured Y-factor. There was also disagreement on the fundamental quantum
noise limit of single- and double-sideband mixer receivers. With the (DSB)
noise temperatures of the best SIS receivers now approaching 2hfik (-30 K at
300 GHz), these questions need to be resolved. This note compares the three
interpretations of the Y-factor measurement currently in use, and discusses
the fundamental quantum limit on the sensitivity of coherent receivers.

The Y-factor Method

In a Y-factor measurement, two noise sources are connected individually
to the receiver input, and the ratio, Y, of the receiver output powers is
measured. From the Y-factor the intrinsic noise of the receiver can be
deduced, either as an equivalent input noise power or as an equivalent input
noise temperature. While noise temperatures are most commonly used, the
discussion will be clearer if we consider noise powers initially.

Let Pn be the equivalent input noise power of the receiver in a
bandwidth B, the measurement bandwidth. B is defined by a bandpass filter at
the receiver output (for a coherent receiver (e.g., amplifier or mixer) an
input filter is unnecessary). With a power P in incident on the receiver in

bandwidth B, the measured output power of the receiver P out.
=
 G[P n +P in I,

where G is the gain of the receiver. With hot and cold loads in front of the
receiver the measured Y-factor is:

P n
Phot

p n p
cold

The equivalent input noise power is found by inverting this equation:

p n _ Phot Pcold
Y- 1

(1)

(2)



Frequently the hot and cold loads are simply black-body radiators (well
matched waveguide or free-space loads) heated or cooled to accurately known
physical temperatures T hot and Toold.

Power Radiated by a Black Body

The Planck radiation law is often used to calculate the thermal noise
power in a bandwidth B about frequency f (B << f), radiated into a single mode
(e.g., a waveguide mode), by a black body at physical temperature T:

hf
kT

expl.

hf 
-1

kT

p Planck =_ kTB (3)

where, h and k are the Planck and Boltzmann constants. In the present
context, a more complete description is given by the dissipation-fluctuation
theorem, or generalized Nyquist theorem, of Callen & Welton [1]:

hf
kT

exqhfl-1
kT

P c'w = kTB
hfB
2 (4)

hfB hf coth
2 ( 2kT)

This is simply the Planck formula with an additional half photon per Hz,
hfB/2, and it is this additional half photon, the zero-point fluctuation
noise, that is the source of some confusion. Some authors believe that the
zero-point fluctuations should be excluded from consideration of noise powers
because they do not represent exchangeable power. However, the view of
Devyatov et al. [2] is that, although the zero-point fluctuations deliver no
real power, the receiver nevertheless "...develops these quantum fluctuations
to quite measurable fluctuations..." at its output. The zero-point
fluctuations, they argue, should be associated with the incoming radiation and
not with the receiver itself: at the receiver input "...one can imagine two
zero-point fluctuation waves propagating in opposite directions..." with no
net power flow.

It is interesting to note [3] that in the limit of small hf/kT, it is
the Callen and Welton formula (4) which gives the Rayleigh-Jeans result
P = kTB, while the Planck formula (3) gives P = kTB - hfB/2, half a photon
below the Rayleigh-Jeans result.
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Noise Temperatures 

The noise power P n in a bandwidth B is conveniently represented by a
noise temperature Tn = Pn/kB. The noise temperature is simply a shorthand
notation for the noise power per unit bandwidth. The noise temperature of a
black body radiator at physical temperature T is obtained from the noise power
(3, 4) as:

T 
Planck T

hf
kT

I hf I
exP[-k7]

T c6a4 = T hf hf hf - coth ( 6 )
2k 2k 2kT

These expressions differ by the zero-point fluctuation noise temperature,
hf/2k, whose magnitude is 0.024 K per GHz. In the Rayleigh-Jeans limit of
small hf/kT, the noise temperature based on the Callen & Welton formula
approaches the physical temperature of the black body (T c 'c'w 	T), while the
noise temperature based on the Planck formula is half a photon below the

aphysical temperature (
TPlnck

T - hf/2k). Fig. 1 shows T n evaluated
according to (5) and (6), as functions of the physical temperature T of the
black body, for a frequency of 230 GHz. Also shown are the differences
between Te

lanck f TC&Iff1 and rrKj"
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Fig.l. Noise temperature vs physical temperature for black body radiators at 230 GHz, according to the Rayleigh-Jeans,
Planck, and Callen & Welton laws. Also shown (broken lines) are the differences between the three radiation curves. The
Rayleigh-Jeans curve converges to the Callen & Welton curve at high temperature, while the Planck curve is always hf/2k
below the Callen & Welton curve.
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Receiver noise temperature from the Y-factor

Equation (2) for the equivalent input noise power of a receiver can be
written in terms of noise temperatures using T n = Pn/kB. Thus the equivalent
input noise temperature l of the receiver,

T
n

n Tcnoid_ hotT

	

	 ( 7 )
Y - 1

Three different interpretations of this equation are in use at present. They
differ in the values of TL and Tld assumed for the hot and cold loads at
physical temperatures Thot and Toold . Most often, the Rayleigh-Jeans formula
is used, in which T /L and TLid are equal to the physical temperatures. Some
workers use the Planck formula (5), while others use the Callen & Welton
formula (6). The three approaches result in three different values of TRn,

TRPlanckwhich we denote T , and TRC&W:

TRRj
T
hot 

— Y T cold 
Y - 1 (8)

Planck Planck
m Planck

T
hot

— Y T
cold_

R

	

	 ( 
9 )

Y- 1

and
T v r, ccm

T c&w
hot — cold

Y 1

It will become clear in the following sections that only eq.(10) gives a
receiver noise temperature consistent with quantum mixer theory [4] and the
constraints of the uncertainty principle.

For a given value of Y, the difference between the Planck and Callen &
Welton formulas (9, 10) is just half a photon:

Planck 
= T

h f
T
R R 2 k •

This constant half photon difference is independent of the hot and cold load
temperatures. The difference between the Rayleigh-Jeans and Callen & Welton
formulas (8, 10) depends on the physical temperatures of the hot and cold
loads, and on frequency. Fig. 2 shows the receiver noise temperature,
calculated according to eqs. (8-10), as a function of Y-factor for a 230 GHz
receiver, measured with hot and cold loads at physical temperatures 300 K and
77 K. The small difference between the Rayleigh-Jeans and Callen & Welton
results is shown by the dashed curve and referred to the right-hand scale.
The negative receiver noise temperatures correspond to physically impossible
values of the Y-factor. The physical limits on TR

n will be discussed below.

1 This definition of receiver noise temperature is now generally accepted in the millimeter and submillimeter receiver community.
There are two older definitions of receiver noise temperature which are based on hypothetical measurements rather than on the simple
Y-factor measurement: (i) The physical temperature of the input termination of a hypothetical noise-free device, which would result in the
same output noise power as the actual device connected to a noise-free input termination. (ii) The physical temperature of the input
termination required to double the output noise of the same receiver with its input termination at absolute zero temperature. Using either
of these older definitions causes further complications, beyond the scope of this paper. This question was dealt with at length in [5].

(10)
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Callen & Welton laws is not always as small as in the
Only if hf/kT << 1 for the hot and cold loads will TRRj

if a 230 GHz receiver were measured using 4 K and room
hfikircold = 2 • 81 and TR

Rj is -2 . 3 K larger than TRc6'w
an 800 GHz receiver measured using 77 K and room

RJthen hf/kTcoid = 0 . 5, and T, would be -2 . 0 K larger than

So far there has been no mention of single- or double-sideband
operation. That is because the above discussion applies to both SSB and DSB
receivers; a Y-factor measurement on a SSB or DSB receiver gives, via equation
(7), the SSB or DSB receiver noise temperature.

Fig. 2. Receiver noise temperature as a function of V-factor for a 230 GHz receiver measured with Thot = 300 K and ;old = 77
K. The Rayleigh-Jeans curve is obtained when the hot and cold load noise temperatures are equal to their physical
temperatures. The Planck and Callen & Welton curves are obtained using equations (5) and(6) for the hot and cold load noise
temperatures. The small difference between the Planck and Callen & Welton curves is indicated by the dashed line (right-
hand scale).
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Single- and Double- Sideband Mixer Receivers 

Mixer receivers can operate in several modes, depending on the
configuration of the receiver and the nature of the measurement. In single-
sideband operation, the receiver is configured so that, at the image sideband,
the mixer is connected to a termination within the receiver. There is no
external connection to the image frequency, and the complete receiver is
functionally equivalent to an amplifier followed by a frequency converter. In
double-sideband operation, on the other hand, the mixer is connected to the
same input port at both upper and lower sidebands. A DSB receiver can be used
in two modes: (i) to measure narrow-band signals contained entirely within one
sideband — this is SSB operation of a DSB receiver. For detection of such
narrow-band signals, power collected in the image band of a DSB receiver
degrades the measurement sensitivity. And (ii), to measure broadband (or
continuum) sources whose spectrum covers both sidebands — this is DSB
operation of a DSB receiver. For continuum radiometry, the additional signal
power collected in the image band of a DSB receiver improves the measurement
sensitivity.

A Y-factor measurement on a DSB receiver, interpreted according to eq.
(7), gives the so-called DSB receiver noise temperature. This is the most
commonly quoted noise temperature for mixer receivers because it is easy to
measure. It is also common to derive a SSB noise temperature (for a DSB
receiver) by measuring the sideband gains, and referring all the receiver
noise to a single sideband, the signal sideband. Then, for the DSB receiver,

[
G. I

T
R
n, SSB = 

T
R
n, DSB 

1 
+ -1.-G

s

where Gs and Gi are the receiver gains at the signal and image frequencies2,
measured from the hot/cold load input port. If the upper and lower sideband
gains are equal, 11,:: SSB = 

2 T
R
n, DSB If Gi << Gs , the Y-factor measurement

directly gives TRII, SSB • When a DSB mixer receiver is used to receive a narrow-

band signal contained entirely within one sideband, noise from the image band
contributes to the output of the receiver. The overall SSB system noise
temperature

(12)

where T s
n and T i

n are the noise temperatures of the signal and image
terminations.

2 For simplicity, we assume there is no significant conversion of higher harmonic sideband signals present at the input port. If the
receiver gain is not negligible at frequencies nfLo  n 1, then additional terms of the form GIGs must be added in the parentheses
on the right side of eq. (12).
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Fundamental Limits on TR

The fundamental limits imposed by the Heisenberg uncertainty principle
on the noise of amplifiers, parametric amplifiers, and mixer receivers have
been studied by a number of authors over the last thirty five years, and their
work is reviewed, with particular attention to mixer receivers, in [5] and
[6]. The following general statement can be made: The minimum output noise
power of a measurement system using a mixer receiver, SSB or DSB, is hf (i.e.
one photon) per unit bandwidth, referred to one sideband at the receiver
input. Hence, the minimum system noise temperature is hf/k referred to one
sideband at the receiver input — exactly the same result as for a system
incorporating an amplifier. The origin of this quantum noise has been much
discussed [7, 3, 5, 6], and will be explained with the aid of Figs. 3 and 4,
which depict four minimum-noise measurement systems using mixer receivers.

Fig. 3 shows two SSB receivers, 3(a) with a short-circuited image, and
3(b) with an image-frequency termination equal to the signal source
resistance. For both 3(a) and 3(b), Tucker's quantum mixer theory predicts
[4, 5, 8] a minimum receiver noise temperature of hf/2k. In 3(a) the zero-
point fluctuations associated with the input termination (at 0 K) contribute
half a photon (hf/2k) to the overall system noise temperature, and the mixer
contributes the remaining half photon , which can be shown to originate in the
electron shot noise in the mixer. In (b), the zero-point fluctuations
associated with the signal source and (internal) image termination each
contribute half a photon, which accounts for all the system noise; the mixer
itself contributes no noise, which is exactly the result obtained from mixer
theory. Here, the down-converted components of the mixer shot noise exactly
cancel the IF component, with which they are correlated, a result well known
in classical mixer theory.

Fig. 4 shows a DSB mixer receiver used in two different measurement
modes: 4(a) to measure a signal present only in one sideband (the SSB mode for
a DSB receiver), and 4(b) to measure a broadband signal present in both
sidebands (the DSB or continuum mode). In 4(a), zero-point fluctuations
associated with the input termination (at 0 K) contribute half a photon
(hf/2k) in each sideband, and the mixer need contribute no noise, consistent
with mixer theory. The same is true in 4(b), in which the presence of the
signal in both sidebands doubles the signal power at the output of the system,
and the signal-to-noise ratio at the output is twice that of the SSB receivers
in Fig. 3. It is this apparent doubling of the receiver gain that leads to
the concept of the DSB gain, GDsB = 2G (provided the signal and image gains
are equal, i.e., G ., = Gi = G) .

It is clear from Figs. 3 and 4 that the minimum receiver noise
temperatures for SSB and DSB receivers are, respectively, hf/2k and zero. The
minimum system noise temperature, on the other hand, depends on the nature of
the particular measurement; for SSB measurements using either SSB or DSB
receivers, the minimum system noise temperature is hf/k, while for broadband
continuum measurements using a DSB receiver, the minimum (DSB) system noise
temperature is hf/2k.

From the discussion above, it is clear that in all computations of
receiver or system noise temperatures, the zero-point fluctuations associated
with resistive terminations at the signal and image frequencies must be
included. Equations (4) and (6) must therefore be used in calculating noise
powers or temperatures, and the receiver noise temperature must be obtained
from the Y-factor according to eq.(10), in which the Callen & Welton law is
used for the noise temperature of hot and cold loads.
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It is appropriate here to address the question of how to compare SSB and
DSB receivers: should a DSB receiver be judged against a SSB receiver by
comparing their SSB and/or DSB receiver noise temperatures (for the DSB

receiver with equal sideband gains, 
T

SSB = 2V,UM)
? The answer depends on

the application. The mode of the measurement (i.e., narrow-band or
broadband) must be specified, and in the case of broadband measurements, also
the source noise temperature at the signal and image frequencies. This
enables the appropriate system noise temperatures to be calculated and
compared. When the context is broadband (continuum) radiometry, simply
comparing the (SSB) receiver noise temperature of an SSB receiver with the DSB
receiver noise temperature of a DSB receiver is appropriate, but when narrow-
band (SSB) signals are to be measured no such simple comparison is meaningful.

Conclusion

Tucker's quantum mixer theory predicts a minimum receiver noise
temperature of hf/2k for a SSB receiver, and zero for a DSB receiver, results
which are consistent with the limitations imposed by the Heisenberg
uncertainty principle. With signal (and image) sources at absolute zero
temperature, the minimum receiver output noise, referred to the input (and, in
the case of a DSB receiver, referred to one sideband) is hf/k, twice the zero-
point fluctuation noise. To be consistent with this, the Callen & Welton law
(eq.(6)) and not the Planck law (eq.(5)) must be used in deriving the required
source noise temperatures. This ensures that the zero-point fluctuation noise
associated with the source is included at the input, and in both sidebands in
the case of a DSB mixer.

For many practical cases, the Rayleigh-Jeans law is a close
approximation to the Callen & Welton law, and eq. (7) with T n 

= T can often be
used with insignificant error. When using liquid nitrogen and room
temperature black-bodies in measuring the Y-factor, little error is incurred
at frequencies up to - 1 THz.

Use of the Planck law (eq.(5)) for the hot- and cold-load noise
temperatures in deriving receiver noise temperatures from measured Y-factors,
is inappropriate, and results in receiver noise temperatures higher by half a
photon (hf/2k) than they should be (7.2 K at 300 GHz).
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