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Surface Impedance of Superconductors and Normal
Conductors in EM Simulators

A. R. Kerr
February 19, 1996

Electromagnetic simulators can give very accurate solutions for microwave
circuits with ideal conductors. When the conductors are non-ideal, accurate
results may still be obtained in many cases by specifying material parameters
or surface impedances. However, for structures in which the penetration depth
of the field into the conductors is of the same order as the conductor
thickness, considerable error can occur. This is not only a result of the
conductor thickness being insufficient to contain the field completely, but is
due in part to a separate effect which arises when thick conductors are
represented by thin sheets with surface impedance. For superconducting
microstrip circuits of typical dimensions, such errors can easily be as great
as 20% in eeff and 10% in Zo . In many cases, a simple correction to the
surface impedance substantially improves the accuracy.

The concept of surface impedance 

For an ideal conductor in an electromagnetic field, the tangential component
Et of the electric field at the surface is zero. A current flows in a thin
sheet on the surface, as required to support the magnetic field H t tangential
to the surface. This short-circuit boundary condition excludes all fields
from the interior of the ideal conductor. In a real conductor, fields extend
into the conductor, but decrease rapidly with distance from the surface. To
avoid the complication of solving Maxwell's equations inside conductors, it is
usual to make use of the concept of surface impedance. The surface impedance
Zs = Et /Ht provides the boundary condition for fields outside the conductor,
and accounts for the dissipation and energy stored inside the conductor.

For a thick, plane conductor, the internal fields fall exponentially with
distance from the surface, with pe depth A. For normal conductors , A is the
classical skin depth 6 = (2/coop), and Zs = (1+j)(cop/20). In Au or Cu at
100 GHz and room temperature, 6 z 0.25 pm, and Zs z 0.1(1+j) ohms/square. For
a superconductor at a frequency well below its energy gap frequency, A is the
London penetration depth, X L , which is independent of frequency. For niobium
at -4°K, at frequencies below -700 GHz, X L 

z 0.1 pm. The surface impedance
Zs = jcopok ohms/square, corresponding to a surface inductance Ls = pok
H/square, which is independent of frequency. In niobium, Ls z 0.13 pH/square,
giving Zs z j0.08 ohms/square at 100 GHz.

Two types of electromagnetic simulator

Two types of electromagnetic simulator are considered here: (i) three-
dimensional finite element solvers, such as HP's hfss, which fill the space
between the conductors with a three dimensional mesh, and determine E and B at
every mesh point, consistent with the surface impedance boundary conditions,
and (ii) method of moments solvers, such as Sonnet Software's em, which divide
all conducting surfaces into (two-dimensional) subsections, then solve for the
currents in the subsections which simultaneously satisfy the surface impedance
boundary conditions.
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There is a fundamental difference in the way the two simulators treat thick
conductors (t >> A). hfss computes the fields only in the space outside
conductors -- space inside conductors is ignored, but the effects of the
internal fields are taken into account by the surface impedance which provides
the boundary conditions for the field solution. In em, on the other hand, the
surfaces of a thick conductor are represented by thin conducting sheets with
surface impedance. The solution therefore has non-zero fields in the space
between the conducting sheets (i.e.,inside the conductor) which are not the
same as the internal fields in the actual metal. It is therefore necessary to
use a modified value of surface impedance for such simulations. In many
cases this correction is negligible, but when the surface impedance has a
significant effect on the behavior of the circuit (e.g., in superconducting
microstrip lines), it can be substantial. This will be explained in more
detail in. a later section.

Representation of conductors by surface impedances 

To understand the way electromagnetic simulators treat a conductor of finite
thickness, we examine the difference between an actual thick conductor and the
model of the thick conductor which the simulator solves. The model of the
conductor can be either a single thin sheet with the appropriate surface
impedance, or a parallel pair of thin sheets separated by the thickness of the
actual conductor.

Matick [1] has shown that the surface impedance seen by a plane wave normally
incident on a conductor is the same as that seen by a wave traveling parallel
to the conductor, as in a transmission line. For simplicity in the present
discussion, we consider experiments in which a plane wave is normally incident
on the surface of the conductor or model under test.

(a) A thick conductor represented as a single conducting sheet

Consider a plane wave normally incident on a plane (thick) conductor of
surface impedance Zs, as in Fig. 1(a). This is analogous to the circuit shown
in Fig. 1(b), a long transmission line of characteristic impedance
Zn = (p 0 /e 0 ) = 377 ohms, at whose end an impedance Zs ohms is connected.

Surface impedance
Zs

z n ]Zs

(a) (b)

Figure 1

Next, consider a plane wave normally incident on a thin sheet of surface
impedance Zs, as in Fig. 2(a). The corresponding transmission line equivalent
circuit is shown in Fig. 2(b) -- a long transmission line of characteristic
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impedance Z n = ( 11 0 /€ 0 ) = 377 ohms, at whose midpoint A an impedance Zs ohms is
connected in parallel. With the plane wave incident from the left, the field
on the line to the right of A is zero only if Zs = 0. At A, the incident wave
sees an impedance Zs in parallel with 377 ohms (the right half of the long
transmission line), as in Fig. 2(c).

Clearly, the thin sheet with surface impedance Zs (Fig. 1) is not physically
equivalent to a (thick) conductor of surface impedance Zs (Fig. 2) unless
Zs = 0. The apparent surface impedance, seen by the incident plane-wave, in
Fig. 2 is Zs in parallel with 377 ohms, and some power is coupled through the
thin sheet into the space on the other side. For cases in which IZs i « 377
ohms/square (i.e., most practical cases), the error is inconsequential.

Surface impedance
Zs

A A

Incident wave

.44
Reflected wave

(a) (b) (c)

Figure 2

(b) A conductor of thickness t represented as a pair of conducting sheets

Consider the reflection of a plane wave from a conductor of thickness t, as
shown in Fig. 3(a). The incident wave sees an impedance Zs at the surface of
the conductor - the value of Zs is not the same as in the previous example.
The impedance seen by the incident wave is as depicted by the circuit of Fig.
3(b). The appropriate value of Zs for finite values of t is given in a later
section.

( a ) (b)

Figure 3
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Now consider a plane wave normally incident on a pair of thin sheets, of
surface impedance Zs, separated by distance t, as in Fig. 4(a). This is
analogous to the circuit shown in Fig. 4(b), a long transmission line of
characteristic impedance Zn = (po/e 0 ) = 377 ohms, at whose midpoint A an
impedance Zs is connected, with a second impedance Zs a distance t to the
right. If the distance t is much less than the wavelength, the impedance seen
by a plane wave incident from the left is as depicted in Fig. 4(c). The
inductance L = pot accounts for the energy stored in the magnetic field
between the conducting sheets. For a conductor 0.3 pm thick, at 100 GHz, the
reactance wL = wpot = 0.24 ohms/square.

Surface impedances
Zs Zs

A A L = p o t

Z
9

Zr)Incident wave

Reflected wave
Transmitted wave

(
a

) (b) (a)

Figure 4

It is clear that if a conductor is thick enough, wpot zs, and the two-sheet
representation is sufficiently accurate. For normal metal conductors, this
requires that t 6/2, and for superconductors t AL.

Surface impedance of conductors of finite thickness 

(a) Excitation from one side

When the thickness t of a conductor is not very much greater than the
penetration depth A, a field on one side of the conductor penetrates partially
through to the other side. For normal conductors the surface impedance seen
by the incident field is (see Appendix):

e kt
o Z

fl 
- k -kt

o Z + k

o Z - k
e kt _ n 

e t
Z + k

Here k = (1 + j)/6, and Zn = (p/e) is the characteristic impedance of space
(377 ohms in vacuum).

e-ktk e kt +
In most cases Zn >> k/o, and Z s 

=
When t is large, this reducesa e kt _ e -kt

to the usual surface impedance formula Zs = ( 1+j)((41/2o)1'.



Z
s 
= k/a

e kt 
+ e 

- kt

2
kt - kt kt

e e e e 
-kt

In the case of a superconductor, when the thickness t is not much greater than
the London penetration depth AL , the surface impedance is (see Appendix):

Zs = jo3pAL

_ t
z — coPAL

e
zn + J copxL

t

e - 
zn — copxl,

zn + copxL

where again ZR = (p/c) is the characteristic impedance of space (377 ohms in
vacuum). In most cases Zn >> w ilXL, so Zs = j64.1XL coth t/XL . When t >> XL

this becomes the usual formula for superconductors: Zs = jcolloAL.

(b) Symmetric and anti-symmetric excitation from both sides

In the above, it has been assumed that the field is incident on the conductor
from one side only. This is the case for ground planes, waveguide walls, wide
parallel-plate transmission lines, and wide microstrip lines. In cases such
as a stripline center conductor, equal fields are present on both sides of the
conductor. In a few cases, such as a septum across a waveguide (parallel to
the broad walls), equal but opposite fields are present on the two sides. For
not-very-thick conductors in such symmetrical or anti-symmetrical fields, the
effective surface impedance seen from one side is modified by the presence of
the field on the other.

For a normal metal conductor of thickness t with symmetrical or anti-
symmetrical excitation, the surface impedance is (see Appendix):

where k = (1 + j)/6. The + sign is for symmetrical fields on the two sides,
and the - sign for anti-symmetrical fields.

For a superconductor of thickness t with symmetrical or anti-symmetrical
excitation, the surface impedance is (see Appendix):

th - sumilZ = j top AL cot AL

AL

Again, the + sign is for symmetrical fields on the two sides, and the - sign
for anti-symmetrical fields. The following table gives the values of the coth
and sinh terms, and their sum, for typical Nb conductor thicknesses assuming
AL = lon A.
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Zin = Z,

t A t/X coth(tA) sinh(t/A) coth(t/X) + sinh(t/A)

5000 5.0 1.000 0.007 1.007
4000 4.0 1.001 0.018 1.019

3000 3.0 1.005 0.050 1.055

2000 2.0 1.037 0.138 1.175

1500 1.5 1.105 0.235 1.340

2000 2.0 1.037 0.138 1.175

1600 1.6 1.085 0.210 1.295

1200 1.2 1.200 0.331 1.531

1000 1.0 1.313 0.425 1.738
800 0.8 1.506 0.563 2.069

Modified surface impedance for thin conducting sheets representing a thick
conductor.

A modified value of surface impedance can be used to correct the discrepancy
between the real conductor and the two-sheet model. Let Zs be the desired
surface impedance as given by the appropriate formula above, and let Zx be the
value of surface impedance of the conducting sheets which will result in an
effective surface impedance of Zs as seen by an incident wave, as depicted in
Fig. 5.

L =

Figure 5

In most practical cases Z n is large compared with the other circuit elements,
and can be ignored. Then, analysis of the circuit gives a quadratic equation
in Zx whose solution is

Zx = ---2-- (2Z s - jo)pot)± [4 Z:

1
1-1

+ (DPoty,

In the case of a superconductor excited from one side, Zs = jcop 0AL coth(t/A ).
It follows that Zx = 13Zs, where

AL \
2AL coth

t

L

2 AL coth

Fig. 6 shows 13 as a function of t/AL.
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Examples 

To demonstrate the significance of the 13 and tanh corrections to the surface
impedance, consider a superconducting Nb microstrip transmission line of width
6 pm, with a 0.2 pm-thick dielectric layer with e r = 3.8, over a Nb
groundplane. The London penetration depth A L = 0.1 um. In the first example,
the Nb conductors are 0.1 pm thick, and in the second example they are 0.3 pm
thick. The table below gives the effective dielectric constant and
characteristic impedance of the microstrip when the upper conductor is
represented by a pair of conducting sheets. Sonnet em was used, with the
thick-conductor value of the surface impedance Zq and the following
corrections: (i) both 13 and tanh(t/XL ) corrections, (ii) only the tanh(t/AL)
correction, and (iii) no corrections. Corresponding results are also shown
for the same microstrips (iv) with the upper conductor characterized as a
single conducting sheet whose surface impedance includes the tanh correction
(but not the 13 correction, which applies only when two sheets are used), and,
(v) with perfect conductors (Zs = 0). The second table gives the same results
expressed as percentage deviations from the most accurete solution, (i).

Nb thickness = 0.1 pm Nb thickness = 0.3 pm
C eff 0 Ceff 0

(I) Tanh &13 corrections 8.32 8.75 6.95 8.13
(ii) Tanh correction only 7.25 8.30 6.55 7.92

(iii) No tanh or p corrections 6.41 7.84 6.53 7.91
(iv) Single-sheet 8.28 9.04 7.19 8.42
(v) Perfect conductors 3.55 5.90 3.53 5.87
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Nb thickness = 0.1 pm Nb thickness = 0.3 pm
% errors wrt top line % errors wrt top line

eff 0
e

eff 0

(i) Tanh &I3 corrections 0% 0$3/0 0% 0%

(ii) Tanh correction only -13% -5% -6% -3c/o

(Hi) No tanh ori3 corrections -23% -10% -6% -3%

(iv) Single-sheet -1% 3% 3% 4%

(v) Perfect conductors -57% -33% -49% -28%

It is also of interest to compare the results obtained by Sonnet em with the
most accurate analytical results available. We use the analytical results
from a recent report by Yassin & Withington [2] for Nb microstrip lines of
width 2, 4, and 6 pm, with a 0.3 pm dielectric layer of er = 3.8, with a Nb
groundplane. The center conductor and groundplane are 0.3 pm thick, and XL =
0.1 pm, so t/AL = 3. For this value of t/XL, the r. correction is significant,
but the tanh correction is very small. The results for the effective
dielectric constant and characteristic impedance are compared below.
Agreement is very close, except for the narrowest line, in which case there is
a 4% disagreement in Zo.

Microsrtip width 2 pm Microsrtip width 4 pm Microsrtip width 6 pm

eeff Zo Ceff ZO Ceff ZO

Ref. [2] 5.13 26.1 5.50 15.1 5.68 10.7
Sonnet em 5.19 27.2 5.52 15.4 5.70 10.8
% difference 1 % 4% 0% 2% 0% 1 %

Acknowledgment 

The author thanks Jim Merrill of Sonnet Software for his helpful discussions
on the role of surface impedance in Sonnet em.
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APPENDIX: Derivation of formulas used in the report 

§Al Inductance of a thin layer containing a uniform magnetic field

If a plane wave, normally incident on a perfect plane conductor, produces a
current J A/m in the conductor, then by Ampere's law, the magnetic field near
the conductor B = Jp. In a layer of thickness dx parallel to the conductor,
the stored magnetic energy dW = B 2dx/2p = J2pdx/2 per unit area. Let the
inductance contributed by the magnetic field in this layer be dL H/square.
This inductance is in series with the current J A/m. Then the energy stored
in this inductance is J2dL/2 per unit area. It follows that dL = pdx
H/square.

§A2 Surface impedance Zs and skin depth 6 of a normal conductor

Consider a plane wave incident on a thick conductor. The incident wave
excites voltages and currents in the conductor which vary with depth from the
surface. An incremental thickness dx of a unit area of the conductor is
characterized by the equivalent circuit of Fig. Al. From §Al above, the
magnetic field in the volume of thickness dx accounts for a series inductance
pdx H/square. The conductivity o has a parallel conductance odx S/square.
Hence dZ = jwpdx and dG = odx. For this circuit, the input impedance is the
surface impedance Z.

Zs

+X

Fig. Al

Since the conductor is thick, the impedance looking to the right at any depth
in the conductor is equal to the surface impedance Z. Hence

1 1Z i n
= Z s

= dZ +  - jcopdx + 

dG +
1

Gdx + —
Z

s
Zs

Solving for Zs gives Zs 2 = jcop/o, whence the standard result:
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=i

from which the skin depth is

From the figure, di= d =i s d =iZodx .

Therefore f 
di 

ccix or
zs cy(x - xo)

The sign of the exponent is positive because of the choice of x-direction in
Fig. Al. With the above expression for Zs,

§A3 Surface impedance Zs  and penetration depth X L of a superconductor 

The analysis for a superconductor is similar to that for a normal conductor,
with the exception that the conductance element dG is replaced by a
susceptance. As the superconductor is lossless, the current is limited only
by the inertia of the Cooper pairs of electrons, which manifests itself as a
kinetic inductance.

Consider a layer of superconductor of thickness dx. In terms of the average
velocity of the carriers S, the current di = (n *e *S)dx Aim, where n * is the
effective density of carriers with effective charge e * . If an AC voltage
v = Vei t V/m is applied parallel to the surface, the force on a carrier is
e *ve iwt = m *dv/dt, where m is the effective mass of a carrier. The carrier
velocity

e* 1 e j
= -iV e- (.4 t

= - V e- c' t •
m * 	jw m*

The current in the layer of thickness dx is therefore

* *21 •
di -  n e V e 3

t
w - dx A/m.

m*

Writing di = dIe j 't gives V = jw
m * 	1 AT

n *e *
2
 dx

from which it is evident that the kinetic inductance of the layer is given by

* *2n e dx .
m*



z. = Z s = dZ +

dY + —
1

Zs

- j pdx +
1

n * e *2 1
 LA.X

CO M* ZS

1

ju)
Pra* 

* *2
n e

Now consider a plane wave incident on a thick superconductor. The incident
wave excites voltages and currents which vary with depth from the surface. An
incremental thickness dx of a unit area of the superconductor is characterized
by the equivalent circuit of Fig. A2.

2 ii
dZ

dY Zs

Fig. A2

From §A1 above, the magnetic field in the volume of thickness dx accounts for
a series inductance pdx H/square. Hence dZ = jwpdx. The kinetic inductance
of the Cooper pairs in the same volume contributes a parallel admittance

1 ( 1) n *e *2
dY - d - dx .

jo3 L j(A) m*

Since the conductor is thick, the impedance looking to the right at any depth
in the conductor is equal to the surface impedance Z. Hence, in Fig. A2,

Solving for Zs gives

To deduce the penetration depth in a superconductor, consider again the
circuit of Fig. A2:

di = i 2 i1 = NT1 dY = i i Z s dY .
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H/square.

With the above expressions for dY and Zs,

di - pn e
dx

n e

1 = 1

(x - xo)

or XL

xponent is Positive because of the choice of x-direction in

is the London penetration depth, and

is independent of frequency.

The expression for the surface impedance can be written in terms of AT as
ohms/square, which corresponds to a surface inductance

§A4 Surface impedance Zs  of a normal conductor of finite thickness 

To deduce the surface impedance of a normal conductor of thickness t, consider
first an incremental thickness dx of the conductor. This is represented by
the equivalent circuit of Fig. A3.

i + di
dZ

Fig. A2). The quantity

(The sign of the e

v + dv f dG

+X 

Fig. A3

In the figure, di = v dG = G v dx

and dv = dZ = j co dx ,
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0

At x = v k i +
 i _

-
4

 =
-
1- 0 i+

G Z k
kte +

r1 e 
-kt

G Z + k
r1

OZ -k
kt n -ke - e t

0 Z + kn

Z
v(t) k

S ( t. )

d
2i 	.

therefore  = joupi .
dx2

This has the solution i = i,,° + 4 -kx

6) p = j
where k = op = (1+ j )

1 + 

2 6 f

and 6 is the classical skin depth as derived above.

Now consider the equivalent circuit of the conductor, terminated on the right
by the impedance of space Z n, as shown in Fig. A4.

Fig. A4

In Fig. AA, = i+e kx 	i_e -kx

1 dv kv = = _ i...e kx •_ i_e -kx )and
u dx a

uZ k
Therefore i =-i

uZ +k

and hence,
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where
1 + j 

6

The analysis in this case follows that f

n
replaced with dY 

e 

jco m

- the normal conductor but with dG

d2 i 1
-1, and

dx2 	A2
It follows that

Z jciyi.LX
L

- +
Z + MIX

L

r1

Z n + jcopAL

v(t) 

jwPXi(t) L

In most practical situations Z --, so
0

▪ k ek`,- e
-

a e -kt

§A5 Surface impedance Zs  of a superconductor of finite thickness 

where 2 =  is*2 the London penetration depth derived above. Usually,
n *e

Zn >> jcopk, in which case we obtain the usual formula:

Zs -÷ jciniXT coth-
t

 .
XL

§A6 Effective surface impedance Z,  of a normal conductor of finite thickness 
excited from both sides 

When a conductor of finite thickness has fields incident on both sides, the
apparent surface impedance on either side is affected by the field on the
other. From above, and with reference to Fig. AA: When the excitation is on
one side only,

i+e kx -kx

and v _ e kx _ e -kx )

0

- = (1 + j)
co op _ 1+j 
2 6 •

where
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For one-sided excitation: at x = 0, i = 0, so i _ = - it.

v(0) = —

k

i+.(e
kx

 +
k

Therefore, e -kx ) = 2 ___ i 4. .
0 G

At x = t

and

When the circuit is excited by equal current sources i i + . (e kt e t ) on both

sides, then at x = t, using superposition:

k. -k 	kV(t) = - 1 + . ( e
kt 

+ e t )) + 2-1 + .
0 0

i( _ i+. (e e )

k. kx -kx
v(t) = -1 . . ( e + e ) .

Therefore,
V ( t )

ktK e + e
t
	2ZS (t)

0 e kt e 
-kt e kt _ e -kt

If the excitation on the two sides is out of phase, the sign of the second
term in the square brackets becomes negative.

§A.7 Effective surface impedance Zs  of a superconductor of finite thickness 
excited from both sides 

The approach follows that used above for the normal conductor. For single-
sided excitation, refering to Fig. AA,

i = i +e + i_e
_ x

and v= jcoliAL ( i +e - i_e L ) .

For one-sided excitation: at x = 0, i = 0, so i = - it.

-
Therefore, v(0) = jwp.XL i + . ( e + e AL ) = 2 jo3pXLi+.

_
At x = t i(t) = i + . ( e AL e AL )

and v(t) = jco li (e + e AL)

When the circuit is excited by equal current sources i= i+. (e kt _ e t ) on both

sides, then at x = t, using superposition:

v(t) = jon..0\1, i + . ( e +e ) + 2 jo3 1.1.XL i + .
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Therefore,

If the excitation on the two sides is out of phase, the sign of the second
term in the square brackets becomes negative.
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