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AN ADJUSTABLE SHORT-CIRCUIT FOR MILLIMETER WAVEGUIDES

A. R. Kerr

Introduction

Adjustable waveguide short-circuits are used as tuners in many
millimeter wave applications, and are often lossy and unrepeatable.
Commercial millimeter-wave components have even been made with waveguide
short-circuits consisting simply of loose-fitting metal strips held in
place by a set-screw. Figure 1 shows the measured return loss of such a
short at Ku-band; it is unacceptably lossy over the whole waveguide band
(between the markers).

This report describes a non-contacting short-circuit for use in full-
height WR-4 waveguide (170-260 CHz). Its loss is low, and the phase of its
reflection coefficient varies smoothly across the full waveguide band. The
design can be scaled for use in any millimeter waveguide band.

A. Requirements for a Good Adjustable Waveguide Short-Circuit 

The essential requirements for an adjustable waveguide short-
circuit are (i) low loss, (ii) smooth variation of the phase of the
reflection coefficient with frequency, (iii) smooth variation of phase as
the short-circuit is moved, and (iv) good repeatability.

B. Contacting Versus Non-Contacting Shorts 

In the standard millimeter waveguide bands, non-contacting short-
circuits are commercially available. These usually consist of a metal
dumbbell, often teflon coated, which rotates on the end of a long micrometer
shaft. Centering of the dumbbell in the waveguide is not easy to ensure.
It has been common experience that such shorts can be lossy in some part
of their frequency range. From the measurements described here, the most
likely cause of this loss appears to be off-center mounting of the dumbbell.

In the microwave bands, adjustable shorts are commercially
available which use plungers with rectangular or circular cross-sections.
As will be shown below, rectangular non-contacting plungers are prone to
in-band resonances if they are not precisely centered in the waveguide, which
makes them unsuitable for millimeter wavelengths.

In reduced height millimeter waveguide, non-contacting dumbbell
short-circuits are difficult to make because of the small dimensions and
clearances involved. For example, a WR-10 (75-110 GHz) mixer may have its
waveguide height reduced to 1/4 of full height -- i.e., to 0.0125". Non-
contacting plungers of rectangular cross-section, centered in the waveguide
by a layer of mylar adhesive tape [1], have achieved some success, but our
experience indicates that carefully made contacting shorts are superior in
reduced height waveguide.



Contacting short circuits have two main loss mechanisms: resistive
loss at the contact points, and loss due to power leakage into the gap
behind the contact points. This latter loss is caused by the contact
fingers (or strips) acting as antennas to couple power from the incident
wave into the slender waveguides formed between the body of the short-
circuit and the upper and lower waveguide (broad) walls. This might be
overcome by using multiple quarter-wave spaced contacts; however, contacting
short-circuits cannot readily be made with multiple sections. Wear can
limit the lifetime of contacting short-circuits. We have found this can
be minimized by carefully rounding the tips of contact fingers and using
heavy gold plating on the sliding short and on the inside of the waveguide
[2].

This report will not deal further with contacting short-circuits
nor with short-circuits in reduced-height waveguide.

C. The Quarter-Wave Plunger as a Waveguide Short-Circuit

Within their normal operating bands, rectangular waveguides
propagate only the dominant TE E) mode. Introducing a conducting plunger
into the waveguide creates a gap which supports the coaxial TE ll -like mode
(like two rectangular TE E) modes wrapped around the plunger as shown in
Figure 2(a)), and the same mode rotated 90° -- Figure 2(b). Also, the
coaxial TEM mode is supported -- Figure 2(c). Depending on the plunger
dimensions and the presence of any dielectric material in the gap around
the plunger, higher-order gap modes may also be supported within the
normal waveguide band.

If the rectangular plunger is perfectly centered in the waveguide,
the incident rectangular TE10 mode excites the coaxial TEll gap mode and also
higher order (evanescent) gap modes with anti-symmetry about the virtual
short-circuit plane in Figure 2(a). A non-contacting short-circuit can be
made using a series of high and low characteristic impedance quarter-wave
long rectangular plungers. The length of the sections is based on the
guide wavelength of the coaxial TE ll -like gap mode (Figure 2(a)), and should
be corrected for the fringing fields associated with the evanescent gap
modes.

If the plunger is off center vertically, the incident mode will
also excite the coaxial TEM mode and higher-order (evanescent) gap modes
with both vertical and horizontal symmetry. If the plunger is diagonally
off center, then the 90°-rotated coaxial TE ll -like gap mode (Figure 2(b))
will be excited together with the corresponding set of 90°-rotated higher-
order modes.

The sharp resonances in many of the measurements below are
attributed to resonances between pairs of undesired modes all of which are
reactively terminated at the far end of the plunger. It appears to be
generally true that plungers which are diagonally off center have more in-
band resonances than those which are vertically or laterally off center.
This is a result of coupling between the incident TE E) waveguide mode and
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two sets of gap modes, one rotated 90
0
 relative to the other in the

diagonally off-centered case.

The above discussion applies equally to rectangular and circular
plungers in rectangular or circular waveguides.

It may be tempting to fill the gap around a waveguide plunger
with a dielectric material to improve the performance of the short-circuit
and to help center the plunger. However, there are some disadvantages to
this approach: (i) The presence of the dielectric lowers the cut-off
frequencies of the higher-order gap modes, which increases the likelihood
of in-band resonances. (ii) In practice, some clearance is needed between
the dielectric and the waveguide walls. Lateral movement of the plunger
within this air gap may cause greater changes in loss or phase than would
occur in the absence of dielectric. (iii) Fabrication of millimeter
waveguide short-circuits with dielectric supports is a non-trivial additional
complication. For these reasons, and because it is possible to make a
good short-circuit without dielectric supports, we do not consider
dielectric-filled short-circuits further here.

II. Measurements 

In this and the following sections we describe measurements on a
number of Ku-band waveguide plungers and dumbbells. These measurements
were made on a HP 8510 microwave network analyzer over the frequency range
10-20 GHz. In all figures in this report showing measured results, two
frequency markers are used to indicate the edges of K u-band (12.4-18 GHz).
Except where explicitly noted, plungers or dumbbells are arbitrarily
located along the waveguide and are not necessarily positioned at the
measurement reference plane.

A. Rectangular Plungers 

Initially it seemed desirable to use a plunger which would block
as much as possible of the waveguide cross-section. It soon became apparent,
however, that a plunger considerably narrower than the waveguide was much
less susceptible to in-band resonances. Figure 3 shows the magnitude and
phase of S il for a typical rectangular plunger in Ku-band waveguide
(12.4-18.0 GHz). In Figure 3(a) the plunger is carefully centered between
polystyrene foam supports (e r = 1.0) and no undesired in-band resonances
are evident. In Figure 3(b) the plunger is slightly off center and a sharp
resonance is visible near 17.4 GHz. A slight rotation of the plunger
(about the waveguide axis) excited a resonance near 13.6 GHz as shown in
Figure 3(c). A rotated and off-center plunger exhibits both these
resonances, as shown in Figure 3(d). The height of this plunger was chosen
to give a 0.002" clearance to the waveguide broad walls when scaled to WR-
4 waveguide (170-260 GHz).

To improve the 0.4 dB return loss of this plunger, an additional
identical section was added at various distances from the first section.



Typical results are shown in Figure 4 for three spacings. A return loss
< 0.05 dB is achievable across most of the band, but always with at least
one resonance. (With perfect centering of the plungers, resonances could
probably have been avoided.)

It seems clear from these and other experiments that it would be
difficult to make an acceptable millimeter wave short-circuit using a
rectangular plunger. Mechanical tolerances would not allow sufficiently
precise location of the plunger to ensure resonance-free operation.

B. Circular Plungers 

Our initial measurements on circular plungers were on a HP Model
P920B Ku-band unit. This has a copper dumbbell which rotates on the end
of a micrometer shaft as shown in Figure 5. Measurements of S 11 for the HP
short are shown in Figure 6(a). The return loss is < 0.02 dB (the
measurement noise limit) across the band, and the phase variation is well
behaved. The effective short-circuit plane is located 0.015" behind the
end of the dumbbell (i.e., away from the source) as indicated in Figure
6(b). The effect of moving the short towards the waveguide broad wall is
shown in Figures 7(a) and (b). It is clear that only relatively large
movements away from the waveguide centerline cause a resonance to move
into the waveguide band.

The HP design is in most respects suitable for scaling to
millimeter wavelengths. However, the 0.006" clearance between the dumbbell
and the waveguide wall is too small; in WR-4 waveguide (170-260 GHz) the
corresponding clearance would be 0.0004" which is impractical. For this
reason we tested a series of dumbbells (Figure 8) with progressively smaller
diameters but having other dimensions the same as the HP design. These
dumbbells were supported in a section of waveguide by polystyrene foam.
Figure 9 shows S 11 for the dumbbell with the original HP dimensions, and
Figures 10(a)-(c) show S 11 and 1S211 for the smaller dumbbells.

From these measurements on simple three-section dumbbells, it was
clear that additional sections would be needed if the dumbbell diameter
were to be in a reasonable range for scaling to millimeter wavelengths.
Five- and seven-section dumbbells of diameter 0.253" (Figure 11) were
measured, with the results shown in Figure 12. The smaller return loss and
slightly wider I S il l-bandwidth of the seven-section dumbbell make it a
good choice for millimeter wave application. The 0.253" diameter and
0.029" wall clearance of the Ku-band dumbbell correspond to 0.0175" diameter
and 0.002" wall clearance when scaled to WR-4 waveguide (0.0430" x 0.0215").

III. The Millimeter Wave Design

The seven-section 0.253" diameter dumbbell was mounted in the end of
an aluminum holder of cross-section 0.614" x 0.303", i.e., 0.008" smaller
in each dimension than the waveguide. This clearance was chosen to simulate
a 0.0005" clearance in WR-4 waveguide. The end section of the dumbbell
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was now entirely inside the holder. Figure 13 shows the measured S il . In
Figure 13(a) the end of the dumbbell is located at the measurement reference
plane, while in Figure 13(b) the dumbbell is moved towards the source 0.090"
to give the flattest phase variation across the band. From this, the
short-circuit can be characterized as a constant reflection coefficient of
unit magnitude and phase -130°, located 0.090" from the end of the dumbbell,
or, equivalently, a constant normalized impedance of -j0.46 located at the
same place.

Figure 14 shows that bending the dumbbell substantially towards the
broad wall or narrow wall of the waveguide does not produce any in-band
resonances. Bending the dumbbell substantially towards the corner of the
waveguide, however, causes two very sharp in-band resonances as shown in
Figure 15(a). These resonances can be suppressed, as shown in Figure 15(b),
by putting lossy ferrite beads on the end of the holder. This is probably
the reason for the use of absorbing material in the HP design (Figure 5).
Even in the present measurements with a greatly off-center dumbbell, these
resonances were weakly coupled to the TE 10 waveguide mode and are barely
discernable on the phase plot. At millimeter wavelengths, the greater
conductor loss will tend to suppress these resonances (as did the absorbing
beads). Certainly, a dumbbell reasonably centered by eye should have a
resonance-free response.

IV. iltaign_taK_EILA_Iigmellicit_i112:161014.1

A. Construction

Scaling the above design from Ku-band to WR-4, a factor of 14.5
in frequency (and linear dimensions), results in a dumbbell structure with
diameters 0.0175" and 0.0086". To machine this on a lathe was judged
impractical, so the short-circuit was assembled from simpler components --
brass beads on a copper-plated steel rod, mounted on the end of a brass
carrier. To obtain the necessary precise alignment (± 0.0002"), an assembly
jig holds all these components in place on a hot-plate while low temperature
solder is applied. After assembly the whole structure is gold plated.

The WR-4 short-circuit assembly is shown in Figure 16. Figures
17 and 18 give details of the assembly fixtures.

B. Drive Mechanism

At short millimeter wavelengths it is desirable to control the
position of a short-circuit to micron accuracy, and for this reason the drive
mechanism, shown in Figure 19, has a #000-120 lead screw (0.0083"/turn).
A rotating nut moves the non-rotating lead screw which is a part of the
short-circuit assembly. The mechanism is compact enough to allow two to
be mounted on the back of a WR-4 mixer block. Friction is very low, and
the mechanism is suitable for cryogenic operation provided oil is removed
from the ball races.
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Fig. 1. S 11 magnitude and phase for a rectangular bar inside a WR-62
waveguide (0.622" x 0.311"). The bar is 0.007" smaller than the
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Virtual
S/C plane

Coaxial TEn -like mode

(a)

Vir-tual
SlC ptane

Coaxial TE
11

-like mode rotated 90°

(b)

Coaxiat TEM mode

(c)

Fig. 2. E-field patterns of modes in the gap between a plunger and the
waveguide. The coaxial TE ll -like gap mode (a) is excited by the
incident rectangular waveguide TElo mode. If the plunger is
laterally off center, the 90°-rotated version of the same mode
(b) is also excited. If the plunger is vertically off center,
the coaxial TEM mode (c) is also excited.
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Fig. 4. Magnitudes of S 11 and S21 for two plungers with various
separations. Each plunger is identical to the one in Fig.
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(b) 0.485", and (c) 0.600".
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Micrometer shaft
unplated steel

Fig. 5. Details of a HP Model P920B Ku-band sliding short. The copper
dumbbell rotates on the end of the micrometer shaft. Absorbing
material is placed behind the dumbbell. Clearance between the
dumbbell and the waveguide broad walls is 0.006" above and below.
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Fig. 6. (a) S 11 for the HP short with the end of the dumbbell located at
the measurement reference plane. The return loss is < 0.02 dB (the
measurement noise limit) across the band, and the phase variation
is well behaved. (b) S 11 with the short positioned to give the
flattest phase variation (by eye). This occurs when the end of
the dumbbell is located 0.015" in front of the reference plane
(i.e., towards the source).
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Fig. 8. Dumbbells with different diameters used
for measurements in Figs. 9 and 10.
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0.124= 0.253 0.124IL 5—SECTION 

D = 0.253 0.1240.124 0.124

Materials Brass Dimensions in inches.

Tolerances' *0.002' except on D.

0.187i2:187-..F0.187 12187k0.187
7—SECTION 

12.... 
0.187

.F

1134.-0.010.1 87
.187 0.187

0.187

Fig. 11. Five- and seven-section dumbbells of diameter 0.253". The 0.253"
diameter and 0.029" wall clearance of the K u-band dumbbell
correspond to 0.0175" diameter and 0.002" wall clearance when
scaled to WR-4 waveguide (0.0430" x 0.0215").
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Fig. 13. S 11 magnitude and phase for the 0.253" diameter seven-section
dumbbell supported in a metal holder (see text). In (a) the end
of the dumbbell is located at the measurement reference plane,
while in (b) the dumbbell is moved towards the source 0.090" to
give the flattest (by eye) phase variation across the band.
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gap), (b) 0.029" off center towards the waveguide broad-wall
(i.e., just touching the wall), and (c) 0.029" off center towards
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same, but with absorbing beads attached to the end of the holder.



Shafts 0.009' steel, copper
plated 200 u-In.

Quantity' 4 0.113 
*0.002'

Beads Brass,
Quantity! 12.
Tolerance, *0.0002"

0.0175

0.0357

(a)

0.0129

T-
0.0175

Arommorrwris, r 0.009

■IMINIMIPIPM11111111•1011111•111111

0.0129 -4 --I 0,0129

Fig. 16. (a) The WR-4 short-circuit assembly including the rectangular
holder, which centers the dumbbell in the waveguide, and the
#000-120 lead-screw. (b) The copper plated steel shaft and
brass beads.
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2.00

MAIN BLOCK
Cross—section

0.50 SPACER

Fig. 17. Assembly fixture for the WR-4 short-circuit - see Fig. 18 for
details.
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Hole Al Tap #4-40 x 0.25' dp..

Holes 131 For 3/32' pins.

Holes CI Tap #2-56 through.

0.1501

0.250
0.100

.11111•11110.71

-4.1 0.300 0.80

Quantity' 1.

1.00

2.00

0.250

--T*11111•1•1•1111M111111111MONIMMINIVM11111111111111111110

Cross-section

17
If)
e20.50

awe

Materials Aluminum.

Material' Aluminum.

I 0.0253

(a)

SPACER 

LL Material* Murmur% 0.0122 *0.0002.

Holes Es ror 3/3ir
Holes Di 412-56 clear csbore for socket head.
Hole Ft Tap 80-80 through.

(b)
Fig. 18. Details of the WR-4 short-circuit assembly fixture

shown in Fig. 17. (Continued on next page.)
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0100

0.0129

r I...-. 0.0129

0.0129

-41.- 0.007

0.053
Oran 4••111.

0.01E9
0.0129

0.353

110
•
80 clear.

0.06311.41.

1080

•••10,

Tolerances, X.XXX ±0.002"
X.XXXX ±0.0002'

0.0205' slot machined with guide
and main block assembled, but
without spacer

(c)

Material' ALUMIFILIPI Tolerances' XXXX *0.001
X.XXXX ±0.0003

Quantity' 1,

I

--- can -I 1 0.061

(d)

24



(a)

Materials SS ilusettyl

0.0 1 r_

oar  

0.685

0262

(b)

0255

Material Steel or SS. Quantity' 2 Tolterances• *0.002' except
beorMg hole 0.250 +.001/-.000

> U76

1

Th=

Breather hole, drill 067 (0.0324,

JACKSHORT MIME SHAFT I. NUT 

(c)

* Note' Shaft dia. to frt PIC E4-5 bearing.

Fig. 19. Drive mechanism for the WR-4 short-circuit. (a) assembly, (b)
body, and (c) drive nut. The drive shaft and nut (c) run in two
ball races mounted in the body (b) which is attached to the mixer
(shown dotted in (a)).
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