
NATIONAL RADIO ASTRONOMY OBSERVATORY

GREEN BANK, WEST VIRGINIA

ELECTRONICS DIVISION INTERNAL REPORT NO, 273

PCI-3000 DATA ACQUISITION SOFTWARE MODIFICATIONS

BJORN B. STEVENS*

*
SUMMER STUDENT

SEPTEMBER 1987

NUMBER OF COPIES: 150



PCI-3000 DAT4 ACQUISITION SOFTWARE MODIFICATIONS

B orn B. Stevens

TABLE OF CONTENTS

Page

Introduction ...... ............................ ..... 1
I. P01-3000 Operation ... 0 0 0 0 0 0 0 0 0 0 0 ***** 00000000000000 1

Hardware Block Diagram . . .. • • . • • .. • • • • . • • • • • • • • • 0. 2
S oftware Block Diagram . .... • • • • • • • • • • • • • • • • • • • .. 3

II. Protocol Definitions .........
III. PCI-3000 Assembly Lang

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000

45Language Functions ... . .......... .
A. TINITIAL.ASM Manual .... .. • • • • • • • • • • • • • • . • • • • • • • . 6
B. TDEFINE.ASM Manual ...... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8

Offset vs. Function Cross Reference . ............ 10
PCI-3000 RAM Chart ... ........................... 11

C.
PCIONOFF.ASM Manual .............................

13
D. MCSAMP.ASM Manual ... .............. ... ........ 15

IV. Firmware Error Checking ............ 0 0 0 0 0 0 0000 00000 1 8

V. Creating Functions for the POI-3000 . • • • • • • • • • • • • • • • • 41
A. Creation of a Code ......... . • • • • • • • • • • • • • • • • ... 41
B. Assembling the C ode . ........ .................. 41
C. Linking the Code ............... .......... ..... 41
D. Explanation of INTEL HEX Format

using TINITIAL.HEX ..... ... .... 0 0 ..... 00 ........ 42
E. Downline Loading .. • • • • • • • ........ • • • • • . • • • • • • • • • • 42

VI. Important Notes .......... ............................ 46
VII. More on Loading Functions ........................ .... 47
VIII. ASCII vs Binary Protocol and Buffer Limitations . • . • .. 48

IX. Problems Encountered (and Solutions) .................... .24 9 ............... 49
X. Stats and Stuff .. .................................. 51

APPENDICIES

Appendix A: Al -A8
The \turboc\chagall.c program and function
documentation.

Appendix B: B1-34
An optional Watch dog timer controller
reset) program. Z80 assembly for the PCI.

Appendix C: C1-C2
Directory listing for the master disk.

Additional notes.

(1)



PCI-3000 DATA ACQUISITION SOFTWARE MODIFICATIONS

Bjorn B. Stevens

INTRODUCTION

The PCI-3000 is a data acquisition device with its own Z80
processor and digital and analog interface boards. It is to be
used at the 300-foot telescope as an auxiliary system to the
MassComp telescope control computer for monitor and control of
receiver frontends, control of signal routing, and monitor of
telescope status and weather conditions. Communications between
the PCI-3000 and the MassComp will be via the IEEE-488 bus.

I. PCI-3000 OPERATION: 

Here we will try to provide a brief outline as to the
operation of the PCI-3000. The system is based on a Z80A
microprocessor that runs on a 4 MHz clock. The heart of the
system is the system firmware which acts much like an operating
system. An excellent explanation of this system firmware is
given in chapter 2 of the PCI technical reference manual.
However we feel that there are several points that are important
to the understanding of our manual, and these will be detailed
here.

The way that the PCI keeps track of tasks that need to be
done is through the use of its BSHED and BFLAG buffers. Every
function that may be executed by the firmware has an associated
flag in the BFLAG buffer. Corresponding to this flag number is
the function starting address in the BSHED buffer. The system
steps through the BFLAG buffer to see which function flags are
set. When it finds a flag set it goes to the BSHED buffer to
find the corresponding function starting address. Control is
then transferred to this function address and the function is
executed. After completion of a function its flag will be
cleared in the BFLAG buffer and control will be returned to the
scheduler. The system then continues this process as it steps
its way to the end of the BFLAG buffer. Upon reaching the end of
the BFLAG buffer the pointer is returned to the top and the
process is continued. This could be called one pass through the
scheduler.

An important function that is called during each pass
through the scheduler is the watch dog timer. What this function
does is makes sure that the system is not hung up. If it is a
system warm reset will be performed. How this works is that a
counter is decremented by interrupt every 16ms, if this counter
is decremented to zero the system is reset. However the counter
is loaded to an initial value such that it will take 0.75 seconds
before the counter is decremented to zero. This counter is then
reinitialized on every pass through the scheduler. Hence, only
if a pass through the scheduler takes more than 0.75 seconds will
the system be reset.



IB
M

 P
C

OR
CO

M
PA

TI
BL

E

M
AS

SC
O

M
P

4 
D

IG
IT

A
L

BU
RR

-B
RO

W
N

PC
I-

30
00

3
2
 A

N
A

L
O

G

No
.

12
 D

IG
IT

A
L

DI
ST

RI
BU

TI
ON

PA
N

EL

R
S
-2

32

 D
A
/
C
P

IE
EE

--
48

8

SE
R
IA

L 
PO

R
T 

A
SE

RI
AL

f i
r

 
PA

R
AL

LE
L 

PO
R
T 

C
PO

RT

12
 D

IG
IT

AL
 C

H
AN

N
EL

S

<
3
2
 A

N
AL

O
G

 C
H

AN
N

EL
S 

(D
IF

FE
R
EN

TI
AL

)

\/
4 

D
IG

IT
A
L 

C
H

A
N

N
EL

S 
O

U
T
PU

T

A
U

X
IL

IA
R

Y
 D

A
T

A
 A

C
Q

U
IS

IT
IO

N
 S

Y
S

T
E

M
 A

U
X

D
A

S
)



LOAD
TINI11 AL

 INITIALIZE
TABLE

DEFINE 1
TABLE 1 

DEFINE
TABLE 2

LOAD
TDEFINE

DEFINE
GROUP 1

DEFINE
GROUP 2

DO

POWER UP
3

RESET STOP
armulme

SYSTEM SAMPLING

LOAD
P CI ON OFF

START
SAMPLING

PROCESS
DATA

INITIALIZE
TABLE

LOAD
MCSAMP

IF TABLE I ELSE
INI TALI ZED

AND GROUP
1&2 DEFINED

RE-INITIALIZE
SYSTEM

AUXDAS FLOW CHART



LI

A warm reset does not seem to affect user RAM. It appears
to only reinitialize the system RAM to its power up values.
Hence, it will be necessary to reload our functions to the system
RAM. Even though the code in user RAM is intact, the calling
sequences and flag initialization in system RAM will have been
wiped out. For user functions only those which will be called
externally must be reinitialized (our first three functions).
To do this it is only necessary to use the Load Function command
to load the start addresses of each function. However, using our
C program we find it easier just to reload the whole system.

II.  PROTOCOL DEFINITIONS: 

In our system we are primarily concerned with two types of
protocol (ascii & binary) over two types of interfaces (the RS232
& the IEEE-488).

The ascii protocol consists of the '!' as a header byte
followed by the microprocessor board id, which is currently
configured to a one. Next come the data words which are
separated by commas. The whole sequence is terminated by a
carriage return.

The binary protocol consists of hexadecimal bytes. These
bytes can be seperated into three parts, the preamble, the data
bytes, and the checksum. The message is terminated by the data
byte expiration as defined in the preamble by the 'number of
bytes to follow' byte.

Both of these formats can be implemented on either
interface. The RS232 interface is generally quite crude with no
handshaking and serial transmission at 1200 baud. For input
output interactions with the PCI the PCI.BAS program works best,
especially for communications in ascii protocol. This program is
capable of a 9600 baud transmission rate. However, the PCI and
the basic code must be reconfigured for this to happen. The
general purpose troubleshooting C program is equally helpful. It
is most useful in binary protocol transmissions over the RS-232
at 1200 baud.

The real operational communications will take place over the
IEEE-488 parallel port. These communications will be much more
sophisticated as the PCI supports the following IEEE-488 protocol
capability.

AH1 Complete acceptor handshake capability
SH1 Complete source handshake capability
T5

	

	 Basic talker, serial poll, talk only, unaddress if
MLA

TEO No extended talker
L3 Basic listener, listen only mode, unaddress if MTA
LEO No extended listener
SR1 Complete service request capability



5

In ascii protocol the string termination character is a carriage
return sent concurrently with an EOI signal. In binary protocol
there is no termination character, just the EOI signal sent with
the last byte.

An important note about the IEEE-488 bus is that the bus
address for the pci on the IEEE-488 bus system is the same as the
microprocessor board id. Hence if the system must be
reconfigured to exist on a bus where address one is taken the
system must be given a different address. This is done by
reconfiguering switches 4 - 8 on SWI. See the PCI-3000 user
manual page 3-2. Note this will also change the response and
calling messages since the second byte is the microprocessor
board address.

For more interface information see chapter 3 in the PCI-
3000 manual. For more protocol information see appendix B and
chapter 3 in the P0I-3000 technical manual.

III.  PCI-3000 ASSEMBLY LANGUAGE FUNCTIONS: 

To minimize th.e load on the controlling MASSCOMP computer
several 780 assembly language functions were designed to be
implemented in the P0I-3000 system. As the PCI was configured on
purchase it could only sample one input at a time, or several
analog functions periodically. Each time a function was to be
sampled it was necessary to send a controlling command to the PCI
to perform the necessary task.

Hence, it was decided to take full advantage of the PCI -3000
Z80 microprocessor and design a set of functions that could
sample two groups of inputs at separate sampling periods. This
sampling was to be controlled intrinsically. The only time the
MASSCOMP would become involved would be when the PCI had
assembled a packet of sampled data and was ready to send it
across the IEEE-488 bus. With this in mind the following four
functions were written to perform the listed tasks:

TINITIAL.ASM:
Initializes an area of system RAM which will
be used as a table, and a variable storage
area

TDEFINE.ASM:
Defines the membership of group N (N = 1,2).
Defines the sampling period of group N (N =
1,2). These definitions will take place in
what will be now known as the sample table.

PCIONOFF.ASM:
Set up the system firmware to either call
MCSAMP periodically, or terminate the



periodic call of MCSAMP. Where the
periodicity at which MCSAMP is called is
determined by the group 1 sampling period.

MCSAMP.ASM:
Sample group N as determined by it's flag
status in the sample table. N will always
correspond to 1 except on every Xth call N
will correspond to 2. X is the number
entered to define the group 2 sampling
period.

The foundation which governs the successful operation of
this group of functions is the sample table. This table which is
illustrated on the next page consists of 60H (96) bytes of RAM
spanning the addresses 9000H through 905FH. The division of this
table is documented below:

Location (Hex) Purpose 

9000 & 9001 Group 1 sampling period.

9002 & 9003 Group 2 sampling period only low byte
used.

9004 to 9023

9024 to 9028

902C to 902F

9030 to 904F

Table entries corresponding to 32 analog
channels. Each entry contains sample
flag status as well as analog gain
information.

Table entries corresponding to 1st group
of 8 digital channels. Each entry
contains sample flag status.

Table entries corresponding to 2nd group
of 4 digital channels. Each entry
contains sample flag status.

Additional space for table expansion.

9050 to 905F

	

	 Reserved for use by variables declared
in functions.

A.  TINITIAL.ASM MANUAL: 

TINITIAL (table initialize) is a Z80 assembly language
program that is designed to initialize the sample table that is
set up in the system RAM of the PCI-3000. It will generally be
called first upon implementation of this data acquisition
procedure in the PCI.



7

The desired configuration of the system RAM in the PCI is
laid out on the PCI-3000 RAM CHART which is included with this
manual. The actual realization of this configuration only comes
about after the loading of the four assembly language programs
detailed in this manual. The purpose of this function is to
initialize all the registers in the table (9000H through 905FH
inclusive) to an initial value of zero. This is necessary since
the default values of the registers upon power up are generally
not zero. Any bit in the table must be set by the user in order
to insure proper operation of the system.

The operation of the function is simple. It merely uses the
IX register as a pointer to the first value in the table and then
steps through the table initializing each register to zero. The
B register is used for control in that it is decremented each
time the pointer is incremented. Once it is decremented to zero
program execution is halted.

The program also has one other minor function that an
arbitrary parameter (one byte) must be Passed to it in the
calling statement. This parameter, along with the 'program
executed correctly byte' (4FH), should then be returned upon
proper execution of the program. The passed parameter is stored
in the byte just preceding the sample table in system RAM
(8FFFH). This just provides a simple means to check the basic
input and output mechanisms of the PCI system firmware, as well
as its ability to interact with the system RAM. It also
satisfies the PCI's constraint in that all functions are required
to provide some output.

To call this function in ascii protocol use:

$A0,0,XX(BYTE)

where the second 0 corresponds to the microprocessor board id; 0
specifies all boards. BYTE specifies any decimal integer between
0 and 255.

In binary protocol use:
24 42 31 id 04 12 XX YY

where: 24 42 31 is the header,
id is the microprocessor board id, can be 0 as in

ascii;
04 is number of bytes to follow;
12 is function label (if function is entered as

specified);
AA is the arbitrary byte parameter; and
XX YY is the modulo 16 check sum (low byte high byte

format).

Note this checksum is only a checksum of the bytes following the
'number of bytes to follow' byte.

See chapter five of the PCI-3000 technical reference manual
for additional infomation.



8

B. TDEFINE.ASM MANUAL

TDEFINE (define table) is a Z80 assembly language program
that is designed to define the membership of group N, as well as
the sampling period of group N, where N is presently 1 or 2. It
only has the ability to add members to a group. However it can be
used to change the sampling period of a group without affecting
the membership of a group. In order to remove members from a
group it is necessary to reinitialize the whole sample table
(using TINITIAL) and redefine the whole table (using TDEFINE).

When calling TDEFINE certain parameters must be passed in
the calling statement. The parameters must be passed in the
order in which they are defined below.

Group number: This is either a 1 or a 2 to signify whether
the data to follow is to be used in the definition of group one
or two.

Sampling period: This is a two byte word that will either
be the group one sampling period divided by 16ms or the group two
sampling period divided by the group one sampling period. If
this word is intended to represent the group two sampling period,
it must have its high byte set to zero. Even though the group
two sampling period must be read in as a word, other functions
can only accommodate a group two sampling period of a byte in
length. If the calling statement is in ascii protocol it is only
necessary for:

0 < group one sampling period < 65536.
0 < group two sampling period < 256.

Number of members: This is just a number to let the PCI
know how many members you wish to define in this statement.
Since the definition of each member requires two bytes there
should be exactly twice as many bytes as there are members passed
in this statement. This parameter is also used by the TDEFINE
function to tell it when there are no more members to define. In
addition, this parameter can be set to zero if it is just desired
to change the sampling period of a particular group.

Member's number: This is just a parameter to signify which
member's sample flag you wish to set. This number is the same as
each particular member's offset position within the sample table.
Where the offset is with respect to the first member at position
9004H. The cross correlation between each member and the offset
of their location in the table is included on the following page.

Gain: This parameter must be included for every member to
be defined in to the table even though it is only relevant for
those entries corresponding to analog channels. The gain numbers
are as follows:



OOH for an analog gain of 1.0 and
all digital definitions.

01H for an analog gain of 10.
02H for an analog gain of 100.
03H for an analog gain of 1000.

Any entry not conforming to the above specifications may cause an
error in the operation of the entire system, or the execution of
this particular function.

The address is the actual system RAM address of the sample status
byte corresponding to the listed function.

The binary offset is equivalent to the base channel number in
binary protocol. This would be the number to define this
functions membership into a group when TDEFINE is called using
binary protocol.

The decimal offset is equivalent to the base channel number in
ascii protocol. This would be the number to define this
functions membership into a group when TDEFINE is called using
ascii protocol.

The connector pins are just the Elco connector pin-out of the
particular function with respect to the PCI-3000 distribution
panel.

The function just reflects current knowledge as to what each
channel number represents.

The table entitled "Offset vs. Function Cross Reference" follows.

Special Notes on Table Notation: 

SMD: STERLING MOUNT DIGITAL
SMA: STERLING MOUNT ANALOG
TFD: TRAVELING FEED DIGITAL
TFA: TRAVELING FEED ANALOG
TSD: TELESCOPE DIGITAL
TSA: TELESCOPE ANALOG
CYRO: CRYOGENICS
SPD: SPARE DIGITAL
CAL: CAL - SIG/REF
LOS: LO SELECT
IFS: IF SELECT



1 0

OFFSET VS. FUNCTION CROSS FEFERENCE

BINARY DECIMAL CONNECTOR
ADDRESS OFFSET OFFSET PINS FUNCTION

9004H 00H 0 SMA: A - B REFRIGERATOR TEMP.
9005H 01H 1 C - D FE AMBIENT TEMP.
9006H 02H 2 E - F DEWAR VACUUM
9007H 03H 3 H - J LO LEVEL
9008H 014H 4 K - L
9009H 05H 5 M - N
900AH 06H 6 P R
900BH 07H 7 IFS: A - B LO SELECT ANALOG.

900CH 08H 8 TFA: A - B REFRIGERATOR TEMP.
900DH 09H 9 C - D FE AMBIENT TEMP.
900EH OAH 1 0 E - F DEWAR VACUUM
900FH OBH 11 H - J LO LEVEL
9010H OCH 1 2 K - L
9011H ODH 1 3 M - N
9012H OEH 114 P - R
9013H OFH 1 5 IFS: C - D LO SELECT ANALOG.

9014H 1 0H 1 6 CYRO:A - B PRESSURE SUPPLY S.M.
9015H 11H 1 7 C - D PRESSURE RETURN S.M.
9016H 1 2H 1 8 E - F REFRIGERATOR CURRENT S.M.
9017H 1 3H 1 9 H - J PRESSURE SUPPLY T.F.
9018H 1 4H 20 K - L PRESSURE RETURN T.F.
9019H 1 5H 21 M - N REFRIG. CURRENT T.F.
901AH 1 6H 22 IFS: E - F LO SELECT ANALOG.
901BH 1 7H 23 IFS: H - J LO SELECT ANALOG.

901CH 1 8H 24 TSA: A - B WIND SPEED
901DH 1 9H 25 C - D WIND DIRECTION
901EH l AH 26 E - F OUTSIDE TEMPERATURE
901FH I BH 27 H - J BRAKE TEMPERATURE
9020H 1 CH 28 Al: 1 - 2 GENERAL ANALOG 1
9021H 1 DH 29 A2: 1 - 2 GENERAL ANALOG 2
9022H l EH 30 A3: 1 - 2 GENERAL ANALOG 3
9023H 1 FH 31 A4: 1 2 GENERAL ANALOG 4

DIGITAL BOARD ONE DIGITAL BOARD TWO

9024H 20H 32 902CH 28H /4 0
9025H 21H 33 902DH 29H 41
9026H 22H 34 902EH 2AH 42
9027H 23H 35 902FH 2BH 43
9028H 24H 36
9029H 25H 37
902AH 26H 38
902BH 27H 39



Memory
Location

9000H
900111
9002H
9003H

11

PCI-3000 RAM CHART

Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 

Low Byte of Group 1 Sampling Period Multiplier ------ ASAMPL
High Byte of Group 1 Sampling'Period Multiplier  - - - -  - - - - ASAMPH
Low Byte of Group 2 Sampling Period Multiplier  - - - -
High Byte of Group 2 Sampling Period Multiplier  - - - - 

Analog (Section 1) Bank 0 32 Channels

9004H

•

9023H

9024H

9028H

902CH

902FH

Reserved for
Analog Gain

Digital (Sec. 2, Bank 1) 8 Ch.

Digital (Sec. 3, Bank 2) 4 Ch.

Reserved Group 1 Group 2 BTABLE
for Flag Flag
possible
Group 3
defini-
tion.

Reserved
(Sec. 4, Bank 3) 32 Channels

9030H

•
904FH

VARIABLES (ADDRESSES) CODE

905011 LIMIT START END
905111 COUNT TINITIAL XX 12 9290
905211 CKFLAG TDEFINE YY 13 9210 9270
905311 INDEX PCIONOFF ZZ 14 9160 9203
905411 RELOAD LOW BYTE - RELOAD MCSAMPLE 9060 9154
905511 RELOAD HIGH BYTE
905611 ADDR
905711 STATUS

VARIABLE
PNPEL H = 90
ANNEL L = 60

**********



12

1. FUNCTION OPERATION:

Initially the CKFLAG register and IX pointer are configured for a
group one definition. GETPAR is then used to determine which group is
to be defined. If it is group two, IX and CKFLAG are reconfigured.
With the correct configuration of the IX and CKFLAG registers the rest
of the program has been written to be transparent to which group is
actually being defined. Due to this it should be easy to expand this
program to define another group.

Next the group sampling period is loaded into the correct
registers as pointed to by the IX register. We then read in the
number-of-members parameter and check to see if this is zero in which
case program execution is terminated. Otherwise it is used for
program control in register B. This register will be decremented
after processing each gain parameter, and once it is decremented to
zero program execution is halted.

Finally we enter the loop controlled by the B register. Here the
IX register points to the first entry in the table. The member's
number is then added as an offset to the IX register. The IX register
now points to the correct entry in the table to process and the proper
flag is set. Next the gain is read and or t ed to the entry pointed to
by the IX register. This process is repeated as long as register B is
not zero.

To confirm correct operation of the function the hex character 4F
is passed as output at the end of the program.

2. EXPANSION TO MORE GROUPS:

To expand this function for the possible definition of three
groups one simply needs to do the following:

Create a location in which to store the group three sampling
frequency. This could be done by increasing the system RAM
defined after the group two sampling frequency bytes at
9002H & 9003H.

Create a test to see if the first parameter passed is a 3,
for the definition of group three.

If the first parameter is a three, initialize CKFLAG to 20H
for the group three flag bit, and point to the correct
location in which to store the group three sampling period.

The only problem should be that the way MCSAMP is currently
written the group identifier byte at the beginning of the
output packet would identify group three as group 128. This
could be remedied without too much trouble or just accepted.



1 3

To call this function in ascii protocol use:

$A0 , 0 , YY (group number, sampling
period, number of members, member's
number, gain, member's number, gain
...).

In binary protocol use:

24 42 31 id bc 13 parameters XX YY

Id is the microprocessor board id;
bc represents bytes to follow byte
= 2*(# of functions to define) + 7.

Parameters are detailed above and must be entered as hex bytes XX
YY is the modulo 16 checksum.

C. PCIONOFF.ASM MANUAL: 

PCIONOFF is a Z80 assembly language program that is designed
to configure the buffers and reload the counter such that MCSAMP
will be called at intervals of 16ms. Its other purpose is that
on every other call it loads the reload counter with zeros such
that the periodic calling of MCSAMP will cease.

Initially, the word representing the rate at which MCSAMP is
to be called is loaded into a working area of RAM called the
reload area. This is done so that when the function is in its off
phase it does not have to erase the original word. This saves
you having to reenter the desired period of the MCSAMP function
each time you want to start it  This word which is actually the
sampling period divided by 16ms will be hereafter referred to as
the reload word.

To determine what phase (on/off) to enter this function
defines a STATUS byte. If STATUS equals 0 the function will
enter its turn on mode, set STATUS to one, and output this reset
value to the terminal to signify that MCSAMP has been activated.
Alternately if the initial status is 1 the function will enter
its turn-off mode, reset the status, and output this reset value
to the terminal to signify that MCSAMP has been terminated. Upon
correct operation the program will also transmit the 'program
executed correctly byte' (4F Hex) along with the reset value.

To call this function in ascii protocol use:

$A0,0,ZZ

In binary protocol use:

24 42 31 id 03 15 15 00.

Since there are no unknowns in the part of the statement used to
compute the sum, XX and YY can be given.



14

1. THE ON PHASE, STATUS = 0, SET TO 1:

First, the BFLAG buffer is set up. This is just a buffer
containing all the flags used throughout the PCI-3000 firmware.
Flags 18H through 1FH are reserved for user flags. GOPSBY is
used to write to buffer number one. Bit 7 in register C
specifies write, while bits 0-6 specify the buffer number.
Register B specifies that zero is the byte to be written and
registers DE specify that flag 18H is the flag we wish to write
to. Hence the user flag representing MCSAMP will be 18H.

Next the scheduler buffer is setup, this buffer contains
three bytes for every flag in BFLAG. These three bytes
correspond to the flag number and the low and high bytes of the
starting address for the corresponding function. In our case the
user flag 18H and the starting address of MCSAMP (9060H) are
written into this buffer using the firmware function GOPNEB.

Finally we initialize the BCKLK buffer. This buffer is
responsible for the periodic calling of functions. Each entry
contains five bytes with one byte corresponding to the function
flag number, two bytes corresponding to a reload value, and two
bytes corresponding to a count value. Every 16ms we decrement
the reload value until it reaches zero at which time the
associated flag is set and the reload value is set to the value
in count. At this point the flag entry is initialized to 18H
while the count and reload words are both initialized to zero.

Also in the on phase the ADDR register corresponding to the
analog board PCI-3000 bus address is set to 0. The INDEX
register is initialized to the value for the group two sampling
period byte. This byte is actually the period at which group two
is sampled divided by the period at which group one is sampled.

To conclude the on phase the reload word in our variable
area of RAM is copied into the reload and count location of the
BCLKA buffer. This will then start the periodic call of MCSAMP.

2. THE OFF PHASE, STATUS = 1, RESET TO 0: 

In the off phase it is only necessary to clear the reload
and count values in the BCLKA buffer. This is done by writing
zeros to the reload word in our variable area of RAM and copying
these values to the reload and count locations of the BCLKA
buffer.

NOTE:

For additional information see the buffer information in
chapter 2 of the PCI-3000 technical manual, and the reload and
setup functions in the analog read example given on pages 4-7 to
4-18 of the same manual.



15

D. MCSAMP.ASM MANUAL:

MCSAMP is a Z80 assembly language program that is designed
to index through a table and sample various inputs as determined
by their corresponding flag status. This subroutine will be
called intrinsically by the reload function in the PCI-3000
firmware.
Presently it is configured to discriminate between two groups and
sample the appropriate one at the appropriate interval. This
function was designed for easy expansion and reconfiguration.

1. SECTION ONE:

The function itself consists of five main parts. The first
part is responsible for setting up the appropriate protocol,
output port, and check flag status. To change the protocol the
appropriate number must be entered into the PRTCL register. 01
specifies ascii protocol while 02 specifies binary protocol. For
more information consult the protocol section of this manual or
the PCI-3000 technical manual pages 3-38, 3-39. To redirect the
output to a different output port the PORTID register must be
loaded with a value corresponding to the desired output port and
the location of the PRTCL and PPARMA registers must be changed
accordingly:

Serial port A:
PRTCL 407AH, PPARMA = 406BH (PORTID) 04H

Serial port B:
PRTCL = 4091H PPARMA = 4082H (PORTID) 08H

Parallel port C:
PRTCL = 4106H PPARMA = 110F7H (PORTID) 10H

Note, PORTID = 4023H regardless of protocol or output port. Only
the byte corresponding to this memory location changes.

As this function is presently defined the group two sampling
period is an integer multiple of the group one sampling period,
where this integer is between 0 and 255. The index register
initially contains this integer and is decremented every time
MCSAMP is called. Group two is sampled only when this register
is decremented to zero. At this time the index register is
reinitialized and the CKFLAG register is reconfiguered to the
status of the group two sample flags.

To expand this function to three groups the TDEFINE function
must be modified to allow for the definition of the third flag.
ALSO MCSAMP must have a means by which at certain intervals the
CKFLAG status is configured to sample group three.

Before GETTXB is called the desired output port is examined
to see if it is clear. If the output port is not clear the
sampling sequence is skipped and control is transferred to the
end of the program where the system is reconfigured to its



16

original status. The reason we do not wish to let GETTXB wait
until the buffer is clear before resuming execution is that the
system will hang up each time the buffer is not clear.

To see if the output port is clear we examine the byte
corresponding to this buffer status. Specifically we see if the
first bit is set. For the available output ports the byte
location is listed below:

Port A: 421A (Hex) Port B: 421B (Hex) Port C: 421C (Hex)

Finally the IX register is pointed to the beginning of this
table, the transmit buffer is initialized using GETTXB, and the
number of the group to be sampled is placed into the transmit
buffer.

2. SECTION TWO: 

In this section analog board one is sampled. The functions
on this board are represented in locations 9004H through 9023H of
system RAM. The COUNT register will specify the offset of the
IX register from its initial value. This in turn represents the
base channel number of the function to be sampled.

The LIMIT register is initialized to the length of this
section. It is used to determine when all the entries have been
checked and it is time to move on to sample the next section.
This occurs when LIMIT is decremented to zero.

To determine whether or not to sample a function, its
corresponding entry in the table is anded with CKFLAG. If its
sample flag is set it is sampled, otherwise control is
transferred such that the next entry in the table will be
examined.

To sample an analog channel the firmware function TIODRV
must be used with the accumulator set to 04H. Further
requirements dictate that register C contains the value of the
analog board's PCI-3000 bus address (00H for this board). Also
register B must contain the adjusted channel number of the
function to be sampled. The adjusted channel number is just the
base channel number offset by the number representing the analog
gain multiplied by 64. After calling TIODRV the word
representing the value of this function will reside in registers
BC. This word is then placed in the transmit buffer using
PUTPAR.

For additional information see PCI-3000 user manual appendix
B-33 to B-43 and TIODRV, PUTPAR spec sheets (PCI-3000 technical
manual pages 3-31 & 3-33, respectively).

3. SECTION THREE: 
In this section the first digital board is sampled. This

board is configured as bank 1 in the PCI. The board is set up to
receive eight bytes of digital inputs at addresses 10H through



NOTE: 

17

1 7H. These addresses correspond to locations 9024H through 902BH
in the sample table set up in the system RAM.

The same procedure is used to step through the table entries
as was used in section two For this section the LIMIT register
is set to 08H for the 8 channels addressed by the board. It is
decremented in the same manner as before.

The sampling process is the same except that the register
configuration before calling TIODRV now requires the accumulator
to be set to 02H and register C to contain the corresponding bus
address.
Also, for these digital reads the data returned is a single byte
rather than a two byte word as was the case in the analog
S ection.

4. SECTION FOUR: 

In this section the second digital board is sampled. This
board is configured as bank 2 in the PCI. The board is set up to
receive four bytes of digital input at addresses 20H through 23H.
These addresses correspond to locations 902CH through 902FH in
the sample table set up in the system RAM. The other four
addresses accessed by this board (24H through 27H) are configured
as digital output registers.

The exact same procedure is used in this section as was used
in section three. However, due to the implementation of only
four digital input channels on the board, the LIMIT register is
set to 04H in this section.

5. SECTION FIVE: 

In this section the Transmit buffer is completed as per the
protocol specifications. It is then sent as specified by the
value of PORTID, and the choice of PPARMA. Next PORTID and the
IY register are returned to their original status. In closing the
user flag set by the reload function to call this subroutine is
cleared.

If additional I/O boards are added it would be a simple
matter to expand the routine such that a section after section
four could be set up to sample these boards in a manner analogous
to one of the previous sections depending on the type of the
board. Additional space was provided in the sample table such
that 32 channels could be accommodated between register locations
9030H and 904FH inclusive. Additional space could be added by
reconfiguring the RAM set up. One must be aware of the
restrictions imposed by the watchdog timer and transmit buffer
limitations when expansions of this magnitude are being
C onsidered.



18

Iv. FIRMWARE ERROR CHECKING:

Throughout the functions you will occasionally see a group
of assembly commands like the following.

RLCA
JR C, ERROR

These commands will only be found directly after a call to a
firmware function. Upon completion of a firmware function the
accumulator contains the function status. If bit 7 was set this
indicates that an error was incurred during execution of this
function. This group of commands just checks the error status
and if an error was detected (bit 7 set) control is transferred
to the error section of the program which looks like this.

ERROR RRCA
CALL RETERR
RET

What happens here is that register A is returned to its original
status and the function call RETERR is called. This function
merely returns the correct error information to the output
stream. Function execution is then terminated.

Error checking of the firmware functions was not implemented
in the MCSAMP subroutine. This was due to several reasons:

1. There is no variable external
intervention in this subroutine.

2. The subroutine was paired down to
optimize for speed.

The input output buffer manipulations
were such that it was unclear as to what
the error checking subroutine would
accomplish, thus possibly making
debugging even more difficult.

Due to these reasons and the fact that the only possible
source of error that could disable the system seemed to be the
entry for analog gain being incorrect, error checking was not
evoked. The possibility of an incorrect analog gain affecting
the system was remedied by extracting only the significant bits
from the status bytes. Hence, once the system is running the
only outcome of an error would seem to be incorrect output, as a
result of an incorrect definition. This seemed reasonable in
consideration of the above criteria.



19

; *****************************************
;*****************************************
; IT(TABLE STATUS CODE)
; THIS IS A USER CREATED FUNCTION WHICH
; WILL BE USED TO INITIALIZE THE DATA
; ACQUISITION TABLE.
; *****************************************

;******* PROGRAM CODE & DOCUMENTATION ****
; *****************************************

;******* GET TABLE STATUS ****************
LD C, 01H
CALL GETPAR
RLCA
JR C, ERROR

THIS IS A PARAMETER RETRIEVING PROCE-
; DURE WHICH: SPECIFIES THAT THE PARAMETER
; TO RETRIEVE IS A BYTE, RETRIEVES THE
; PARAMETER FROM THE BUFFER PLACING IT INTO
; REGISTER E, AND CHECKS TO SEE IF BIT 7 IN
; REGISTER A IS SET IN WHICH CASE AN ERROR
; HAS INCURRED AND CONTROL IS TRANSFERRED
; TO THE ERROR ROUTINE.

; ******* PREPROCESSING SECTION ***********
LD IX, 8FFFH
LD (IX+0), E
LD B, 60H

HERE THE POINTER IS INITIALIZED TO
; THE ADDRESS ONE BYTE BEFORE THE FIRST
; BYTE IN THE TABLE. THIS BYTE IS THEN
; ASSIGNED THE TABLE STATUS VARIABLE PASSED
;IN THE FUNCTION CALL. FINALLY REGISTER B
; IS INITIALIZED TO A VALUE REPRESENTING
; THE NUMBER OF BYTES IN THE TABLE.

; ******* TABLE INITIALIZATION ************
LOOP LD (IX+1), 00H

INC IX
DEC B
JR NZ, LOOP

HERE ALL THE BYTES IN THE TABLE ARE
; INITIALIZED TO 0.

.******* RETURN CHECK EXEC. PARAMETER
LD C, 01H
LD E, 4FH
CALL PUTPAR
RLCA
JR C, ERROR



20

OUTPUT 'FUNCTION EXECUTED CORRECTLY'
; BYTE (4FH).
; ******* RETURN STATUS PARAMETER *********

LD HL, 8FFFH
LD E, (HL)
LD C, 01H
CALL PUTPAR
RLCA
JR C, ERROR

; ******* FUNCTION TERMINATION ************
RET

; ******* ERROR DEFINITION*****************
ERROR RRCA

CALL RETERR
RET

REESTABLISHES REGISTER A AND CALLS
; THE FIRMWARE ROUTINE 'RETERR' WHICH
; DIAGNOSES THE ERROR, AND OUTPUTS IT TO
; THE TERMINAL. FUNCTION EXECUTION IS THEN
; TERMINATED.

; ******* FIRMWARE ROUTINE ADDRESSES ******
GETPAR EQUAL 0055H
RETERR EQUAL 006DH
PUTPAR EQUAL 0064H



21

TINITIAL. HEX

109290000E01CD5500073829DD21FF8FDD73000653
1092A00060DD360100DD230520F70E011E4FCD6481
1092B0000007380D21FF8F5E0E01CD6400073801D5

:0692C000C90FCD8500C9B5
:00000001FF



22

. *****************************************
;*****************************************

DT(GROUP #, SAMPLING RATE, # OF
; MEMBERS, MEMBER'S NUMBER, GAIN) NOTE IF
; THE MEMBER IS A DIGITAL FUNCTION A ZERO
; MUST BE ENTERED FOR THE GAIN. THIS IS A
; USER CREATED FUNCTION DESIGNED TO MAKE
; A TABLE THAT WILL INDICATE WHICH GROUP(S)
; A FUNCTION BELONGS TO, THE SAMPLING FREQ
; OF THAT GROUP, AND THE GAIN OF THE
; CHANNEL FOR ANALOG GROUPS.
; *****************************************

; ******* PROGRAM CODE & DOCUMENTATION ****
. *****************************************

- ******* VARIABLE INITIALIZATIONS ********
LD IX, ASAMPL

LOADS TABLE BASE ADDRESS INTO IX REG.

LD HL, CKFLAG
LD (HL), 40H

; SETS UP HL REGISTER AS A PONTER TO A
; REGISTER. THIS REGISTER IS LOADED WITH
; THE GROUP ONE DEFINITION NUMBER.

; ******* LOAD GROUP NUMBER INTO REGISTER E
LD C, 01H
CALL GETPAR
RLCA
JR C, ERROR

THIS IS A PARAMETER RETRIEVING PROCE-
; DURE WHICH: SPECIFIES THAT THE PARAMETER
; TO RETRIEVE IS A BYTE, RETRIEVES THE
; PARAMETER FROM THE BUFFER PLACING IN INTO
; REGISTER E, AND CHECKS TO SEE IF BIT 7 IN
; REGISTER A IS SET IN WHICH CASE AN ERROR
; HAS INCURRED AND CONTROL I TRANSFERRED
; TO THE ERROR ROUTINE.

; ******* DETERMINE GROUP NUMBER **********
LD C, 00H
DEC E
JR Z, LDSAMP

CONFIGURES REGISTER C SO THAT NEXT
; TIME GETPAR IS CALLED A WORD WILL BE READ.
; CHECKS TO SEE IF THE GROUP NUMBER FOR
;INCOMING SET OF DATA IS A 1 IN WHICH
; CASE CONTROL IS TRANSFERED TO LDSAMP.



23

, ******* GROUP TWO CONFIGUERATION ********
INC IX
INC IX
LD A, (HL)
SLA A
LD (HL), A

; ONLY EXECUTED IF NOT GROUP ONE, THIS
; SECTION CHANGES THE GROUP DEFINITION
; NUMBER SO IT CORRESPONDS TO GROUP TWO &
;INCREMENTS THE INDEX REGISTER SO IT
; CORRESPONDS TO THE BYTE REPRESENTING
; GROUP TWO'S SAMPLING FREQUENCY. IT ALSO
; RECONFIGURES REGISTER C SO THAT A BYTE
; WILL BE READ NEXT TIME GETPAR IS CALLED.

; ******* PROCESS SAMPLE FREQUENCY ********
LDSAMP CALL GETPAR

RLCA
JR C, ERROR

; PARAMTER RETRIEVING PROCEDURE WHICH
; LOADS THE SPECIFIED SAMPLING RATE INTO
; REGISTERS DE.

LD (IX+0),
LD (IX+1), D

; LOADS THIS SAMPLING RATE INTO THE BYTE
; CORRESPONDING TO THE GROUP NUMBER.

; ******* LOADS # OF MEMBERS **************
LD C, 01H
CALL GETPAR
RLCA
JR C, ERROR

; PARAMETER RETRIEVING PROCEDURE WHICH
; LOADS THE NUMBER OF GROUP MEMBERS TO BE
; DEFINED INTO REGISTER E. THIS PARAMETER
; IS MAINLY USED FOR INPUT CONTROL.

; ******* TABLE DEFINITION CHECK **********
LD B, E
INC B
DEC B
JR Z, RETURN

REGISTER B IS GIVEN THE LOOP CONTROL
; INDEX AND THIS INDEX IS CHECKED TO SEE IF
; IT IS ZERO IN WHICH CASE THERE WOULD BE
; ZERO MEMBERS TO DEFINE AND THE PROGRAM
; CONTROL WOULD BE SENT TO RETURN AND
; TERMINATED.



24

; *******TABLE FILLING ********************
LOOP LD C, 01H

CALL GETPAR
RLCA
JR C, ERROR

; PARAMETER RETRIEVING PROCEDURE WHICH
; LOADS THE FUNCTION TO BE ENTERED INTO THE
; TABLE INTO REGISTER E.

LD IX, BTABLE
ADD IX, DE

; LOADS THE BASE ADDRESS OF THE TABLE DATA
; SECTION INTO THE INDEX ARRAY AND ADDS THE
;INPUT LOCATION OFFSET TO THIS VALUE.

LD A, (IX+0)
OR (HL)
LD (IX+0), A

; ORS THE VALUE OF THE GROUP DEFINITION
; WITH THE SPECIFIED BYTE.

LD C, 01H
CALL GETPAR
RLCA
JR C, ERROR

; PARAMETER RETRIEVING PROCEDURE WHICH
; LOADS THE ANALOG GAIN OF THE FUNCTION
; JUST ENTERED, INTO REGISTER E.

LD A, ( IX+0)
OR E
LD (IX+0), A

; ORS THE VALUE REPRESENTING THIS ANALOG
; GAIN WITH THE CONTENTS OF THE SPECIFIED
; REGISTER.

DEC B
JR NZ, LOOP

; DECREMENTS THE LOOP CONTROL INDEX IN
; REGISTER B, IF THIS IS NOT ZERO, CONTROL
; IS TRANSFERED BACK TO LOOP AND THE
; PROCESS IS REPEATED UNTIL THE LOOP INDEX
;IS 0, AT WHICH TIME CONTROL IS RESUMED
; SEQUENTIALLY AND THE PROGRAM TERMINATES.

;******* EXECUTION VERIFICATION **********
RETURN LD C, 01H

LD E, 4FH
CALL PUTPAR
RLCA
JR C, ERROR

OUTPUT THE HEX CHARACTER 99 TO
; SIGNIFY COMPLETION OF PROGRAM EXECUTION.

RET
; FUNCTION TERMINATION.



25

; ******* ERROR DEFINITION ****************
ERROR RRCA

CALL RETERR
RET

; REESTABLISHES REGISTER A AND CALLS
; THE FIRMWARE ROUTINE ' RETERR' WHICH
; DIAGNOSES THE ERROR, AND OUTPUTS IT TO
; THE TERMINAL. FUNCTION EXECUTION IS THEN
; TERMINATED.

. ******* FIRMWARE ROUTINE ADDRESSES ******
GETPAR EQUAL 0055H
RETERR EQUAL 006DH
PUTPAR EQUAL 0064H

;******* WE EQUATE ***********************
ASAMPL EQUAL 9000H
BTABLE EQUAL 9004H
CKFLAG EQUAL 9052H



26

TDEFINE.HEX

:10921000DD21009021529036400E01CD55000738D7
:10922000580E001D2808DD23DD237ECB2777CD5582
:1092300000073845DD7300DD72010E01CD550007D2
:10924000383743040528270E01CD550007382ADD9D
:10925000210490DD19DD7E00B6DD77000E01CD55CD
:1092600000073815DD7E00B3DD77000520D90E0138
:0E9270001E4FCD6400073801C90FCD8500C91F
:00000001FF



27

; *****************************************
;*****************************************

THIS IS A RELOAD COUNT FUNCTION
; WHOSE RELOAD PARAMETER ENABLES THE CLOCK
; DRIVER PERIODICALLY TO CAUSE THE
; SCHEDULER TO CALL THE MAIN SAMPLING
; ROUTINE MCSAMP. THIS FUNCTION WORKS ON
; AN ON-OFF BASIS IN THAT EACH TIME IT
; IS CALLED IT EITHER TURNS THE SAMPLING
; ROUTINE ON OR OFF.
; *****************************************

; ******* FUNCTION CODE & DOCUMENTATION ***
*****************************************

;******* SET UP RELOAD AREA IN RAM *******
LD BC, 02H
LD HL, ASAMPH
LD DE, RELOAD
INC DE
LDD
LDD

HERE THE WORD REPRESENTING THE
; SAMPLING PERIOD FOR GROUP ONE IS COPIED
; IN TO THE RELOAD AREA OF RAM.

LD IX, RELOAD
; SETS POINTER TO HI BYTE OF RELOAD

;******* GET AND CHECK RELOAD STATUS
LD HL, STATUS
LD E, (HL)
INC E
DEC E
JP NZ, STPSAM

CHECK TO SEE IF RELOAD FUNCTION IS
; TO CALL THE SETUP SUBROUTINE IF NOT SKIP
; SETUP CALLING STATEMENT.

; ******* CALL SETUP FUNCTION FIRST *******
LD (HL), 01H

RESET STATUS SO NEXT TIME FUNCTION IS
; CALLED IT WILL TERMINATE SAMPLING.

LD B, 00H
LD C, 81H
LD DE, 18H
CALL GOPSBY

SET UP BFLAG, LOADS REGISTER B (00H)
; TO BFLAG BUFFER 1 AS SPECIFIED BY
; REGISTER C AT USER FLAG NUMBER 18H AS
; SPECIFIED BY OFFSET IN REGISTERS DE.



28

; ******* SET UP BSCHED BUFFER ************
LD B, 18H
LD C, 80H
CALL GOPNEB

WRITE TO BSCHED BUFFER 0 AS SPECIFIED
; BY REGISTER C AT USER FLAG 18H (REG B).

LD B, ANREDL
CALL GOPNEB

LOAD LOW BYTE OF STARTING ADDRESS FOR
; SAMPLING ROUTINE INTO BSCHED BUFFFER.

LD B, ANREDH
CALL GOPNEB

LOAD HI BYTE OF STARTING ADDRESS FOR
; SAMPLING ROUTINE. BUFFER NOW SET UP.

; ******* SET UP BCLK BUFFER **************
LD B, 18H
LD C, 8BH
CALL GOPNEB

USING USER FLAG 18 HEX (REG B), WRITE
; TO BCLK BUFFER B HEX (REG C).

LD L, 04H
LOOP LD B, 00H

CALL GOPNEB
DEC L
JR NZ, LOOP

WRITE FOUR BYTES INITIALIZING BUFFER.
; THESE FOUR BYTES CORRESPOND TO THE HI AND
; LOW BYTES OF RELOAD AND COUNT, AND ARE

; ALL ZEROS. THIS COMPLETES THE SETUP OF
; THE BCLK BUFFER.

LD E, 00H
LD HL, ADDR

LD (HL), E
; LOAD THE BUS ADDRESS FOR ANALOG BOARD
; ONE, BANK ZERO INTO THE ADDR VARIABLE.

LD HL, 9002H
LD C, (HL)
LD HL, INDEX
LD (HL), C

INITIALIZES INDEX REGISTER TO BYTE
; CORRESPONDING TO GROUP 2 SAMPLING RATE.

JP BGNSAM
END OF SET UP. JUMP TO BEGIN SAMPLE

, ( BGNSAM).



29

; ******* STOP SAMPLING (STPSAM)***********
STPSAM LD (HL), 00H

RESET SAMPLE SO NEXT TIME FUNCTION IS
; CALLED IT WILL INITIATE SAMPLING.

LD (IX+0), 00H
LD (IX+1), 00H

LOADS ZERO HEX INTO RELOAD FUNCTION
; IN ORDER TO STOP SAMPLING ROUTINE.

;******* GET AND LOAD RELOAD VALUE TO BCLK
BGNSAM LD HL, (BCLKA)

LD A, (HL)
SUB 4

POINT ACCUMULATOR AT BCLK OFFSET FOR
; RELOAD LOW BYTE

LD B, (IX+0)
LD C, 8BH
LD D, 00H
LD E, A
CALL GOPSBY

POINT TO RELOAD AREA IN RAM AND GET
; LO BYTE OF RELOAD VALUE. WRITE TO BCLK
; BUFFER B HEX AT OFFSET IN REGISTERS DE.
; LO BYTE OF RELOAD NOW WRITTEN

LD B, (IX+1)
CALL AOASBY

; INCREMENTS POINTER AND LOADS HIGH BYTE OF
; RELOAD VALUE TO BCLK BUFFER.

; ******* REPEAT FOR COUNT VALUE **********
LD B, (IX+0)
CALL AOASBY

; SINCE COUNT AND RELOAD ARE TO BE
; EQUAL DECREMENT HL POINTER TO ADDRESS LO
; BYTE OF COUNT (RELOAD). LOAD THIS VALUE
; TO BCLK BUFFER.

LD B, (IX-'-l)
CALL AOASBY

; REPEAT PROCESS FOR HIGH BYTE OF COUNT.

LD C, 01H
LD E, 4FH
CALL PUTPAR
RLCA
JR C, ERROR

OUTPUT 'FUNCTION EXECUTED CORRECTLY'
; BYTE (4FH)



30

; ******* OUTPUT FUNCTION STATUS *********
LD C, 01H
LD HL, STATUS
LD E, (HL)
CALL PUTPAR
RLCA
JR C, ERROR

OUTPUT CONTENTS OF STATUS REGISTER
; INDICATING IF SAMPLING WAS INITIATED (1)
; OR TERMINATED (0). WITH ERROR CHECKING.
; ******* PROGRAM TERMINATION *************

RET END OF PROGRAM.

; ******* ERROR DEFINITION ****************
ERROR RRCA

CALL RETERR
RET

;******* FIRMWARE EQUATES
AOASBY EQUAL 0043H
GOPNEB EQUAL 005BH
GOPSBY EQUAL 005EH
PUTPAR EQUAL 0064H
RETERR EQUAL 006DH

BCLKA EQUAL 40E3H
ANREDH EQUAL 90H
ANREDL EQUAL 60H

****************

; ******* WE EQUATE
ASAMPH EQUAL 90011-i
INDEX EQUAL 9053H
RELOAD EQUAL 9054H
ADDR EQUAL 9056H
STATUS EQUAL 905711

***********************



31

PCIONOFF.HEX

:1091650001020021019011549013EDA8EDA8DD2115
1091750054902157905E1C1DC2BF91360106000E0A

:1091850081111800CD5E0006180E80CD5B000660CB
10919500CD5B000690CD580006180E8BCD5B002ED7
1091A500040600CD5B002D20F81E0021569073218A
1091B50002904E21539071C3C9913600DD360000EF
1091C500DD3601002AE3407ED604DD46000E8B160F
1091D500005FCD5E0ODD4601CD4300DD4600CD4399
1091E50000DD4601CD43000E011E4FCD640007385A
1091F5000DOE012157905ECD6400073801C9OFCDD2
039205008500C918

:00000001FF



32

; *****************************************
; *****************************************

MCSAMP, THIS SUBROUTINE IS DESIGNED
; TO BE SET UP AND CALLED STARTING AT
; LOCATION 9060H IN SYSTEM RAM. ITS
; PURPOSE IS TO SAMPLE CERTAIN CHANNELS AT
; CERTAIN INTERVALS AS SPECIFIED BY THE
; TABLE SET UP IN SYSTEM RAM.
; *****************************************

;******* PROGRAM CODE & DOCUMENTATION ****
; ******* SECTION ONE *********************

.******* PROGRAM CONTROL *****************

LD HL, PRTCL
LD (HL), 02H

PLACES THE NUMBER CORRESPONDING TO THE
; DESIRED PROTOCOL INTO THE REGISTER
; CORRESPONDING TO THE DESIRED OUPTUT PORT.

LD HL, CKFLAG
LD (HL), 40H

• PLACES THE TABLE 1 FLAG DISCRIMINATOR
; IN THE CHECK FLAG LOCATION IN MEMORY.

PUSH IY
LD A, (PORTID)
PUSH AF
LD IY, PPARMA
LD A, 10H
LD (PORTID), A

HERE THE IY AND PORTID REGISTERS ARE
; CONFIGURED SO AS TO SET UP THE OUTPUT
; PORT. THE VALUE STORED IN PORTID CORR-
; ESPONDS TO THE PORT, AND MUST MATCH WITH
; THE CORRESPONDING CHOICE FOR PPARMA.

LD HL, INDEX
DEC (HL)
JP NZ, SAMPLE

POINTS TO INDEX LOCATION IN MEMORY,
; DECREMENTS INDEX BY ONE AND JUMPS TO
; SAMPLE IF INDEX IS NOT EQUAL TO ZERO.
;(SAMPLES GROUP TWO AT A RATE EQUAL TO AN
; INTEGRAL NUMBER TIMES THE SAMPLING RATE
; OF GROUP ONE) THIS OCCURS WHEN INDEX IS
; DECREMENTED TO ZERO.



33

LD BC, (9002H)
LD HL, INDEX
LD (HL), C
INC HL
LD (HL), B

RESETS INDEX REGISTER TO BYTE COR-
; RESPONDING TO GROUP 2 SAMPLING FREQUENCY.

LD HL, CKFLAG
LD (HL), 80H

PLACES THE TABLE 2 FLAG DISCRIMINATOR
; IN THE CHECK FLAG LOCATION IN MEMORY.

SAMPLE LD IX, BTABLE
THE IX REGISTER WILL BE INCREMENTED

; TO SEQUENTIALLY TEST ALL THE ENTRIES IN
; THE TABLE. HERE IT IS INITIALIZED TO THE
; FIRST TABLE ENTRY.

LD A, (CBFREE)
AND 01H
JP Z, END

CHECKS TO SEE IF THE TRANSMIT BUFFER
; FOR OUTPUT PORT C IS CLEAR, IF NOT THIS
; SAMPLE PASS IS TERMINATED.

CALL GETTXB
THIS IS A FUNCTION CALL TO A FUNCTION

; DEFINED IN THE PCI-3000 FIRMWARE THAT
; WILL SET UP THE TRANSMIT BUFFER.

LD A, (CKFLAG)
RLCA
RLCA

DETERMINE NUMBER OF GROUP TO BE
; SAMPLED BY CHECKING VALUE IN CKFLAG.

LD C, 01H
LD E, A
CALL PUTPAR

PLACE GROUP NUMBER AT BEGINNING OF
; OUTPUT PACKAGE.



34

; ******* SECTION TWO, ANALOG BOARD 1 *****
;*****************************************

LD HL, COUNT
LD (HL), 0

HERE THE COUNT REGISTER IS INITIAL-
; IZED TO THE CHANNEL NUMBER CORRESPONDING
;TO THE FIRST ENTRY IN THE TABLE.

LD HL, LIMIT
LD (HL), 20H

HERE THE VALUE REPRESENTING THE
; LENGTH OF THE FIRST SECTION (ANALOG, BANK
;0) OF THE TABLE IS LOADED TO THE REGISTER
; CALLED LIMIT.

LOOPA LD A, (CKFLAG)
AND (IX+0)
JP Z, NEXTA

CHECKS TO SEE IN THE APPROPRIATE FLAG
; IS SET, IF SO THE APPROPRIATE CHANNEL IS
; SAMPLED.

LD C, 00H
SETS UP PCI-3000 BUS ADDRESS FOR USE

; BY THE TIODRV FUNCTION.

LD A, (IX+0)
AND 03H

EXTRACTS VALUE FOR THE GAIN FROM
; TABLE ENTRY POINTED TO BY IX REGISTER.

RRCA
RRCA

MULTIPLIES THIS VALUE FOR ANALOG GAIN
; BY 64 USING TWO RIGHT ROTATIONS OF
; CONTENTS OF ACCUMULATOR.

LD HL, COUNT
OR (HL)

ORS THE VALUE STORED IN THE COUNT
; REGISTER TO THE ACCUMULATOR. THIS VALUE
; REPRESENTS THE BASE CHANNEL OFFSET FOR
; THE PARTICULAR ENTRY IN THE TABLE.

LD A, 04H
CALL TIODRV

LOADS THE NOW CONFIGURED CHANNEL
; NUMBER INTO REGISTER B AND CONFIGURES
; REGISTER A TO INDICATE AN ANALOG READ
; WITHOUT COMPENSATION IS TO BE PERFORMED
; AT A CERTAIN BUS ADDRESS (REGISTER C) AND
; CERTAIN CHANNEL NUMBER (REGISTER B), BY
; THE TIODRV FIRMWARE FUNCTION.



35

PUSH BC
POP DE

PLACES RETURNED WORD INTO THE DE
; REGISTER.

LD C, 00H
CALL PUTPAR

CALLS PUTPAR WHICH PLACES THE WORD IN
; REGISTERS DE INTO THE TRANSMIT BUFFER.

NEXTA INC IX
LD HL, COUNT
INC (HL)

; INCREMENT IX REGISTER TO POINT TO
; NEXT ENTRY IN THE TABLE. INCREMENTS
; THE COUNT REGISTER TO UPDATE OFFSET.

LD HL, LIMIT
DEC (HL)
JP NZ, LOOPA

WHILE LIMIT REGISTER NOT EQUAL TO
; ZERO CONTINUE SAMPLING SECTION ONE,
; OTHERWISE START SAMPLING SECTION THREE.



36

; ******* SECTION THREE, DIGITAL BOARD 1 **
;*****************************************

LD HL, COUNT
LD (HL), 10H
LD HL, LIMIT
LD (HL), 08H

LOADS THE VALUE FOR THE BASE BUS
; ADDRESS FOR SECTION TWO INTO THE COUNT
; REGISTER. INITIALIZES THE LIMIT REGISTER
; TO REPRESENT THE LENGTH OF SECTION TWO
;(BANK 1, DIGITAL BOARD I)

CONTDA LD A, (CKFLAG)
AND (IX+0)
JP Z, NEXTB

CHECKS TO SEE IF THE APPROPRIATE
; GROUP FLAG IS SET, IF SO SAMPLES THAT
; INPUT, OTHERWISE JUMP TO NEXTB AND GO ON
; TO CHECK NEXT ENTRY IN TABLE.

LD HL, COUNT
LD C, (HL)

LOADS THE C REGISTER WITH THE CURRENT
; VALUE OF THE OFFSET.

LD A, 02H
CALL TIODRV

SAMPLE DIGITAL REGISTER AS SPECIFIED
; BY ADDRESS CONTAINED IN REGISTER C.

PUSH BC
POP DE
LD C, 01H
CALL PUTPAR

LOAD SAMPLED VALUES TO TRANSMIT
; BUFFER.

NEXTB INC IX
LD HL, COUNT
INC (HL)

INCREMENTS POINTER TO POINT TO NEXT
; ENTRY IN TABLE. INCREMENTS THE OFFSET
; STORED IN COUNT.

LD HL, LIMIT
DEC (HL)
JP NZ, CONTDA

DECREMENTS LIMIT COUNTER TO REFLECT
; NUMBER OF ENTRIES LEFT TO SAMPLE. IF NOT
; ZERO CONTINUE SAMPLING THIS SECTION,
; OTHERWISE PROCEED TO SECTION FOUR.



37

; ******* SECTION FOUR, DIGITAL BOARD 2 ***
.*****************************************

LD HL, COUNT
LD (HL), 20H
LD HL, LIMIT
LD (HL), 04H

LOADS THE VALUE FOR THE BASE BUS
; ADDRESS FOR SECTION FOUR INTO THE COUNT
; REGISTER. INITIALIZES THE LIMIT REGISTER
; TO REPRESENT THE LENGTH OF SECTION FOUR
;(BANK 2, DIGITAL BOARD 2)

CONTDB LD A, (CKFLAG)
AND (IX+0)
JP Z, NEXTC

CHECKS TO SEE IF THE APPROPRIATE
; GROUP FLAG IS SET, IF SO SAMPLES THAT
; INPUT, OTHERWISE JUMP TO NEXTC AND GO ON
; TO CHECK NEXT ENTRY IN TABLE.

LD HL, COUNT
LD C, (HL)

LOADS THE C REGISTER WITH THE CURRENT
; VALUE OF THE OFFSET.

LD A, 02H
CALL TIODRV

SAMPLE DIGITAL REGISTER AS SPECIFIED
; BY ADDRESS CONTAINED IN REGISTER C.

PUSH BC
POP DE
LD C, 01H
CALL PUTPAR

; LOAD SAMPLED VALUES TO TRANSMIT BUFFER.

NEXTC INC IX
LD HL, COUNT
INC (HL)

; INCREMENTS POINTER TO POINT TO NEXT
; ENTRY IN TABLE. INCREMENTS THE OFFSET
; STORED IN COUNT.

LD HL, LIMIT
DEC (HL)
JP NZ, CONTDB

DECREMENTS LIMIT COUNTER TO REFLECT
; NUMBER OF ENTRIES LEFT TO SAMPLE. IF NOT
; ZERO CONTINUE SAMPLING THIS SECTION
; OTHERWISE POLISH AND SEND BUFFER.



38

; ******* SECTION 5, WRAP PACKAGE AND SEND.
*****************************************

CALL FINTXB
; READYS TRANSMIT BUFFER FOR TRANSMISSION.

CALL TXENAB
; TRANSMIT BUFFER OVER THE PORT SPECIFIED
; BY PORTID.

END POP AF
LD (PORTID), A

; RESTORE ORIGIAL PORTID BYTE

POP IY
; RESTORE IY REGISTER

LD B, 00H
BYTE TO BE LOADED INTO USER FLAG TO

; CLEAR IT.

LD C, 81H
LD DE, 18H
CALL GOPSBY

WRITE TO BFLAG BUFFER 1 USER FLAG 18
; THIS WILL CLEAR THE USER FLAG.

RET
; END OF SUBROUTINE FINALLY.



39

; ******* FIRMWARE EQUATES ***********

FINTXB
GETTXB
GOP SBY
PUTPAR
TIODRV
TXENAB

EQUAL
EQUAL
EQUAL
EQUAL
EQUAL
EQUAL

004FH
0058H
005EH
0064H
0085H
008EH

PORTID EQUAL 4023H
PPARMA EQUAL 110F7H
PRTCL EQUAL 4106H
CBFREE EQUAL 421CH

CALLING ADDRESSES OF CANNED FUNCTIONS
; PROVIDED IN THE PCI-3000 ROM.

;******* WE EQUATE ***********************

LIMIT EQUAL 9050H
COUNT EQUAL 9051H
CKFLAG EQUAL 9052H
INDEX EQUAL 9053H
BTABLE EQUAL 9004H

ADDRESSES ASSIGNED TO SPECIFIC
; VARIABLES. NOTE ALL ADDRESSES BELOW
; 8000H ARE ADDRESSES SPECIFYING REGISTERS
; WRITTEN TO BY THE PCI-3000 ROM.



40

MCSAMP.HEX

:1090600021064136022152903640FDE53A2340F573
:10907000FD21F7403E1032234021539035C28F909E
:10908000ED4B02902153907123702152903680DD78
:109090002104903A1C42E601CA4891CD58003A5248
:1090A0009007070E015FCD640021519036002150DA
:1090B0009036203A52900DA6000AD5900E00DD7E93
:1090000000E6030F0F215190B63E04CD8500C5D1B7
:1090D0000E00CD6400DD2321519034215090350223
:1090E00013390215190361021509036083A5290DDBD
:1090F000A600CA05912151904E3E02CD850005D1F2
:109100000E01CD6400DD232151903421509035C2F1
:10911000EC90215190362021509036043A5290DD47
:10912000A6000A35912151904E3E02CD8500C5D191
:109130000E01CD6400DD232151903421509035C2C1
:109140001C91CD4FOOCD8E00F1322340FDE1060091
:099150000E811118000D5E00096A
:00000001FF



41

V. CREATING FUNCTIONS FOR THE PCI-3000: 

Here we will try to outline the creation process for PCI-
3000 functions. This will include comments on all steps from
encoding to downline loading.

A. CREATION OF CODE:

The PCI runs on a Z80A microprocessor with a 4 MHz system
clock. We have found no instances where standard Z80 assembly
code won't operate on the PCI. However, to make life easier the
system firmware has a large group of functions which are designed
primarily to facilitate input/output operations. These functions
are very useful and are well detailed in chapter 3 of the PCI-
3000 technical manual. The end result of any assembly programing
for the PCI-3000 is just setting up and manipulating these
functions in the desirable way. These functions, as opposed to
those functions listed in chapter 4, can only be called
intrinsically. Likewise, those functions in chapter 4 appear to
be of no use to the programmer . as they seem to only respond to
external calls. Probably the most important thing to watch out
for when programing the PCI is the use of the IY register. This
register is used extensively by the system firmware and it is
probably best to avoid it use. The only time it should be used
is to set up I/O ports for the system firmware, when these ports
won't be configured by external calls. This is what is done in
the subroutine MCSAMP.

B. ASSEMBLING THE CODE: 

Presently, all the code must be assembled using the 2500
A.D. Z80 assembler which runs on IBM compatible (MSDOS) machines.
To assemble your code just insert disk #2 from the assembler
packet into your resident drive and type X80. You will then be
prompted for the output path, the default usually will suffice.
You must then enter your file pathname; the suffix is not
necessary if it is .asm. The default output file pathname is the
same as that for the input, except the suffix is now .obj.

C. LINKING THE CODE: 

Once you have successfully assembled your code you must link
it to a form acceptable by the down line loading program. To do
this call the linker, LINK (also on disk 2). Specify the
pathname for your object file. Once again there is a default
suffix of .obj. Next the start address of your code is prompted
for. This must be given in hex notation. The user RAM area of
the PCI is from locations 8000H to 9FFF with our data acquisition
system taking up locations 8FFF through 9300H. Next you will
encounter three more filename prompts. A carriage return for all
three will suffice and give you an output pathname the same as
the input with the suffix changed. Finally you are prompted for
your choice of output option. Here it is very important that you
pick option H. This brings the only format that is readable by
our downline loading program. By picking this option your output



42

filename's suffix should be .hex. A documented example of this
type of format (intel hex) is given on the following page. Once
the above steps are completed correctly the program can be
automatically downline loaded using one of our C programs.

D. EXPLANATION OF INTEL HEX FORMAT USING TINITIAL.HEX

:109290000E01CD5500073829DD21FF8FDD73000653
:1092A00060DD360100DD230520F70E011E4FCD6481
:109280000007380D21FF8F5E0E01CD6400073801D5
:0692C000C9OFCD8500C9B5
:00000001FF

FIELD: SYMBOLS: EXPLANATION: 

1 • Preamble.
2 10 Number of data bytes in field.
3 9290 Start address for first byte in data

field.
4 00 Status byte signifies a field to

process.
5 OE ...06 Data field 16 (10 hex) bytes long.
6 53 One-byte checksum, not used by our

downline loading programs since the
PCI requires a two-byte checksum.

NOTES: 

The above explanation is given using symbols from the first
line. You can see that the fourth line only has 06 hex bytes
following it, and the status byte of the fifth line is 01
signifying absence of data on this line. Also note all the
numbers are in hex format, as would be expected since this is
called the intel hex format. Further information may be found in
the 2500 A.D. manual for our Z80 assembler.

E.  DOWNLINE LOADING: 

This can be accomplished using one of two specially written
C programs. The first program called \turboc\chagal.c comes with
a help file and many options. This program is very user friendly
and should be self-explanatory. The primary use of this program
is for troubleshooting interfaces and assembled code. It has 9
options which are outlined below:

1. Load function (interactively).
This is good for loading a function for the first time
to see that the data is being correctly loaded and to
observe the response from the PCI. Data is only sent
upon approval.



14 3

2. Load function (automatically).
A streamlined version of option 1. It performs error
checking of response code and should notify you of a
loading error. Useful for loading finished error free
programs over a correctly operating interface.

3. Load block (interactively).
Same as option 1 but uses a different downline load
function, here the code is not given a label. Good for
loading code of subroutines such as MCSAMP.

4. Load block (automatically).
To option 3, what option 2 is to option 1.

5. Binary communications from keyboard.
This option lets you communicate with the PCI using
binary protocol. It is fairly automated and requires
you only to input the number of bytes to follow in the
message, the function label, and the function
parameters. The header and check sum are configured
for you There is also an option to save the message
created which is useful for option 6.

6. Binary communications from text file.
This option is the same as option 5 except your command
must be preconfigured and exist in a text file
accessible by the system.

7. TOD communications.
This option allows you to perform TOD communications
which are detailed in chapter 4 of the PCI technical
regerence manual. This type of communication is
valuable for examining the PCI-3000 RAM and trouble-
shooting programs. However, this option is also
available in the basic program \basic\pci.bas. The
option that resides in the basic program is quicker and
easier to use

8. Monitor communications port.
This option was mainly for code debugging, but it is
useful for observing the communications interface for
five minute intervals. It provides a constant output
of the device status followed by a colon followed by
the character read. To interpret the device status
convert it to hex and examine the bioscom function in
the turboc reference manual.

9. Help option.
Read this yourself.

O. Quit.



1414

The second C program called \turboc\cezanne.c is used
to load a collection of files and commands to the PCI.
It was designed to be implemented in a reset mode.
Once you have an operable system it might be desirable
to load it all in one shot. This program will do that.
It is, therefore, an excellent tool to set up your
system to an operational level with the use of one
command at power up. This program is not too friendly
and as such must be explained here.

After calling the program you will be prompted for your
source file path name. This will be a file similar to the one
shown on the next page. This file must contain, in properly
formatted fields, the following information.

option number<cr>
source pathname<cr>
first letter<cr>
second letter<cr>
option number<cr>
source pathname<cr>
first letter<cr>
second letter<cr>

0‹ cr >

The first and second letter fields are only applicable if
the option number specified is a 2 (load function option).
Otherwise the option number for the next pathname will directly
precede the previous pathname. The only option numbers supported
by this program are 2, 4, and 6. These are the load function,
load block, and load binary protocol command options. The
original source file must be terminated by an option number of
zero. The path numbers specified within the source file would be
the same as those you would use if you were using the friendly C
program \turboc\chagall.c. Note the names chosen for the C
programs are the names of artists I admire and have no relevance.
Thus, it may be desirable to rename them. However, I am sick of
trying to think of representative names, and I leave that option
up to you.



14 5

Examining the source code on the next page we see that it is
designed to

1. Load tinitial.hex as a function, calling label XX.

2. Load tdefine.hex as a function, calling label YY.

3. Load pcionoff.hex as a function, calling label ZZ.

4. Load mcsamp.hex as a block (hence no calling label).

5. Load tabini.dat as a binary command. (This
file contains the code necessary to call
tinitial and intialize the sample table.)

6. Load defgrp1.dat as a binary command. (This
file contains the code necessary to call
tdefine and define the membership and
sampling period of group two.)

7. Load defgrp2.dat as a binary command. (This
file contains the code nexessary to call
tdefine and define the membership and
sampling period of group two.)

8. Load startsam.cat as a binary command. (This
file contains the code necessary to call
pcionoff and initialize the system to start
calling mcsamp periodically.)

9. Quit.

2
a:\assem\tinitial.hex
X
X
2
A:\ASSEM\TDEFINE.HEX

2
A :\ASSEM\PCIONOFF. HEX

A:\ASSEM\MCSAMP.HEX
6
A:\BINCOM\TABINI.DAT
6
A:\BINCOM\DEFGRP1.DAT
6
A:\BINCOM\DEFGRP2.DAT
6
A:\BINCOM\STARTSAM.DAT



46

EXAMPLES OF BINARY COMMAND FILES:

TABINI.DAT:
24 42 31 01 04 12 99 AB 00

DEFGRP1.DAT:
24 42 31 01 IF 13 01 02 02 OC 00 00 07 00 08 00 OF 00 10 00 17 00
18 00 IF 00 20 00 27 00 28 00 2B 00 3A 01

DEFGRP2.DAT:
24 42 31 01 OB 13 02 05 00 02 00 00 22 00 3E 00

STARTSAM.DAT:
24 42 31 01 03 14 14 00

IV. IMPORTANT NOTES:

The PCI-3000 has several limitations. One of these is the
default values given to functions with respect to the binary
protocol. The binary protocol calling label is determined by the
order in which the function is loaded into the system. At power
up or reset the functions loaded into the system will have the
following calling labels:

1. 12H for first function loaded into system.

2. 13H for second function loaded into system.

3. 14H for third function loaded into system.

L . 15H for fourth function loaded into system.

5. 16H for fifth function loaded into system.

It is important to remember that these calling labels are
independent of the user defined ascii protocol calling label and
only depend on the order in which the functions were loaded into
system RAM. Hence, we suggest that upon reset these functions
always be loaded into the system RAM in the same order. That
order being as follows:

1. TINITIAL.HEX
2. TDEFINE.HEX
3. PCIONOFF.HEX

Hence, whenever calling sequences are given for these functions
in binary protocol it is assuming that they were loaded in the
above order. It is also important to note that the system cannot
maintain more than five externally callable functions at one
time.



14 7

VII. MORE ON LOADING FUNCTIONS:

When a function is loaded to the PCI by either of our C
programs, the following takes place:

1. The PCI function Load Function is used to
load the first 16 byte packet of code to the
PCI.

2. The PCI function Load Block is used to load
the remaining packets of code to the PCI.

When a block of code is loaded to the PCI, as is our MCSAMP
subroutine, all of the code is loaded using the Load Block
command.

Obviously, the only difference between loading code as a
function and as a block is in how the first packet of code is
transmitted to the PCI. What the load function command does is
the following:

1. Set up the function, with its defined calling
label and start address in the appropriate
buffers in system RAM.*

2. Load the packet of data to the appropriate
locations in system ram.

The Load Block command only performs the second of the
operations performed by the Load Function command. What that
means is that in order to call a function loaded entirely by the
Load Block command its calling label and start address must be
loaded by an entirely different means. This is why we have
created PCIONOFF. PCIONOFF will, on alternate calls, setup the
system RAM to call MCSAMP periodically or initialize the system
RAM to stop the periodic call of PCIONOFF.

This is somewhat equivalent to placing a function header
in an interrupt table. However, I don't believe that the PCI
user defined functions are called on interrupt. Rather, the
function is called when the system sees that this function flag
is set during a pass through the scheduler. For example, if by
calling a function, flag number 17 is set, and at the same time
the BFLAG pointer is at position 6, the BFLAG pointer won't jump
on interrupt to flag 17 to call the desired function. Instead,
it seems as if it continues through the BFLAG buffer sequentially
and will deal with the flag at position 17 in due course.



48

VIII. ASCII VS BINARY PROTOCOL AND BUFFER LIMITATIONS: 

In the PCI-3000 system we have the choice of two protocols,
ascii and binary, each of which have there own advantages.

Ascii protocol is friendlier and easy to use, especially
using the basic communication program PCI.BAS. Its primary use
would be in calling functions, especially those using a small
number of parameters. However, due to the fact that it uses a
larger number of bytes to convey the same amount of information
it is inherently less efficient.

Binary protocol will generally be the protocol of choice for
the following reasons:

1. More information can be transmitted with the
same I/O buffer limitations than for ascii
protocol.

2. It is faster.

3. It is easier to use when down-loading code or
commands from a disk file.

The buffer limitations play a large role in the choice of
protocols. Since both the PCI-3000 input and output buffers are
only 128 bytes long, efficiency of space is a concern. For
instance, when a complete complement of data is being transmitted
this corresponds to the following number of bytes:

Header:
# of bytes to follow:
group number:
32 analog channels 1 word each:
12 digital channels 1 byte each:
1 word checksum:

Total number of bytes:

3 bytes
1 byte
1 byte
64 bytes
12 bytes
2 bytes

83 bytes

Formatting these in ascii protocol would exceed the buffer
limitations. Also, using ascii protocol several calls to TDEFINE
may be necessary to define one group. Otherwise, buffer
limitations may be exceeded.

It is possible to expand the length of the input and output
buffers so exceeding the buffer length would not be a problem
with either protocol. However, it was felt that the less we
changed the default values of the system the less chance we had
of running into unforeseeable errors. Chapter 2 of the PCI
technical reference manual provides a good explanation of the
system buffers and can be used as a further reference.



14 9

IX. PROBLEMS ENCOUNTERED Olt SOLUTIONS?)

When loading data using options one through four, sometimes
the last field will give a "data loaded incorrectly to PCI"
error, or enter an infinite loop. If the last data field only
has one byte, the C function cruncher might not recognize this as
the last field. Check the cruncher.hex file, and, if this is the
case, figure out why. (I ran out of time It shouldn't be too
hard.) Otherwise, add a meaningless command to your assembly
file so the last field contains more than one byte and try again.

When sampling data the host MassComp computer gives an
internal fatal error and times out This happened randomly, and
it was suspected that the IEEE-488 board had a bug. We tried a
new board and this did not happen, although we did not do enough
tests to be sure it was the old board. I suggest that you reload
the dacp and start processing the transmitted data again. This
type of crash should not affect the operation of the PCI.

The MassComp enters the SRQ routine continuously with a
status byte of FFFFFFCO. This happened for awhile, but only when
the bus analyzer was not hooked up. There are several
possibilities, my favorite being that the IEEE-488 board was at
fault. It has not happened since we started reloading the dacp
after crashes, and I changed my code so that it would not wait on
the output buffer. Now, if the output buffer is not clear, the
function will terminate.

On option five the response code does not seem to agree with
protocol. In particular, the function executed properly, but
byte 4F hex is not present, and the response looks something like
21 00 01 00. I do not really know what this is I think maybe
my get response rs232 function is messing up. The same code
saved to a text fileand used in option 6 executes perfectly.
With this response the function seems to still execute fine, but
the response code seems out of order. I suggest you do not worry
about it if it works. If you need a correct response code use
option 6 with a file created in option 5.

Two status lights on PCI light up and stay lit, and the
travelling train of pulses stops. This happened frequently when
the PCI used to wait on a buffer and the MASSCOMP had crashed.
It has not happened since I changed the code to not wait on the
buffer but rather terminate if the buffer is not clear. This
seems to indicate that this happens only when a function in the
PCI hits the timer to stop counting and waits on a buffer. If it
happens again make sure the PCI is being serviced, and, if this
does not help, try control C'ing your program. As a last resort
physically reset the system. I think this problem is gone now
that the code has been changed, but what has happened before can
always find a way to happen again. Note, when the system used to
hang up like this before, it was impossible to talk to it.



50

Status lights on PCI blink incoherently, kind of faint and
random blinks. This used to happen if I would interact with the
PCI a lot over the RS232, especially if it was running MCSAMP
periodically. However, this never seemed to affect the operation
of the system. The only effect it seemed to have was on the
aesthetic quality of the display. If it happens, and it bothers
you, reset the system.

A function hangs up when calling TDEFINE or MCSAMP in
ascii. 

You may have exceeded a buffer limitation. Try again
in binary protocol, and make sure that the message is
less than 128 bytes. The message should never exceed
1 28 bytes unless things have been expanded since this
manual was written.

When loading code you consistently get an error. 

This may happen if you try to define more functions
than the system firmware can accommodate or if you are
redefining functions that already exist. I think the
firmware can only accommodate 5 or fewer functions.
Reset the system and try again.

The MassComp is terminating early on some streams in
binary protocol. 

Make sure that there is no termination character set
for binary protocol and that the termination character
for ascii protocol is a carriage return as opposed to
the default value of a line feed.

The PCI samples group two at the incorrect interval. 

Make sure that your definition for the group two
sampling rate is the low byte in a two byte binary word
< 256 in ascii. Also make sure you are using low byte,
high byte format in group two sampling period
statement.

You get an error 130 decimal when you call a function. This
means that your function is no longer defined in the system
firmware. The system has probably timed out and reset. Reload
your code. For a further definition of error codes returned by
the firmware see Appendix A-1 of the PCI-3000 Technical reference
manual.



51

X. STATS AND STUFF:

It takes the PCI between 80 & 96 ms to sample a full
complement of data (32 analog channels and 12 digital channels).

The period of the group one sampling rate can be defined as
low as 16 ms. However the actual period at which the sampling
rate will occur is limited by the controlling computer on the
IEEE-488 bus and its ability to service data out of the PCI's
buffer. Also the PCI has had a tendency to time out when the
MassComp crashes if its fastest sampling rate (group 1) is less
than the time it takes the function to execute. Hence, it seems
reasonable to place an absolute limit of 200 ms (about 2 * max
run time of MCSAMP) on the group 1 sampling rate. A more
Practical limit is 0.5 s.

The PCI was tested for over 40 hours sampling a full
complement of data with a sampling period of 0.5 seconds. It did
not crash once during this time and was running as smooth as
could be when the test was terminated. The MassComp did have a
few crashes however and we attribute these to "that bad IEEE-488
board".

All analog channels seem to be reading the input data
perfectly for all values of the gain (1, 10, 100, 1000).

If the group two sampling period is set to 0, group two will
be the only group sampled. The group two sampling period will
then be equivalent to the sampling period defined for group one
This means that group one will be shut off and group two will be
sampled at the group one rate.

To shut off the group two sampling just define group two
with the same membership as group one, at any sampling period.
In actuality group two will be still sampled and the group
identifier byte will be at the head of the data at the defined
intervals, but that will be the only difference.

Sampling group one at a sampling period of zero will succeed
in doing nothing since no sampling will take place.



APPENDIX A: 

The \turboc\chagall.c program, and function documentation.



A-2

EXPLANATION OF C PROGRAM SUBROUTINES:

Here we will try to give a brief outline of the functions
written for use with our C programs:

int talk to partner (fname, letters, type data)

int letters[2];
char fname[25],
char type data;

This is a function which, when called, must have the
type_data variable specified and pointers to fname and letters.

The purpose of this function is to configure the system for
either a load block option or a load function option as specified
by type_data. For each call it will prompt the user for a
filename and return this to the calling statement. If
type_data[0] = 'y' the load function options are specified and it
will prompt the user for an ascii calling label. This two letter
calling label will be converted to Hex representation by
ascii to hex and returned to the calling functions by letters[2]....I. ...I

The function inquires to see if you wish to reenter the data
or return to the top of the program. The function returns an
integer corresponding to one of the following three options:

1. Reenter data. Return 1

2. Quit this option go back to start. Return 2

3. Everything is ok proceed as normal. Return - 0

int cruncher(source_file)

char source file[25];

This is the file passed by talk_to_partner. It must contain
the Intel hex representation of your assembly code.

The purpose of this function is to index through your source
file and extract the significant bits of code. It then rewrites
this code into a temporary file called cruncher.hex. This file
format is displayed on the next page. The actual file is that
created from loading our TINITIAL function.



A-3

Examining the file we see that it has four blocks of data
consisting of five similar fields. Each block of data should
correspond to one line in the original intel hex file. The five
fields in each block have the following meaning:

Field 1. This just consists of a colon and a number which
is the hex representation of the number of bytes in field 5. The
colon is very important because it is used by the file pointer as
a yard stick.

Field 2. This is just the desired (hex) address to which we
wish to load the first byte in field number five.

Field 3. This is just a status byte telling you about field
five. A 01 specifies that field five contains an end of file,
while a 00 specifies that there is data to be read in field five.

Field 4. This is just a decimal number computed by
converting the number in field one to decimal and adding one
This number will be used for program control.

Field 5. This contains up to 16 bytes of data to be loaded
as code to the PCI-3000 and a one byte check sum.

• 
1 0

9290
00
17
0E,01,CD,55,00,07,38,29,DD,21,FF,8F,DD,73,00,06,53
• 1 0
92A0
00
17
60,DD,36,01,00,DD,23,05,20,F7,0E,01,1E,4F,CD,64,81
:10
9280
00
17
00,07,38,0D,21,FF,8F,5E,OE,01,CD,64,00,07,38,01,D5
:06
92CO
00

7
c9,OF,CD,85,00,c9,B5

NOTE:

The last block in the file will always have either a status
byte of 01 or less than 16 bytes of data.



A-4

If there is an error in running the program this function is
usually the one at fault. This file provides a good means from
which one can begin to troubleshoot.

The return value is the number of data fields in this file.
This is an important program control variable and if computed
incorrectly could cause your program to infinitely loop. This
will be most noticable when using an interactive option and
displaying the last field.

int display_data(x, nb, type data)

int x[128]; /* data field to display */
int nb; /* size of x: x[nb] */
char type_data[3]; /* specifies a load block or function */

This function has passed to it the data array
containing the parameters to be loaded as code to the
PCI. It merely creates a nice display of these
parameters which the user can view before deciding
whether or not he or she wishes to send the data to the
PCI. This function is only called if the user chooses
options one or three. Also, it also has not been
configured to return a value or alter any passed
parameters.

int com control(function codes, type_load)

int function_codes[128];
char type_load[3];

This function is used much like a traffic light in that
it controls the calling and response messages of the
communications functions, send function rs2 3 2
(function_codes) and get_response_rs23 - (responselpci).
Due to the crude nature of the Turbo C communication
function, BIOSCOM, it is necessary to carefully control
the sequence in which the communication programs are
called. This is done in order to insure the response
is not missed. This function can be configured for
both the interactive and automatic features as
specified by type load. In the automatic mode it will
check the response code in order to insure proper
transmission.

int ascii to hex(character)
MOW .111.1*

char character;



A-5

This function returns the upper case hexadecimal
representation of character, however it does not alter
character.

int high byte(word)

int word;

This function returns the high byte of a two byte word
to the calling statement.

int low byte(word)

int word;

This function returns the low byte of a two byte word
to the calling statement.

int assemble data(field to process, letterss, data_array,
type_data)

int field _to process; /* specifies field in cr un cher to
process
int letterss[2]; /* hex representation of ascii calling
code
int data array[128]; /* array for assembled data
int type load; /* specifies a load block or load
function.—

This function assembles a block of data located in the
file cruncher.hex. The field it reads is determined by
field to process. If the type data function specifies
a lo

g-
CI ?unction type option,— it uses the letters

contained in letterss in the assembled data field. In
assembling the function it computes the correct header
for calling either load block or load function in
binary protocol. It then computes the ending address
for the packet of data. This address is computed using
the starting address specified in cruncher.hex. The
"number of bytes to follow" byte and the two byte check
sum are also computed and arranged in the proper format
(low byte, high byte). All of these bytes are arranged
in the array data_array. The order in which the bytes
are placed in data array corresponds exactly to the
order in which the bytes will eventually be
transmitted. Also, there are no extraneous bytes in
data array. The calling statement to this function
should have a pointer to an array such that the loaded



A-6

data_array will be passed back through the call
statement to the array pointed to by the pointer. Upon
proper execution this function will return the length
of data array.

int pack_package(box)

int box[128], /* array into which data bytes are to be loaded */

This function operates much in the same way as assemble
data in that it passes an array containing a complete
set of bytes suitable for transmission. However, this
array does little assembling since the source of the
bytes in the array is a properly formatted text file.
The data in the disk file must be completely arranged
as per binary protocol specifications, and all this
function is responsible for is:

1. Prompting for the file name of the
source file.

2. Making a simple check to see if the file
is formatted properly (sees if the first
byte is correct).

3. Reading the data directly into the array
box.

4. Returning an integer specifying that the
function executed either correctly or
incorrectly.

int send function rs232(package)

int package[128]; /* array of bytes to be transmitted */

This function just uses the Turbo C BIOSCOM function to
configure serial port com 1 for transmission at 1200
baud with 8 data bits. It then will transmit byte by
byte the elements in package through this port over the
RS232 cable. The function returns, as an integer, the
initial status of the port.

int get response rs232(response pci)

int response_pci[20], /* PCI response code array */

This function is designed to receive a properly
formatted response code from the PCI. It assumes a



A-7

properly formatted communications port and will wait
for a short time for the header byte of the response
code. Upon reception of this one-byte preamble the
function exits its wait loop and gets the rest of the
response message. If the function does not receive the
header byte after a short period of time, it will
return the error code of 999, otherwise it will return
an integer specifying the length of the response array.

It is important to remember that the corn port does not
accept buffered input and that this function cannot be
called on interrupt. Hence, if this function is not
called in time to receive the header byte, it will
return an error condition. Alternately, if the
accepted code is not formatted correctly, it has the
wrong header byte, or the third byte is not the 'number
of bytes left to read' byte, the program will give an
error code or possibly loop for the incorrect amount of
time when it is reading in the rest of the response
code.

int key_com()

This function is designed to facilitate binary protocol
keyboard communications with the PCI. It is
responsible for internally configuring the message
array. It will place the preamble at the head of the
array and query the user for the 'number of bytes to
follow' byte as well as the remaining bytes of code.
Hence, the user must input the following:

1. The "number of bytes to follow' byte.

2. Binary protocol calling label.

3. Parameter bytes as needed by the particular
function.

NOTE:

The "number of bytes to follow" byte is equal to the
number of bytes in 2 and 3 above plus two for the two-
byte checksum.

After creating a function this routine will print it to
the terminal as it would be sent to the PCI. It will
then ask you if you want to send it as well as giving
you the option of saving it in a text file for use with
option 6.



A-8

int tod communications()

This function is used to facilitate option 7 in that it
will send the necessary control signals to the PCI to
facilitate terminal on-line debugging. However, due to
the lack of sophistication of the C communication
functions at our disposal, one is better off using the
program \BAS\PCI.BAS. TOD communications from this
program are easier and quicker. For a good explanation
of TOD communications see chapter 4 in the PCI-3000
technical reference manual.

int monitor corn port()

This is a fairly barbaric function in that it goes and
looks at the communications port at about five minute
intervals. It can look in either of two modes.

Active: It will continuously output port status,
followed by a colon, followed by the character read for
the five minute interval.

Other: It will only output the port status, and
character read when data is coming into the port.

NOTE:

Information received is output as ascii characters and
may have to be converted to hex or decimal for proper
interpretation. Also, once the port is being observed
there is no way to exit the function until the five
minute interval is up, unless of course you wish to be
so destructive as to crash this program.

int get help()

This function just gets the help file, help_file.txt,
and outputs it page by page to the screen. Note that
help file must reside in the same directory as does the
calling program.



APPENDIX B 

This appendix is dedicated to the detailing of the Z80
assembly code function TIMEOUT.HEX. This functions use
is optional but it may be helpful.



B-2

MORE ON THE WATCH DOG TIMER & AUXILIARY TIMEOUT FUNCTION:

The reason that the watch dog timer has a timeout period of
0.75s is because its initial value is equal to 30H. This value
is reloaded to the counter from the TIMOUT register on each pass
through the scheduler. The value in the counter is then
decremented every 16ms. The system reset pulse is sent if this
counter is decremented to zero. Hence, if we want to extend the
timeout period of the PCI or, rather, create a timeout, we can
adjust the value which is reloaded to the watch dog timer
counter. For example, loading the TIMOUT register with the
following bytes should have the following results:

1. 30H This is the default value, timeout about
0.75 S.

2. 00H This disables the watch dog timer.

3. FFH This enables the timer to its greatest
value 4.08 s.

4. 01H This should cause the watch dog timer to
time out since it seems to take more than 16
ms for one pass through the scheduler.

On the following page we have written a program to pass a
user timeout period to the PCI. A one byte parameter is passed
specifying the byte you wish loaded in the TIMOUT register. This
wial correspond to the timeout value divided by 16 ms. It is
suggested that this function be loaded after the main four
functions or loaded upon need using cezanne.c to load and execute
this function at once. This would insure a binary calling label
of 15.

NOTE: 

There is a possibility that by loading too small of a
timeout out byte the PCI will time out before the timeout
function has been completed. Hence, if you are passing 01H as a
parameter in this function you might not receive a response back
since the firmware will reset quite quickly.



B-3

*****************************************
.*****************************************

QQ(timeout byte). This is a quick
;function to reload the timeout to some
; desired value. To reset the firmware a
; byte of 01H should suffice, while to
; disable the W.D.T. one needs to load 00H
;to the timeout byte.
;*****************************************

;******* PROGRAM CODE & DOCUMENTATION ****
;*****************************************

;******* GET BYTE TO LOAD TO TIMOUT ******

LD C, 01H
CALL GETPAR
RLCA
JR C, ERROR

GET BYTE TO LOAD INTO TIMOUT REGISTER

;******* RELOAD TIMOUT REGISTER **********

LD HL, TIMOUT
LD (HL), E

; LOAD THE BYTE READ IN BY GETPAR TO TIMOUT

; ******* PASS EXECUTION VERIFICATION BYTE

LD C, 01H
LD E, 4FH
CALL PUTPAR
RLCA
JR C, ERROR

******* FUNCTION TERMINATION ************

RET

;******* ERROR CHECKING ******************

ERROR RRCA
CALL RETERR
RET

;******* FIRMWARE EQUATES *****************

GETPAR EQUAL 0055H
PUTPAR EQUAL 0064H
RETERR EQUAL 006DH
TIMOUT EQUAL 4061H



B-4

TIMEOUT.HEX

:109300000E01CD550007380F216140730E011E4F2D
:0C931000CD6400073801C9OFCD6D00C905
:00000001FF



APPENDIX ; 

Here we provide a directory listing of the master disk
as well as for my account on the MASSCOMP (bstevens).



MSDOS FLOPPY: 

C-2

ASSEM SUBDIRECTORY:
TINITIAL. HEX
TDEFINE. HEX
PCIONOFF. HEX
MCSAMP. HEX
TIMEOUT. HEX
TLIGHT.COD

BINCOM SUBDIRECTORY:
TABINI.DAT
DEFGRP1.DAT
DEFGRP2.DAT
STARTSAM.DAT

TURBOC SUBDIRECTORY
CHAGALL.0
CEZANNE.0
HELPFILE.TXT
MENU. TXT
CRUNCHER. HEX
MANUAL.PCI
MANUAL. APP

BASIC SUBDIRECTORY
PCI.BAS
BASIC. COM
BASICA.EXE
GWBASIC.EXE

MAIN DIRECTORY: COMMAND.COM

ON THE MASSCOMP DIRECTORY, /u/bstevens, RELEVANT FILES.

chagall.c helpfile.txt menu. txt
gpib3.c gpib3.exe

gpibit.exe
gpib5.c gpib5.exe
gpib6.c gpib6.exe



ADDITIONAL NOTES: 

As of now there has been no time to check the digital
channels. Since the analog channels work fine we suspect that
the digital ones will also If there turns out to be any
problems they will be in one of two places.

1. The wiring of the distribution panel.

2. The setup of the TIODRV function in sections
3 & 

L of MCSAMP.

Included on the disk is a function MCSAMPl. This is merely
a variation of MCSAMP such that it prints out the analog channel
being read before it prints out the actual data  This function
should be used in conjunction with gpib5.c on the masscOmp in my
directory.

gpib LI.c should be used for binary protocols.

gpib3.c should be used for ascii protocols.

If you want to alter TDEFINE such that the analog gain can
be reentered on seperate calls of the function, you must redefine
the code such that the bits corresponding to the analog gain (0 &
1) are reset before the new value of gain is or'ed to those
locations.


