
NATIONAL RADIO ASTRONOMY OBSERVATORY

CHARLOTTESVILLE, VIRGINIA

ELECTRONICS DIVISION INTERNAL REPORT No. 236

FORTRAN VERSIONS OF FARANT

CHIU TAI LAW

(SUMMER STUDENT)

SEPTEMBER 1983

NUMBER OF COPIES: 150

FORTRAN VERSIONS OF FARANT

Chiu Tai Law

1.0 INTRODUCTION . • • • • • • • • • • • • • • • • • •

2.0 FARANT USER'S GUIDE • • • • • • • • • • • • •

2.1 Conventions and Definitions • • • • • • •

Short Descriptions of Subroutines in FARANT

Lossy Transmission Lines (LOSSYLINE) . 10Lossy Transmission Lines (LOSSYLINE) . 10

Ideal Transformer (TF) • • S • 10Ideal Transformer (TF) • • S • 10

Controlled Sources (SOURCE) • S • S • • S • 11Controlled Sources (SOURCE) • S • S • • S • 11

Measured Noise Parameters (NREAD And NLOAD) 14

.1.4

2.2.1.5

2.2.1.6 Measured Two-port Parameters (PREAD) . • • . 12

2.2.1.7

2.2.2 Interchanging Ports and Creating Branch

El ements . • • • • • • • • • • • • • • • S . . 16

2.2.3 Cascading, Paralleling and Putting Two-port in

Series . • • • • • • • • • • • • • • • • • • • 19

2.2.4 Transforming Two-port and Noise Parameters . 20

2.2.5 Saving Circuit Parameters . • • • . 21

2.2.6 Noise Temperature and Gain Analysis • . • • 22

2.2.7 Reflection and Impedance Calculations . . 23

2.2.12 Controlic Trapping . • • • • • • • •. 33

Measured Noise Parameters (NREAD And NLOAD) 14

. 5

. . • 5

. 8

Page 2

2.2.13 Lower Level Subroutines . • . . • • • • • 0 . 34

2.2.13.1 Matrix Handling Routines . • • • 0 • • 0 0 0 34

2.2.13.2 Routines Called by Optimization . . • . • . 35

2.2.13.3 Routines Called by PLOT . • • • • • 0 0 0 0 35

2.2.13.4 Miscellaneous Routines • • • • • 0 0 0 0 0 . 36

2.3 Setup and Environment in VAX • . • • . • • • • . 36

2.3.1 Pieces of FARANT in VAX • •• • • 0 • 0 0 0 • 37

2.3.2 Running of FARANT in VAX . • 38• • .• • • • • •

2.4 Example Using Optimziation • • . • 0 • 0 0 0 0 0 45

3.0 PROGRAMMING POINT OF VIEW AND SOME SUGGESTIONS . . 60

3.1 Flow Chart of FARANT . • • . 0 0 0 0 0 0 0 0 0 0 60

3.2 Initialization in The Subroutine CKTANALYSIS • . 61

3.3 Complex Number Manipulations in FORTRAN VERSIONS 63

3.4 Differences betweeen The BASIC and FORTRAN

Versions • • • • 0 0 0 0• • • • • • • • • • 0 0 0 64

3.4.1 The Calculation of Gradient in The Subroutine

OPTIMIZE • . . • • .• • . . • . . . • . • • . 65

3.4.2 Modifications in Subroutine NPERFORM . • • • • 66

3.4.3 Miscellaneous • • • • • 0 • • • • •0 0 0 . 0 67

3.5 HP 9845 BASIC And VAX FORTRAN • •• • • •• • • • • 69

3.6 Suggest Setup in User's Working Areas • • • • • 74

3•7 Suggustions for Programming in FORTRAN • • • • • 78

3.8 Example: Fitting A FET Model Using Optimization 81

4.0 REFERENCES • 100

FQRTRAN VERSIONS (X FARAVT

ABSTRACT

Two new versions of the program FARANT were written in VAX

FORTRAN. They offer the flexibility of incorporating user's own

FORTRAN program for specific problem; the power of PARANT in

frequency analysis of two-port networks, computing the two-port

and noise parameters in various representation; and

optimization. In addition, the programs written in VAX FORTRAN

allow data to be entered interactively, provide a simple plotting

subroutine and job process information at the end of each run.

The flow of programs can fully controlled by issuing control/c

which halts the program and creates a data file storing current

values of objective variables for optimization. In average, the

VAX FORTRAN versions of FARANT run about sixty times faster than

the BASIC version. This report is a guide for user who has

experience in using the BASIC version of FARANT and is a

supplement to the EDIR No. 217.

Page 3

1.0 INTRODUCTION

FARANT is a program with many useful subroutines for

analysing steady state ac microwave circuits; it offers

optimization. It can be combined with user's program in solving

problems. However, the HP 9845 version of FARANT runs too slowly

for extensive optimization problems. The two FORTRAN versions of

FARANT were developed for this reason. These FORTRAN versions

will be called FARANT 1.0 and FARANT 2.0. They run about sixty

times faster than the HP 9845 version. Generally, FARANT 1.0

runs faster than FARANT 2.0. Both allow the user to enter data

interactively or through a data file. FORTRAN versions of FARANT

also allow the user to store results in a data file or print them

on the terminal.

The purpose of this report is to describe FARANT 1.0 and

FARANT 2.0. As in the HP 9845 version, any user's statements

written in FORTRAN can be used in the subroutine CKTANALYSIS to

control the calculations. The user can enter his own library

containing subroutines to be used with FARANT. All these and

their differences from the BASIC version in storing two-port

descriptions and passing parameters and entries of the

subroutines will be discussed in the next section. Moreover, the

FORTRAN versions are compared to the BASIC version in terms of

complex number manipulation and programming. Although some

special features of VAX FORTRAN will be described briefly in

Page

following sections, readers should be familiar with FORTRAN IV.

Page 5

2.0 F
ARANT USER, I S QUIPB

This portion of the report is intended to help the user to

run FARANT on the VAX. Therefore, short descriptions with

examples are given for those routines having great differences in

FORTRAN and BASIC versions as readers are expected to be familiar

with the BASIC version. The arrangement of the two-port and

noise parameters, the location of FARANT in the VAX and the way

FARANT is run are described. However, the detailed programming

technique for using VAX FORTRAN and a survey of FARANT are beyond

the scope of this section. Finally, the FORTRAN versions of the

optimization program given in EDIR No. 217 are used for

demonstrating some of the differences between the BASIC and

FORTRAN version.

2.1 Conventions And Definitions

The units and two-port descriptions of the FORTRAN version

are the same as the BASIC version. Hence, they are not repeated

here. In the following sections, two-port identifier is refered

to the matrix containing noise and two-port parameters for FARANT

2.0 and to the matrix containing either noise parameters or

two-port parameters for FARANT 1.0.

Page 6

FARANT is used through the CALL statement.

CALL name of subroutine (argument list ...)

The called subroutine can be any one of the FARANT subroutines

listed in the next subsection. In FARANT 2.0, the first argument

is often the two- port identifier. In FARANT 1.0, the first and

second arguments are the two -port and noise parameters,

respectively. Therefore, two two-port arrays are needed in

FARANT 1.0. The rest of the arguments can be constants or

variables that are expressions of real, integer or complex data

type and they can also be character strings. However, they must

have the same data type and order as the argument list in the

SUBROUTINE statement. Furthermore, some of the arguments are

intended to be inputs, outputs or both. For those arguments used

as output parameters, constants or expressions must not be

assigned in the CALL statement, otherwise the program will be

halted.

In FARANT 1.0 the two-port parameters are stored in the

first four elements of a complex (5x1) matrix and PSET is stored

in the last element. The noise parameters are stored in the

first four elements of a real (5x1) matrix and NSET is stored in

the last element. In the subroutine CKTANALYSIS, two-port

identifiers A through H are assigned to complex two-port

parameters and Al through H1 are assigned to noise parameters.

Two-port parameters inside the two-port identifier are arranged

as follows:

Page 7

element(1) two-port parameter (1,1)

element(2) - two-port parameter (1,2)

element(3) = two-port parameter (2,1)

element(4) = two-port parameter (2,2)

However, the noise parameters are stored in the same order as is

used in the BASIC version.

For FARANT 2.0, noise and two-port parameters are stored in

a real (4x4) matrix. The first two rows are loaded will two-port

parameters. The first and second column of the third row contain

the labels for two- port and noise parameters, respectively.

Finally, the last row consists of noise parameters which are

arranged in the same order as the BASIC version. The order of

two-port parameters in the (4x4) matrix are as follows:

two-port parameter (1,1) = telement(1,1),element(1,2))

two-port parameter (1,2) = (element(1,3),element(1,4))

two-port parameter (2,1) = (element(2,1),element(2,2))

two-port parameter (2,2) = (element(2,3),element(2,4))

In other words, all the elements in the first and third columns

of the first and second rows are the real parts of the two-port

parameter. The rest of the elements in the first two rows are

imaginary parts of the two-port parameters.

Page 8

2.2 short Descriptions QL Bubroutipps j rARANT

In the descriptions below, the data type and type of

argument are shown immediately following the argument. The items

that apply only to FARANT 1.0 are enclosed by braces,"{}", while

those items applying only to FARANT 2.0 are enclosed by

brackets,"[]". Since similar descriptions can be found in the

listing of FARANT 1.0 and FARANT 2.0; and also in [1], only a

few words will be used to describe the arguments in most of the

subroutines. However, longer descriptions and examples are given

for those subroutines that have been modified. All the complex

and real variables are in double precision if they are not

specified.

2.2.1 Two-port Elements -

2.2.1.1 RLC Network -

Subroutine RLC creates an ABCD matrix for parallel or series

RLC circuits placed in series or parallel.

Form: {CALL RLC(X,Y,TYPE,R,L,C,PLACE,TAMB)}

[CALL RLM,TYPE,R,L,C,PLACE,TAMB)]

Arguments:

{X} Complex (5X1) for output, stores two- port

parameters.

{Y}- Real (5X1) for output, stores noise parameters.

Page 9

Real (4X4) for output, is the two-port identifier.

One string for input, specifies series or parallel

RLC network by accepting 'S' or 1P'.

One string for input, specifies whether network is

to be placed in series or parallel by accepting

S i or 'P'.

3 real numbers for input, specify values of

resistance, inductance and capacitance.

TAMB 1 real number for input, specifies ambient

temperature in degree Kelvin.

2.2.1.2 Lossless Transmission Line (TRLINE)

Subroutine TRLINE computes ABCD parameters for any lossless

line.

Form: (CALL TRLINE(X,Y,ZG,LENGTH,K)1

[CALL TRLINE(Z,ZG,LENGTH,K)]

EZ]

TYPE --

PLACE --

R,L,C

Complex (5X1) for output, stores two-port

parameters.

Real (5X1) for output, stores noise parameters.

Real (4X4) for output, is the two-port identifier.

1 real number inputs the length of transmission

line in inches.

1 real number inputs the product of the relative

dielectric constant and the relative permeablility.

Arguments:

{X} --

(Y)

[Z] --

LENGTH --

OM ON.

Page 10

2.2.1.3 Lossy Transmission Lines (DOSSYLINE)

Subroutine LOSSYLINE computes the impedance matrix with

noise parameter for a lossy line.

Form: {CALL LOSSYLINE(X,Y,ZGO,LENGTH,K,CATTN,DATTN,F0,TAMB)}

[CALL LOSSYL INE ZGO 'LENGTH K CATT , DATT FO I TAMB)

Arguments:

The first 4 {5} arguments are the same as for the subroutine TRLINE.

CATTN Real (input), is the attenuation in dB/in due to

conductor losses.

DATTN Real (input), is the attenuation in dB/in due to

dielectric losses.

FO 1 real number inputs the frequency at which CATTN

and DATTN are measured.

TAMB 1 real number for input, is the ambient

temperature.

2.2.1.4 Ideal Transformer (TF) -

Subroutine TF finds the ABCD parameters for an ideal

transformer.

Form: {CALL TF(X,Y,TURN1,TURN2)}

[CALL TF(Z,TURN1,TURN2)]

Arguments:

{X} -- Complex (5X1) for output, stores the two-port

parameters.

Page 11

{Y} -- Real (5X1) for output, stores the noise

parameters.

[Z] — Real (4X4) for output, is the two-port identifier.

TURN1,TURN2 -- 2 real numbers for output, are the numbers of

primary and secondary turns; only their ratio is

significant.

2,2.1.5 Controlled Sources (SOURCE) -

Subroutine SOURCE creates the impedance parameters for a

voltage- or current- controlled voltage or current source.

Form: {CALL SOURCEM,Y,CONTROL,STYPE,GAIN,R10/2 DELAY))

[CALL SOURCE(Z,CONTROL STYPE,GAIN,R1,R2,DELAY)]

Arguments:

-- Complex (5X1) for output, contains two-port

parameters.

(Y) Real (5X1) for output, contains noise parameters.

[Z] Real (4X4) for output, is the two-port identifier.

CONTROL -- String for input, specifies a voltage- or current-

controlled source by accepting 'V' or 'C'

STYPE 1 character for input, specifies voltage or

current source by accepting 'V' or 'C'.

R1 1 real number inputs the resistance in port 1.

R2 AMID OM 1 real number inputs the resistance in port 2.

GAIN -- 1 real number inputs the gain of the source.

DELAY -- 1 real number inputs the delay of the source in

Page 12

responding to the control in psec.

2.2.1.6 Measured Two-port Parameters (PREAD)

The user enters two-parameters using the keyboard, and these

are stored by subroutine PREAD. The two-port and noise

parameters are first initialized at zero. It is therefore

advisable to use PREAD before NREAD, which will be described

next.

Form: {CALL PREAD(C,Y)}

MALL PREAD(Z)]

Argument:

{X} Complex (5X1) for output, contains two-port

parameters.

IY1 Real MD for output, contains noise parameters.

[Z] Real (4X4) for output, is the two-port identifier.

Fig. 1 demonstrates the use of PREAD. <CR> means hitting

the carriage return. The user's version of CKTANALYSIS passes

the frequency at which data are to be entered to PREAD and PREAD

prompts the user for the form of complex number representation

and the two-port parameter type he will enter. Appropriate

responses are "MPH" -- magnitude and phase or "RI" -- real and

imaginary parts for the first question and PSET 1 through 5 --

for the second. At the first call of PREAD, it asks the user if

the present PSET and form of complex number representation will

Page 13

be retained at each frequency. The user should type "Y" if he

want to have the same PSET and form of complex noise number

representation every time and the above two questions will not be

asked again. Next, for the current frequency of data entry, the

first two two-port parameters, parameter (1,1) and parameter

(1 2), are requested. The user can type in four numbers,

delimited by a comma or a space, e.g. xx,xx,xx,xx. If the data

are whole numbers, it is not necessary to put a decimal point

after each. The last two parameters are entered in the same way.

After all the data are typed in, they will be re-printed and the

user can edit his data by using the following symbols:

Symbol Action of the computer

1 Change real part of parameter (1,1)

2 Change imaginary part of parameter (1,1)

3 Change real part of parameter (1,2)

4 Change imaginary part of parameter (1,2)

5 Change real part of parameter (2,1)

6 Change imaginary part of parameter (2,1)

7 Change real part of parameter (2,2)

8 Change imaginary part of parameter (2,2)

Change PSET

A Change all of the data

Change the form of complex number

Store all the data

Page 14

If PREAD is re-called, it will give a prompt asking the user

if he wants to keep the previous data. If the user type "Y", the

previous data will be used and printed out on the terminal.

However, those printed data may be different because they have

been changed to the form and unit used in the program.

2.2.1.7 Measured Noise Parameters (NREAD And NLOAD)

Subroutine NREAD accepts data interactively, while

subroutine NLOAD receives data passed by the arguments. Neither

initializes the two-port for noise parameters.

Form: {CALL NREAD(Y)}

[CALL NLOAD(Z)]

Arguments:
{y} Real MD for output, stores the noise

parameters.

[Z] Real (4X4) for output, is the two-port

identifier.

Fig. 2 demonstrates the use of subroutine NREAD. Data

entry is similar to that for PREAD. First, the frequency at

which the data are entered is printed. A prompt will ask for

NSET, user's answer p whehter the same NSET to be used for each

frequency and then the four noise parameters. The user can enter

data as was described previously and edit the data using the

following symbols:

PH

PH

<CR>
y
Ak4t4i

CR

DATA ARE CORRECT
CHANGE PSET
CHANGE REAL PART OF X(ltl)
CHANGE IMAGINARY PART OF X(1t1)
rHANGE REAL PAR! OF X(1t2)
CHANGE IMAGINARY PART OF X(1t2) AND P.O ON
CHANGE ALL OF THE DATA
CHANGE THE DATA TYPE (MPH OR RI)

IF
TO
4- 0
TO
TO
TO
TO
TO

Fig. 1 Demonstration of PPEAD. Page 15

PLEASE ENTER DATA FOR FREQ. 1.000000

TYPE "MPH" To ENTER DATA IN POLAR FORM
TYPE "RI" TO ENTER DATA IN RECTANGULAR FORM

MPH <CR>

WHAT IS PSET ? 2
TYPE "Y" TO KEEP PSET AND Fr:WM OF COMPLEX # THE SAME FOR THE RUNt ELSE TYPE „Ni

> y < CR >

PLEASE ENTER THE TWO PORT PARAMEIERS AS FOLLOWS:

PHASE MUST BE IN DEGREE FOR POLAR FORM
X(1t1)

MAO PH
lt8Otit80

MAGt PH MAGt
lteet1t8.0

AT 1.000000 0Hz k

= RO.0000 (I t 2) = 80.00.00
X(2t1) = (- 1,00.000 80.0000. (2 t 2) = 1.40o00. R0.0000

PSET = 2.

TYPF.
TYPE
TYPE
TYPE
:TYPE
TYPE
TYPE
TYPE

> t

IF DATA ARE CORRECi
TO CHANGE PSET
TO CHANGE REAL PART
TO CHANGE IMAGINARY
TO CHANGE REAL PART
TO CHANGE IMAGINARY
TO CHANGE ALL OF THE
TO CHANGE THE DATA TYPE

(1.2) ANn SO ON

OR RI)

OF X(10)
PART OF X
OF X(1t2)
PAR i OF X

DATA
(MPH

X(1) = ?

Ai 1.000000 GHzt
U1t1) = (2.00000 80.0000 X(It';') = (4.00000 80.0000
X(2t1) — (1.00000 80.0000 X(2t2) = (-1.00000- 80.0000

PSET = 2.

TYPE
TYPE
TYPE
TYPE
TYPE
TYPE
TYPE
TYPE

>
0.3472963553338607
0.0000000000000000E+00
0.0000000000000000E+00
On 1736481776669303
0.9848077530122081
0.0000000000000000E+00

0.1736481776669303
1.969615506024416

0.0000000000000000E+00
0.040000000.0000000E4-00
0.9848077530122'081

‹: CR
2.00000000.00.0000.0

0.9848077530122081...
0.1736481776669303 -
0n0000000000000000E+00
0.0000000000000000E+00

PLEASE ENTER DATA FOR TRW. 2.000000 GHz.

Page 16

Symbol Action of the computer

1 Change noise parameter 1

2 Change noise parameter 2

3 Change noise parameter 3

4 Change noise parameter 4

5 Change NSET

A Change all the data

Store data

Form: {CALL NLOAD(X,Y,NSET,N1,N2,N3,N4)}

[CALL NLOAD(Z,NSET,N1,N2,N3,N4)1

Arguments:

{X} -- Complex (5X1) for output, stores two-port parameters.

{Y} -- Real (5X1) for output, stores noise parameters.

[Z] -- Real (4X4) for output, is the two-port identifier.

NSET 1 integer for input, is the label of noise

parameters.

N1,N2,N3,N4 -- 4 real numbers input noise px. . Lers to JC

entered.

2.2.2 Interchanging Ports and Creating Branch Elements -

N(4) = 4.0000

5.00004.0000

LIN:E

CR

 AS .. FOL...1.,,OWS.r.,

<CR>,

Fig. 2 Demonstration of NREAD, Page 1 7

PLEASE ENTER DATA FOR FREQ. ... 1.000000. GHz.

'WHAT Ia-NSET (1 TO 8)?
TYPE "Y".. . TO- KEEP NSET THE SAME. FOR THE RUN..t.......EISE-.TYPE.

y

PLEASE ENTER THE NO PARAMETERS ON THE SAME
14(1)t N(2)t N(3)t

1t2t3t4
Al 1.000000 GHzt
N(1) = 1.0000 N(2) = 2 0000 N(3) =

NSET = 1.

TYPE DATA ARE CORRECT
TYPE "A" .. -TO CHANQg ALL .'OF THE DATA
TYPE:"1"... TO CHANGE N...(1Y
TYPE "2" JO CHANO • ... N(2)

: TYFtE . '. .." 3" I I I CHANGF.7-_.. N(3)..
1YPE-H. "4" TO . CHAN11E-N(4Y..
TYPE " a ." TO CHANGE-NSET

INE AS FOLLOWS
N(4)

<CR.>

N(4) = 4.0000

.N(1) •...,... --...- .,..
AT 1,00000 .0 .6Hzt
N.(1) =.. 2.'000 .0 . 	N(2) = 2.0 .0 .00 .H.4(3)..=..

NSET . = 1...

TYPE "V"
TYPE "A"
TYPE "1"
TYPE "2"
TYPE
TYPE "4"
TYPE "5"

>
0.0000000000000000E+00
2.000000000000000
1.000000000000000

0.0000000000000000E+00
0.0000000000000000E+00
1.3235360314390173E-02

0.0000000000000000E+00
0.00000000)0000000E+00
';'.0000000000000000L-0
0.0000000000000000E+00
0.0000000000000000F+00

O.V3-00000000000000E+00
0.0000000000000000E+00
0.0000000000000000E+00
0.18927447064'34237
0.0000000000000000E+00

IF DATA ARE rORRECT
TO CHANGE ALL:.OF THE DATA
TO CHAN3E:N(1)
TO CHANGE N.(2Y
TO CHANGE N(3).
Ta CHANGE N(4)
TO CHANGE NSET

PLEASE ENTER DATA FOR FREQ. 2.000000 GHz.

TYPE "V" TO KEEP THE OLD DATA
TYPE "N" TO ENTER NEW DATA
> N

PLEASE ENTER THE NOISE PARAMETERS ON THE SAME
N(1)t N(2)t N(3)t

2,3.t4tFi
AT 2.000000 GHzt
N(1) = 2.0000 N(2) = 3.0000 N(3'

NSET 1.

TYPF.:". IF......DATA:::ARE. CORRECT'
DATA

T FL
11 11

TO:CHANGE...N(2
1 YPE:-"3" TO 'CHANGE l'\[(31.....

Page 18

Subroutine FLIP interchanges port 1 and port 2.

Form: {CALL FLIP(X,Y)}

[CALL FLIP(Z)1

Arguments:

{X} -- Complex (5X1) for input and output, stores the two-port

parameters.

{Y} -- Real (5X1)for input and output, stores the noise

parameters.

[Z] -- Real (4X4) for input and output, is the two-port

identifier.

Subroutine BRANCH creates the description of a two-port

containing port 1 of the two-port that was input either in series

or in parallel.

Form: {CALL BRANCH(X,Y,TYPE)}

[CALL BRANCH(Z,TYPE)]

Arguments:

{X} -- Complex (5X1) for output and input, contains the

two-port parameters.

{Y} -- Real (5X1) for output and input, contains the noise

parameters.

[Z] -- Real (4x4) for output and input, is the two-port

identifier.

TYPE -- String for input, specifies parallel or series

branching by accepting 'P' or 'Ss.

Page 19

2.2.3 Cascading, Paralleling and Putting Two-port in Series -

In cascading two networks, subroutine CAS uses their ABCD

parameters and noise parameters 1; PSET = NSET = 1. Subroutine

SER puts two networks in series, using their admittance matrices

and noise parameters 2, and leaving PSET = NSET = 2. Subroutine

PAR puts two networks in parallel, using their impedance matrices

and noise parameters 3, and leaving PSET = NSET= 3.

Form: {CALL CAS(X,Y,A,A1)

CALL SER(X,Y,A,A1)

CALL PARCX,Y,A,A1)1

[CALL CAS(Z,B)

CALL SER(Z,A)

CALL PAR(Z,A)]

Arguments:

{X}
IN■ ••■ Complex (5X1) for input and output, carries the

two-port parameters for one of the networks and

returns the resulting two-port parameter.

{Y}
MN. ■Ile Real (5X1) for input and output, carries noise

parameters for X-network and returns the

resulting noise parameters.

{A} •MR .00 Complex (5X1) for input, contains two-port parameters

for the other network.

{Al} -- Real MD for input, contains noise parmeters for

the other network.

[X] -- Real (4X4) for input and output, is the two-port

Page 20

identifier for one of the networks.

[A], -- Real (4X4) for input, is the two-port identifer for

[B] the other network.

2.2.4 Transforming Two-port and Noise Parameters -

Subroutine MTRANS performs transformation between two-port

parameters. Subroutine NTRANS performs transformation between

noise parameters and may also call for two-port parameter

transformations.

Form: {CALL MTRANSOC,N)1

CALL NTRANS(X,Y,NSEVI

(CALL MTRANS(Z,N,KFLAG)

CALL NTRANS(Z,NSET,KFLAG)]

Argument:

{X} -- Complex (5X1) for input and output, stores the

two-port parameters to be transformed and is

loaded with transformed two-port parameters.

Real (5X1) for input and output, stores the

noise parameters to be transformed.

[Z] Real (4X4) for input and output, is the two-port identifier

and is load with transformed parameters in return.

KFLAG 1 integer for input, is used for identifying whether

Z or X will be used as pass parameter. If it is zero

Z will be the argument. If KFLAG is one, X will be

used as pass parameter and another entry should be

Page 21

used by issuing "CALL MTRANS(X N 1)" for MTRANS and

"CALL NTRANS1(X,Y,NSET 1)" for NTRANS.

PSET 1 integer for input, is the label of the desired

two-port parameters. If these two-port parameters

are undefined, "IFLAG" (u NOGO u in the BASIC

version) is set to one.

NSET 1 integer for input, is the label of the desired noise

parameters. If these noise parameters are undefined,

the two-port description may be changed to the other

form.

2.2.5 Saving Circuit Parameters -

Subroutine SAVECKT stores all the two-port descriptions at

each frequency providing that all parameters are stored in the

same type.

Form: {CALL SAVECKT(X,Y,N,NSET,KFACT)}

[CALL SAVECKT(Z,PSET,NSET,KFACT)]

Augrments:

{X} -- Complex (5X1) for input, stores the two-port

parameters.

{Y} -- Real (5X1) for input, stores the noise parameters.

[Z] Real (4X4) for input, is the two-port description.

N 1 integer for input, is the desired type of two-

port parameters to be stored in data base, DB.

It can have a value from -5 to 5 and is the same

Page 22

PSET in the BASIC version.

NSET 1 integer for input, names the desired type of

noise parameters to be stored. It can have a value

from -8 to 8.

KFACT 1 real number for output and input, is the stability

factor. If it is less than zero, no KFACT will be

computed and data base will receive a zero k-factor.

In order to receive a value, KFACT must be a non-

negative valued variable.

2.2.6 Noise Temperature and Gain Analysis -

Subroutine NPERFORM (equivalent to SUB NPERFORMANCE of the

BASIC version) is the subroutine in which the noise temperature

and gain of a two-port network are computed. Its results will be

stored in data base as well as output as pass parameters.

Therefore, the type of gain requested should be the same as for

each call. NPERFORM should be called after SAVECKT and use the

same two-port identifier as for the SAVECKT.

Form: {CALL NPERFORM(X,Y,GTYPE,ZS,ZLFGAIN,TN)1

[CALL NPERFORM(Z,GTYPE,ZS,ZL,GAIN,TN)]

Arguments:

{X} -- Complex (5X1) for input, contains two-port parameters

and should be the same parameters which are used

in SAVECKT.

{Y} -- Real (5X1) for input, contains noise parameters.

Page 23

[Z] Real (4X4) for input, is the two-port identifier for

the two-port to be analysed.

GTYPE 1 integer for input; specifies transducer, power,

available or maximum available gain by accepting

1, 2, 3 or 4 respectively. If it is zero, gain

will not be calculated.

ZS 1 complex number for input, is the source impedance

and is entered as (11S,XS).

ZL 1 complex number for input, is the load impedance driven

by the two-port and should be assigned in the form

of (RL,XL).

GAIN -- 1 real number for output and input, receives the

gain in dB for GTYPE equal to one to four.

TN 1 real number for output and input, will receive

the noise temperature if RS is positive, the two-

port has noise parameters and TN is assigned a non-

negative value.

2.2.7 Reflection and Impedance Calculations -

Subroutine GAMMAZ performs the conversion between reflection

coefficient and impedance.

Form: CALL GAMMAZ(OPT,U,V,R,X)

Arguments:

OPT -- 1 integer for input, is used for indicating the

required type of conversion:

Page 24

impedance to reflection coefficient

(rectangular form)

-1 impedance to reflection coefficient

(polar form)

nothing will be done

1 reflection coefficient (polar form)

to impedance

2 reflection coefficient (rectangular

form) to impedance

R,X IMO 1111. 2 real numbers input or output, are the real and

imaginary parts of the impedance in the form

of R+jX.

U,V 2 real numbers input or output, are the

reflective coefficient either in rectangular

form as U+jV or in polar form as U Ly.

ZIO computes the input and output impedances for a two-port

network.

Form: { CALL ZIO(X,Y,ZS,ZL,ZIN,ZOUT)}

[CALL ZIO(Z,ZS,ZL,ZINIZOUTIKFLAG)]

Arguments:

{X} Complex (5X1) for input, stores the two-port

parameters.

{Y} Real (5X1) for input, is the noise parameters.

I Z] NM OW/ Real (4X4) for input, is the two-port identifier.

ZS,ZL 2 complex numbers input source and load impedances

Page 25

in the form of (RS,XS) and (RL XL) respectively.

ZIN, -- 2 complex numbers input the input and output

ZOUT impedances in the form of (RIN,XIN) and (ROUT,

XOUT).

2.2.8 Printing Circuit Parameters -

Subroutine PRT can print five forms of two-port parameters

and eight forms of noise parameters. The format of the printout

is the same as for the BASIC version. After the printing is

finished, the terminal screen will be frozen until the carriage

return is hit.

Form: CALL PRT(PSET,NSET)

Parameters:

PSET 1 integer for input, can have a value -5 to 5.

If IPSETI = 1 to 5, all the two-port parameters

in data base will be transformed to type IPSETI.

If PSET > 0, two-port parameters will be printed.

If PSET < 0, two-port parameters are not printed.

If PSET = 0, nothing will be done.

NSET 1 integer for input, can have a value -8 to 8.

if INSET! = 1 to 8, all the noise parameters in

data base will be transformed to type INSET'.

If NSET > 0, noise parameters will be printed.

If PSET < 0, noise parameters are not be printed.

If NSET = 0, nothing will be performed.

Page 26

2.2.9 Plotting in FARANT

Subroutine PLOT performs a simple point plotting. Its

maximum capacity is to plot ten curves with 70 points in each

curve on the same plot with or without x-axis and y-axis

transposed. PLOT finds the appropriate scale to accomodate all

the points on the plot or use the range specified by the user.

It also stores the previous plots and puts them together with the

present plot. At the end of each plot, the terminal screen will

be frozen until the carriage return is hit.

Form: CALL (X,Y,CHA,XMIN,XMAX,YMIN,YMAX,MODE,M,N,VAS,HAS,TITL)

Arguments:

X Real (NX1) for input, has a maximum dimension of

70 and contains x-coordinate values,

e.g. frequency.

IMP MM. Real (MXN) for input, has a maximum dimension of

10X70, and contains the plotting values for

functions, e.g. S parameters.

XMIN,XMAX -- 2 real numbers input the minimum and maximum

values of the x-axis. If they are equal,auto-

scaling will be performed.

YMIN,YMAX -- 2 real numbers input the minimum and maximum

values of the y-axis. If they are equal, auto-

scaling will be performed.

MODE -- 1 integer for input, names the form of plotting

and has a value -3 through 3. If it is negative,

Page 27

the plot will be saved without display. For non-

negative valued MODE, the plot will be saved and

displayed.

If IMODEI = 0, new plot will be made and the old

image will be erased.

If IMODEI = 1, new plot will be plotted with old

image using old scale providing that the previous

calls of PLOT have MODE equal to 1 or 0.

If IMODEI = 2, plot will be transposed with old

image erased.

If IMODEI = 3, functions for IMODEI = 1 and 2

are performed providing that the previous calls

for PLOT have !MODE! equal to 2 or 3.

CHA M strings for input, contains the character used

for plotting each curve. Its dimension, M,

must agree with the number of curves.

M 1 integer inputs the number of curves to be

plotted.

1 integer inputs the number of points in each

curve.

VAS -- Strings for input, stores the vertical axis label

locating at the left hand side of the plot.

HAS -- Strings for input, stores the horizontal axis

label locating at the right hand side of the

plot. For both VAS and HAS, maximum 21

Page 28

characters can be used for the label.

TITL Strings for input, stores the title below the

plot. It can carry 76 characters at most.

On the following pages, a demonsration of PLOT is shown.

The labels and title are assigned by means of data statements.

The first subscript of Y is used as the curve identifier. In

this demonstration, two plots, one plot with sine and cosine

funtions together; and the other with tangent function in

transposed position, are made. The intersection of curves are

indicated by "X".

DIMENSION X(70)tY(2t70)tA(50),B(50)
CHARACTER CHA(2)/ /

*/t/l'itVAS*21PY AXIS'ltHAS*21/'X AXIS'/
CHARACTER TITL*76/' * - SIN FUNCTION I - COS FUNCTION1/tCH*1/'2'/
CHARACTER TITLI*76/ 1 * SIN 1 - COS 2 - TAN'/
DO 10 I = 2t140t2
X(I/2) = FLOAT(I)/10.
Y(2tI/2) = COSMI/2))

10 Y(1tI/2) = SIN(X(I/2))
READ(5t21) MODE1
CALL PLOT(XtYtCHAtl.tl.tlutl.tMODElt2,70tVAStHAStTITL)
DO 20 1 = 1,50
A(I) = FLOAT(I)/10.

20 B(I) = TAN(A(I))
READ(5,21) MODE

21 FORMAT(I2)

CALL PLOT(AtEitCHtletlit-10.:10.tMODEtlt50tVAStHAStTITL1)
STOP
END

1111 ***
1 1 * **

1

1 1

Page 29

$ RUN PLOT
(MODE)

999571 ***
R99AR 1 *

A 79979: 1 *
k 699:::9: X
1 60000: *
S 50011

400211* 1
30032
20043* 1
100531

64 1
-99251

-19915 1
-29904 1

-49883: 1 1
-59872 i * * I
-69R61: i 1 1 X
-79851 1* * 1 1 * *
-89840: 11 I * * 1 1 * *
-99829+ - - - - - - - +---111---+**** - - - - + - - - - - - - + - - - - 111-+-***-+ - - - - - - - -+

E -5 200 2171 4143 6114 ROSA. 10057 12029 14000
* - SIN FUNCTION 1 - COS FUNCTION E -3
TYPE ANY CHARACTER TO CONTINUE. >

Page 30
2 (MODE)
Y 1000: 22

3450:
A 5900 :
X 8350 : X X

I 10800 I 2 2 2
S 13250 2 2

15700:
18150 :
206001 2 2
230501
25500: 22

*77950:
304001

*7.°X
35300 1 44
37750 I 22
402001 222
42650 I
45100 : 2 2
47550:
50000+ - - - - - 2 -+ -2 - - - - -+ - - - - - - - - - - - - - - - - - - - - - - +- - - - - - - -

E -3 -10000 -7143 -1429 14•7".7/ 42RA 7143 10000
*-SIN 1 - Ms 2 - TAN E-4
TYPE ANY CHARACTER TO CONTINUE. >

FORTRAN STOP

2.2.10 Optimization - Subroutines OPTIMIZE, CKTANALYSIS and

FARSTART involve in optimization. However, OPTIMIZE does the

decision-making for the optimization. (For detail, see [2])

Form: CALL OPTIMIZE(N,X)

Arguments:

IMO IMM 1 integer inputs the number of variables to

be optimized to get a minimum objective function

value. The setup in FARANT allows at most 24

variables to be used.

X -- Real (Nx1) for input and output, contains initial

objective variable values as input and receives

Page 31

final values which produce minimum objective

function value.

Subroutine CKTANALYSIS contains the user's defined objective

function which has to be minimized.

Form: CALL CKTANALYSISCX,FVAL,OPT)

Arguments:

X Real (24X1) input the objective variable values

for evaluation of FVAL

FVAL 1 real number outputs the objective function value

corresponding to each set of x entered.

OPT 1 integer for output, indicates whether other things

should be done besides computing FVAL. The user can

make use of OPT to control printing and plotting of

initial or final objective values.

Subroutine FARSTART coordinates the operation between

OPTIMIZE and CKTANALYSIS. Further, it gets the initial guesses

and the user's reponse to decide whether optimization to be used

interactively. Therefore, the user need not modify FARANT to run

optimization. The trapping of control/c and fetching of job

process information are also done in FARSTART.

Form: CALL FARSTART

Arguments: none

Page 32

On the following page, a printout shows questions asked by

FARSTART before optimization.

TYPE "Y" TO HAVE OPTIMIZATION
TYPE "N" TO DO NORMAL CIRCUIT ANALYSIS

>
WHAT IS THE NUMBER (INTEGER) OF PARAMETERS TO BE OPTIMIZED ?
PLEASE ENTER THE INITIAL GUESSES OF:
CAUTION: USE NO ZEROS
PARAMETERS # 1 = ? 15
PARAMETERS # 2 = ?
PARAMETERS it 3 = ?
PARAMETERS # 4 = ? 5
DATA ENTERED ARE AS FOLLOWS:

15.00000 -2.000000 3.000000 5.000000
TYPE "Y" IF DATA ARE CORRECT
TYPE "N" Ti:' CHANGE THE SET OF DATA

> Y

2.2.11 Job Process Information -

PROCESS_INFO fetches the information for cpu time, buffered

I/O, direct I/O, and page faults and calls a system routine using

FORTRAN language. (For detail, see [3] and [5])

Form: CALL PROCESS_INFO(ABS_VALUES,INCR_VALUES)

Arguments:

ABS_VALUES -- Integer (4X1) for output and input, gives the

acculumative cpu time, I/O counts and page

faults in one terminal session.

.NIM MEPINCR_VALUES Integer (4X1) for output, gives the increment

of cpu time, I/O counts and page faults for one job.

In order to get them, PROCESS_INFO must be

Page 33

called twice.

2.2.12 Controlic Trapping -

Subroutines ENABLE_CTRLC and CTRLC_OUT are used for enabling

control/c trapping and writing a file when control and c buttons

are hit together, respectively. The control/c trapping is

enabled by calling a system routine, QIOW. The output of the

subroutine CNTRIJ_OUT is stored in a file FIRR.DAT which contains

initial guesses and current values of objective variables and

objection function. The purpose of these subroutines is to

provide the user a way to stop the optimization without losing

data. Every time the program halted by a control/c, "Abnormal

Exit" will be printed on the terminal screen. If the user want

to continue execution, they can type in the current values in

FIRR.DAT as initial guesses and run the program again. For

detailed descriptions and operation of the system routine,

readers should see [3], [51 and [4].

Form: CALL ENABLE_CTRLC

CALL CTRLC_OUT

Arguments: none

Page 34

2.2.13 Lower Level Subroutines -

Lower level subroutines are used by the subroutines in

FARANT. Normally, the user will not use them.

2.2.13.1 Matrix Handling Routines -

Matrix addition are done by ADD and ADDl. These routines

are used by optimization and operate on real, linear matrix

Form: CALL ADD(X,C,Y,D,Z,N)

CALL ADD1(X,Y,Z,N)

Matrix multiplication of 2x2 complex matrices is performed

by MUT.

Form: CALL MUT(X,Y)

Scalar product are performed by SCAL and COP which operate

on real, linear matrix and 2X2 complex matrix respectively.

Form: CALL SCAL(X,C,N)

CALL COP(X,Y,C)

ADJ and DETT are written for MTRANS to find the inverse of a

matrix. ADJ and DETT find the adjoint and determinant of a 2x2

complex, respectively.

Form: CALL ADJ(X)

DETT(Y)

Page 35

Other routines are COPY, DOT and ADIN. COPY equates one

real, • linear matrix to the other. DOT computes the dot product

of 2 real, vectors. In the subroutine ADIN, all the diagonal

elements of a 2x2 complex matrix is added to one.

Form: CALL COPY(X,Y,N)

DOT(X,Y N)

CALL ADIN(Y)

2.2.13.2 Routines Called by Optimization -

Subrouitnes GRAD and GRADIENT compute the gradient at a

point of the objective function. However, GRAD takes three

points to find a gradient. Hence, it is slower than GRADIENT

which takes two points to compute a gradient. PVARS prints the

intermediate steps of optimization.

Form: CALL GRANX,G,FVAL,N)

CALL GRADIENTOC,G,FVAL,N)

CALL PVARS(X,FVAL,N)

2.2.13.3 Routines Called by PLOT -

Auto-scaling of PLOT is done by FACTOR and SCALE. SCALE

finds the scale which can include all the points. FACTOR

computes the exponent for the label of the scale.

Form: CALL SCALE(Y,N,M,MAX,MIN)

CALL FACTOR(MAXD,MIND,I)

Page 36

2.2.13.4 Miscellaneous Routines -

KCALC is called by SAVECKT to find the k-factor.

Form: CALL KCALC(Z,KDONE,KFACT)

REDIM combines the two-port and noise parameters into one

matrix. REDIM1 separates one two-port matrix into two-port and

noise parameters matrices. They are used in FARANT 2.0 for those

routines using complex number extensively.

Form: CALL REDIM(X,Y,Z)

CALL REDIM1(Z,X,Y)

Finally, POLAR converts rectangular coordinates into polar

coordinates.

Form: CALL POLAR(X,Y)

2.3 setup And EnvironiLept in Dix

FARANT 1.0 and 2.0 are stored in different subdirectories of

the VAX. In order to run them in the VAX, three commands -- FOR,

LINK, and RUN -- have to be issued and two files will be created,

besides the source file. The following paragraphs describe the

above areas.

Page 37

2.3.1 Pieces of FARANT in VAX -

FARANT 1.0 AND 2.0 are stored under subdirectories

[SW.FARANTI] and [SW.FARANT2] on device DBAO. The following file

names are used in both subdirectories.

Name.type Description

FLIB.FOR It is the entire FORTRAN code of FARANT

without CKTANALYSIS and main program.

FLIB.OLB It is the compiled version of FLIB.FOR stored in

object module library. It is created by giving

the command: LIBRARY/CREATE FLIB.OLB FLIB.OBJ or

in short form as LIB/CRE FLIB FLIB.

FMAIN.FOR It contains the FORTRAN code of the main

program and initial setup of the subroutine

CKTANALYS IS.

A command file, RUNFRT.COM , is stored under the directory [SW].

Its aim is to help the running of FARANT.

Putting FARANT in the object module library enables the user

to change the subroutines easily. The command, LIB/REPLACE, will

replace some or all of the modules insides the library. Another

command, LIB/INSERT, will insert more modules into the library.

By this way, the user needs not compile the whole library again

for mistakes in some of the library modules. For examples, to

correct mistakes in MTRANS and NTRANS of the FLIB.OLB, the user

only need to copy NTRANS and MTRANS into another filer e.g.

Page 38

FILE. Then the user modifies these routines and types

LIB/REPLACE FLIB FILE to replace modules. Other commands are

LIB/LIST, LIB/DELETE and LIB/EXTRACT. In Fig. 3 and 4, the

libraries of FARANT 1.0 and 2.0 are listed using LIB/LIST

command. A good summary of these commands can be found in [6].

Another advantage of putting FARANT in the library is the saving

of storage space and time. Each time the FARANT library linked

to user's program, the library will be searched for those

unresolved subroutines referenced by the user's program.

Therefore, only the routines called by him will be linked and

copied. However, the user must put libraries in right order, if

he have more than one libray. For example, a library, LIB1,

containing modules A, B and C which calls modules D, and E in

another library, LIB2. Then LIB1 must precede LIB2 in the LINK

command -- LINK user's file + LIBl/LIB + LIB2/LIB.

2.3.2 Running of FARANT in VAX -

The user has to use the following command to copy FARANT to

his working area:

For FARANT 1.0 COPY DBAO:(SW.FARANT11FLIB.*;* FLIB.*;*

COPY DBAO:[SW.FARANT1]FMAIN.*;* FMAIN.*;*

For FARANT 2.0 COPY DBAO:[SW.FARANT2]FLIB.*;* FLIB.*;*

COPY DBAO:BW.FARANT21FMAIN.*;* FMAIN.*;*

Before using FARANT with user's programs, the user has to copy

FMAIN.FOR to his programs. For instance, he wants to write his

Fig..3 . List of modules in FAPAXT Page 39

DirPctory
14:1806
Creation date:
Revision datP:
Number of modu
Other entries:
Recoverable de
Max. Number hi

25-JUI -1983 17:2' 4:04
13-AUG 1983 14:124R

l os: 43

l eted'blOck -s: 10
stor: 20

Creator.: VAX-11 Librarian V03-00
LibrarY format: 3.0
Max. ke y leng th: 31
Pt.-ealioc -Ated i .ndex blocks:
Total index blocks used
ib•a• y 'history records:

01 OBjECI librar y. SYS$SYSnFVICE:ESW.FARANT1YLIB.OLB,12 on 16-AUG-1983

ADD1
ADIN

.ADJ
BRANCH

COP
COPY.

.ROUT
OETT
DOT
ENABLE_CTRLC
FACTOR
FARSTART
FLIP
GAMMAZ
GRAD.
:GRAOIENT
KCALC
LOSSYLINE
MIR(.4NS
MU•
NLO.A..D

NPERFORM
NREAD.
NTRANS
OPTIMIZE
PAR
PLOT
POLAR
PREAD
PROCESS_INFO
PRI
PVARS
RLC
SAVECKT
SCAL
SCALE
SER
SnURCE
IF
IRLINE
71n

Fig. 4 List of mouules in FARANT 2.0 Page 40

nirectorY of OBJErT librar y SYSSSYSDEVICE:ESW.FARANT2:1FLIB.OLEM on 16-AHG-1983
142003
Creation date: 1-AUG-1983 10:58:47 OrPator: VAX-11 Librarian V03-00
Revision date: 13 . A1jG-1983 1358:21 Library format:
Number of m1 •1 dule :3'; 45 Max. keY len9th: 31
Other entries: 49 Preallocated index blocks: 49
Recoverable deleted blocks: Total index blocks used: 6
Max. Number histor y records: Libra'Y histor y records:

ADE)

ADD

ADIN

D

B R A NC: H

C: A s
COP
COPY
CTRLC_ROUT
DE: TT
n 0
ENABLE..
FACTOR
FARSTART
FLIP
GAMMA7
nRAD
GRADIENT

c
LOSSYI INF
MTRANS
MU•
NLOAD
NPERFORM
NREAD
NTRANS
OPTIMI7E
PAR
PLOT
POLAR
PREAn
PROCESS_INFO
PRT
PVARS
RDM
RDM1
RLC
SAVECKT
SCAL
SCALE
S R
SOURCE
IF
TRLINF
7Tn

Page 41

program in MYFILE.FOR. If he is in the EDT editor, he can use

the command, INCLUDE FMAIN.FOR. When he is in the SOS editor, he

can use the command C100 = FMAIN.FOR. In case the user does not

copy FARANT into his work area; he must use the full name of the

file, e.g. DBAO:(SW.FARANT3AFMAIN.FOR for FARANT 1.0.

To run FARANT, the user can execute RUNFRT.COM which

contains all the commands needed to run FARANT by issuing the

command:

@RUNFRT MYFILE

where MYFILE is user's program

This command carries out a procedure. Those users want to

understand the command proccedure should consult M. All the

versions of FIRR.DAT which are generated by CTRIX_OUT are

deleted. If these files do not existed, computer will give a

warning and continue execution. First, the user is asked if he

wants to have program listings. If he responds by typing "YES"

or even "Y", a listing of MYFILE will be generated; otherwise he

can hit return and skip the question. Then the user is asked if

he wants to gen6rate all symbols needed for the debugger. He can

answer the question in the way as the first question. Then

MYFILE is compiled. Afterwards, a prompt asking if the user uses

another library with FARANT. If he does, he types the name of

Page 42

his library; otherwise he skips the question by hitting the

carriage return. The procedure continues and links MYFILE to

FLIB and user's library, if any. Then, all the object files and

old versions will be deleted. The procedure will request the

user to indicate where the output will be sent and where the

input will be read. The action of the procedure corresponding to

user's reply is listed as follows:

User's Lgply,

Type in a file name

for outputing results;

type in a file name

for inputing data

Type in a file name

for an output file;

answer the prompt

about input file by

hitting a cariage

return

Action gt the plagLam

run the prgram FARANT by reading

data from the input file and writing

results to the output file

the result will be the same as

asnwering the two questions by hitt-

ing the return (the user must type

"RUN MYFILE" and enter data

interactively to run the program)

Type in a file name

for the input file;

answer the question

about the output file

by hitting the carriage

run the program FARANT by reading

data from the input file and writing

to the terminal screen

Page 43

return

Answer the two exit the procedure (The user must run

questions about input the program interactively by typing

and output file by "RUN MYFILE" and data. The results

hitting the carriage will be printed on the terminal

return screen.)

For all of the modes listed, the execution of the program can be

halted by typing control and c buttons simultaneously. A listing

of RUNFRT.COM is shown in Fig. 5. If the user has not copied

FARANT into his directory, he modifies RUNFRT.COM by prefixing

ESW.FARANT11 or [SW.FARANT2] to the FLIB/LIB in the link

statement for FARANT1 or FARANT2 respectively, e.g.

[SW.FARANT1]FLIB/LIB or ESW.FARANT2]FLIB/LIB.

$ DEL FIRR.DAT;*

$ INQUIRE LIS "ENTER 'YES' IF YOU WANT TO HAVE A PROGRAM LISTING"

$ INQUIRE DEB "ENTER 'YES' IF YOU WANT TO DEBUG YOUR PROGRAM"

$ IF LIS THEN SEL="/LIS"

$ IF DEB THEN SEL=SEL+"/DEB"

$ FOR'SEL"P1'

$ IF P2 .EQS. "" THEN INQUIRE P2 " ENTER NAME OF LIB USED OTHER THAN
FLIB; IF YOU DON'T HAVE, HIT RETURN"

$ IF P2 .NES. " THEN P2=P2+"/LIB+"

$ IF DEB THEN SEP="/DEB"

Page 44

$ LINK'SEP' 11311+11321FLIB/LIB

$ DEL 1P1'.OBJ;*

$ PUR 'Pl'.*

$ WRITE SYSSOUTPUT "IF YOU WANT INTERACTIVE INPUT AND OUTPUT, ANSWER
FOLLOWING PROMPTS"

$ WRITE SYSSOUTPUT "BY HITTING RETURN AND TYPE 'RUN program name'
AFTER A '$' APPEARS."

$ INQUIRE FILE ENTER NAME OF THE FILE IN WHICH THE OUTPUT TO BE
STORED"

$ IF FILE .EQS. " THEN GOTO NEXT

$ ASS/USERMODE 'FILE' FOR006

$ NEXT:

$ INQUIRE FILE1 " ENTER NAME OF THE FILE IN WHICH DATA FOR UNIT 5 IS
STORED"

$ IF FILE1 .EQS. " THEN EXIT

$ ASS/USERMODE 'FILE1' FOR005

$ RUN 'Pl'

Fig. 5 Listing of RUNFRT.COM .

The shortcoming of this procedure is that the user cannot

enter data interactively inside a procedure; otherwise an end of

file will be detected on logical unit 5. Therefore, the user

must get out of RUNFRT.COM and type "RUN MYFILE" to run FARANT

interactively. Normally, unit 5 and unit 6 are default to read

data and write results on the terminal screen. However,

RUNFRT.COM use the command ASSIGN/USER_MODE to change the default

so that unit 5 and 6 are assigned to an input and output files

Page 45

temporarily until the execution of a program or procedure is

completed.

2.4 Example Using gutimaiatim

On the following pages, two listings and outputs of FORTRAN

programs which have the same function as the optimization program

listed in [1] and use the FORTRAN versions of FARANT are shown in

order to contrast some of the significant differences. The

circuit in [1] is reproduced in Fig. 6e. The purposes of this

program were to maximize gain and input return loss, minimize the

noise temperature and make k-factor greater than one. The

objective function was constructed as follows:

2 2
FVAL = 25/IS211 +10IS111 + TN/50 - EXP(10X(1-K))

Four circuit elements were used as objective variables under the

following contraints:

Variable Constraint Initial Constraining Initial

Values function X(i)

LIN any value 15 nH LIN=X(1) 15

LFB .2<LFB<2 .466 nii LFB=arctan(X(2))/100
_2

+1.1

ROUT ROUT>10 30 Ohms Rout=10+exp(X(3)) 3

LOUT LOUT>0 25 nH LOUT=X(4)*X(4) 5

The programs listed on the following pages are both having the

Page 46

name CIR.FOR under subdirectories ESW.FARANTIA and [SW.FARANT2].

c**

THIS IS THE MAIN PROGRAM OF THE FARANT

C**

C ASSIGN COMMON DATA BLOCK TO :
C IFLAG -- INDICATES THE SUCCESS OF AN OPERATION BY HAVING A VALUE

ZERO (INTEGER)
C ZO -- CHARACTERISTIC IMPEDENCE (REAL)
C F FREQUENCY (REAL)
C ICOU -- INDICATES THE SIZE OF DB (INTEGER)
C DB -- DATA BASE FOR STORAGE OF DATA TO BE PRINTED OR PLOTTED (REAL)

DOUBLE PRECISION ZO,DB,PI,F
CHARACTER*8 HMS,DMY*9

C !!! DATA BASE CAN BE INCREASED

COMMON IFLAG,ZO,F,ICOU,DB(101,18)/BVPI
PI = 3.141592653589793238D0
CALL FARS TART
CALL DATE(DMY)
CALL TIME(HMS)
WRITE(6,10) HMS,DMY

10 FORMAT(' TIME: ',A8,49X,'DATE: ',A9)
STOP 'SUCCESSFUL EXIT FARANT VERSION 1.0'
END

c***

C FUNCTION: CKTANALYSIS

C INPUT: X,OPT

C OUTPUT: FVAL, OPT

C SUBROUTINES CALLED: SPECIFIED BY USERS

C DESCRIPTION: CKTANALYSIS IS A SUBROUTINE WHICH IS WRITTEN BY THE
USER. ITS PURPOSE IS TO CARRY OUT CIRCUIT ANALYSIS
AND EVALUATE THE OBJECTIVE FUNCTION.

C FVAL -- THE VALUE OF THE OBJECTIVE FUNCTION (REAL)
C X -- THE PARAMETERS TO BE OPTIMIZED (REAL; MAX. DIMENSION IS 24 IN

PROGRAM)
C OPT -- A FLAG USED FOR INDICATING WHETHER FVAL IS NEEDED. WHEN

OPT = 1, FVAL IS NEEDED; WHEN OPT = 0, CARRY OUT NORMAL
RCUIT ANALYSIS (INTEGER)

Page 47

c***
SUBROUTINE CKTANALYSIS(X,FVAL,OPT)
IMPLICIT REAL*8 (A-H,L,K,O-Z)

C !! DIMENSION OF X NEEDS TO BE CHANGED IF MORE THAN 24 PARAMETERS ARE
USED

C !!! MORE ELEMENTS CAN BE ADDED HERE

DIMENSION Al(5),B1(5),C1(5),D1(5),E1(5),F1(5),G1(5),H1(5),X(24)
DOUBLE COMPLEX A(5),B(5),C(5),D(5),E(5),F(5),G(5),H(5)
INTEGER OPT

C !!! DATA BASE CAN BE INCREASED

COMMON IFLAG,ZO,FREQ,ICOU DB(101,18)/BVPI
ICOU =
IFLAG =

C !!! FARANT'S REF ZO IS ASSIGNED ONLY HERE

ZO = 50.DO

4 - - - - - - - - - - - - - - - - - - - - - - - - - - - 4
C USER'S PROGRAM BEGIN IN THE FOLLOWING LINES

CLIN = X(1)
CLFB = ATAND(X(2))/100.D0+1.1DO
ROUT = 10.D0+EXP(X(3))
CLOUT = X(4)**2
FREQ = 1.6D0
IF (OPT .EQ. 1) GO TO 10
WRITE(6,15) CLIN,CLFB,ROUT,CLOUT

15 FORMAT(' LIN = ',G14.7,' LFB = ',G14.7,' ROUT = ',G14.7,' LOUT'
1 1 = ',G14.7)

FREQ = 1.3D0
12 IF (FREQ .GT. 1.8D0) THEN

CALL PRT(4,4)
RETURN

END IF
FREQ = FREQ+0.1D0

10 CALL RLC(A,A1,'S',1.DO,CLIN,0.D0,'S1,300.D0)
CALL RLC(B,B1,'S',O.DO,O.D0,1.DO,'P',O.D0)
CALL SOURCE(C,C1,'V','C',40.D0,1.D7,500.D0,0.D0)
CALL RLC(D,D1,'S',0.D0,0.D0,0.5D0,11",O.D0)
CALL RLC(E,E1,'S',0.D0,0.D0,0.06D0,'S',0.D0)
CALL RLC(F,F1,'S',O.DO,CLFB4O.DO,'P',0.D0)
CALL RLC(G,G1,'S',ROUT,CLOUT,0.D0,1P1,300.D0)
CALL PAR(C,C1,E,E1)

Page 48

CALL CAS(B,B1,C,C1)
CALL CAS(B,B1,D,D1)
CALL NLOAD(B,B1,4,50.D0,70.D0,200.DO/FREQ,3.D0)
CALL SER(B,B1,F,F1)
CALL CAS(A,A1,B,B1)
CALL CAS(A,A1,G,G1)
CALL SAVECKT(A,A1,4,4,PK)
CALL NPERFORM(A,A1,1,(50.DO,O.D0),(50.DO,O.D0),GT,TN)
CALL MTRANS(A,4)
GS = 25.DO/ABS(A(3))**2
SN = TN/50.D°
SM = 10.DO*ABS(A(1))**2
S = EXP(10.D0*(1.DO-PK))
FVAL = GS+SN+SM+S
IF (OPT .EQ. 1) RETURN
IF (FREQ .NE. 1.6D0) GO TO 12
WRITE(6,30) GS,SN,SM,S,FVAL

30 FORMAT(/' MEASURES FOR GAIN, NOISE, MATCH, K-FACT (F=1.6):
14(2X,G11.4)/' FVALUE = ',G12.5)

GO TO 12
END

Fig. 6a The listing of (SW.FARANTIACIR.FOR.

TYrk.

LIN =

MEASURES FOR CAIN,
FVALUE = 24.407

ROUT = 30.08554

NO MATCH, K-FACT (F=1.6): 2.257

LOUT = 25.00000 Page 49
1.602 6.414 14.13

ill, A04111414.4. Ânto ut

15 ' 00000 LFB = 0.4656505

(S) PARANETERS IN MAGNITUDE AND PHASE

FREQ
1.400
1.500
1.600
1.700
1.800

11
MAG ANC

0.6650 106.8
0.7423 86.3
0.8008 72.3
0.8432 62.3
0.8739 54.8

12
MAG ANC

0.0446 -4.6
0.0379 -12.4
0.0321 -17.1
0.0272 -19.3
0.0232 -19.4

21
NAG ANC

4.7422 59.4
3.9709 48.0
3.3281 39.2
2.8135 32.1
2.4048 26.4

22
NAG ANC

0.6055 -17.7
0.5929 -18.7
0.5919 -20.0
0.5965 -21.6
0.6033 -23.6

FACT
0.61
0.67
0.74
0.81
0.89

TRANSDUCER-GAIN WAS REQUESTED, WHICH DEPENDS ON: Zsouroe, ES], Zload

NOISE PERFORMANCE PARAMETERS

FREQ G (dB) Tu Tmin Ropt XDpt Cu Rs Xs
1.400 13.52 65.24 56.10 71.78 7.00 3.01 50.00 0.00
1.500 11.98 66.92 56.07 71.80 -12.15 3.01 50.00 0.00
1.600 10.44 80.08 56.03 71.82 -30.09 3.00 50.00 0.00
1.700 8.99 102.79 55.99 71,84 -47.06 3.00 50.00 0.00
1.800 7.62 133.60 55.96 71.87 -63.20 2.99 50.00 0.00

TYPE ANY CHARACTER TO CONTINUE >

INITIAL VALUES OF VARIABLES ARE:

15.00000 -2.000000

INITIAL FUNCTION VALUE = 24.40722

SENSITIVITIES:
16.608 -61.203 -32.131

3.000000 5.000000

65.023

THESE ARE INITIAL RELATIVE SENSITIVITIES OF THE VARIABLES (IVI*dFVAL/dV)

STEP* 1 [X]:

14.912 0.44582

SENSITIVITIES:
19.255 -0.10626

STEP * 2 IX):
13.622 0.83821

SENSITIVITIES:
14.750 0.40446E-01

STEP * 3 IX):
8.6000 1 . 1 500

SENSITIVITIES:
-1.4315 0.54916

STEP * 4 [X]:
9.3127 0.91939

SENSITIVITIES:
(I.541'20 0.39076

3.8560

1.9733

3.4015

0.45704

2.8281

-0.61487

3.0780

-0.16670E-01

3.9606

-2.2912

4.4699

-0.23838

4.6855

1.4436

4.4125

0.13363

FVAL = 8.596773

FVAL = 6.713297

FVAL = 4.181706

FVAL = 3.962469

STEP * 5 EK):
9.0505 _ ViMszo.,

Fig. 6b Results of the Optimization using FARALT 1.0.

STEP * 31 [X]: Page 50
9.0832 0.13207 1.5289 3.8613

FVAL = 3.684124
SENSITIVITY:
-0.13876E-07 0.60408E-09 -0.82622E-09 0.10638E-07

OPTIMIZATION HAS TERMINATED AFTER 32 STEPS.

INITIAL FVAL = 24.40722 INITIAL VALUES:

15.00000 -2.000000 3.000000 5.000000

FINAL FVAL = 3.684124 FINAL VALUES:

9.083211 0.1320683 1.528931 3.861288
-

LIN = 9.083211 LFB = 1.175234 ROUT = 14.61324 LOUT = 14.90955

MEASURES FOR GAIN, NOISE, MATCH, IC-FACT (F = 1.6): 1.897 1.498 0.2358 0,5270E-4
FVALUE = 3.6841

ES] PARAMETERS IN MAGNITUDE AND PHASE

11 12 21 22 IC
FREQ, NAG ANG MAG ANG MAG ANG NAG AIM FACT
1.400 0.2539 -112.4 0.0409 97.5 3.9817 105.1 0.7156 14.9 1.39
1.500 0.1603 -149.4 0.0447 96.9 3.8316 95.1 0.7196 10.0 1.36
1.600 0.1535 153.5 0.0489 96.1 3.6301 85.6 0.7240 5.4 1.29
1.700 0.2271 116.8 0.0535 95.1 3.3970 76.8 0.7286 0.9 1.22
1.800 0.3169 98.0 0.0583 93.8 3.1507 68.7 0.7331 -3.4 1.14

TRANSDUCER-GAIN WAS REQUESTED, 'WHICH DEPENDS ON: Zsource, [S], Zload

NOISE PERFORMANCE PARAMETERS

FREQ. G (dB) Tn Tmin Ropt Xopt Gn Rs Xs
1.400 12.00 115.37 57.24 72.16 53.58 2.98 50.00 0.00
1.500 11.67 90.34 57.16 72.22 37.83 2.97 50.00 0.00
1.600 11.20 74.92 57.07 72.30 23.28 2.96 50.00 0.00
1.700 10.62 67.18 56.99 72.38 9.72 2.95 50.00 0.00

-. 1.800 9.97 65.67 56.90 72.47 -3.00 2.94 50.00 0.00
TYPE ANY CHARACTER TO CONTINUE >
STATISTICS FOR THIS JOB:
ELAPSED TIME = 10.94141 SEC.
CPU TIME = 9150 NS BUFFER I/O COUNTED = 0
DIRECT I/O COUNTED = 0 PAGE FAULTS COUNTED= 0
TIME: 16:11:27 DATE: I6-AUG-83

Page 51

c**

THIS IS THE MAIN PROGRAM OF THE FARANT

c**

C ASSIGN COMMON DATA BLOCK TO
C IFLAG -- INDICATES THE SUCCESS OF AN OPERATION BY HAVING A VALUE

ZERO (INTEGER)
C ZO -- CHARACTERISTIC IMPEDENCE (REAL)
C F FREQUENCY (REAL)
C ICOU -- INDICATES THE SIZE OF DB (INTEGER)
C DB -- DATA BASE FOR STORAGE OF DATA TO BE PRINTED OR PLOTTED (REAL)

DOUBLE PRECISION ZO,DB,PI,F
CHARACTER*8 HMS,DMY*9

C !!! DATA BASE CAN BE INCREASED

COMMON IFLAG,ZO,F,ICOU,DB(101,18)/B1/PI
PI = 3.1415926535897932300
CALL FARS TART
CALL DATE(DMY)
CALL TIME(HMS)
WRITE(6,10) HMS,DMY

10 FORMAT(' TIME: ',A8,49X,'DATE: ',A9)
STOP 'SUCCESSFUL EXIT FARANT VERSION 2.0'
END

c***

C FUNCTION: CKTANALYSIS

C INPUT: X,OPT

C OUTPUT: FVAL, OPT

C SUBROUTINES CALLED: SPECIFIED BY USERS

C DESCRIPTION: CKTANALYSIS IS A SUBROUTINE WHICH IS WRITTEN BY THE
USER. ITS PURPOSE IS TO CARRY OUT CIRCUIT ANALYSIS
AND EVALUATE THE OBJECTIVE FUNCTION.

C FVAL -- THE VALUE OF THE OBJECTIVE FUNCTION (REAL)
C X -- THE PARAMETERS TO BE OPTIMIZED; ITS MAXIMUN NUMBER IS 24 BUT IT

CAN BE MODIFIED (REAL)
C OPT -- A FLAG USED FOR INDICATING WHETHER FVAL IS NEEDED WHEN

OPT = 1, FVAL IS NEEDED; WHEN OPT = 0, CARRY OUT NORMAL
CIRCUIT ANALYSIS. (INTEGER)

c***
SUBROUTINE CKTANALYSIS(X,FVAL,OPT)

Page 52

IMPLICIT REAL*8 (A-H,L,K,O-Z)

C !!! DIMENSION OF X NEEDS TO BE CHANGED IF MORE THAN 24 PARAMETERS ARE
USED

DIMENSION X (24)

C I!! MORE ELEMENTS CAN BE ADDED HERE

DIMENSION A(4,4),B(4,4),C(4,4),D(4,4),E(4,4),F(4,4),G(4,4),H(4,4)
INTEGER OPT

C !!! DATA BASE CAN BE INCREASED

COMMON IFLAG,ZO,FREQ,ICOU,DB(101,18)/BVPI
ICOU =
I FLAG = 0

C !!! FARANT'S REF ZO IS ASSIGNED ONLY HERE

ZO = 50.D0

C USER'S PROGRAM BEGIN IN THE FOLLOWING LINES

LIN = X(1)
LFB = ATAND(X(2))/100.D0+1.1D0
ROUT = 10.D0+EXP(X(3))
LOUT = X(4)**2
FREQ = 1.6D0
IF (OPT .EQ. 1) GO TO 10
WRITE(6,15) LIN,LFB,ROUT,LOUT

15 FORMAT(' LIN = ',G14.7,' LFB = ',G14.7,' ROUT = ',G14.7,' LOUT',
= ',G14.7)

FREQ = 1.3D0
12 IF (FREQ .GT. 1.8D0) THEN

CALL PRT(4,4)
RETURN

END IF
FREQ = FREQ+0.1D0

10 CALL RLC(A,'S',1.D0,LIN,0.D0,1S1,300.D0)
CALL RLC(B,'S',O.DO,O.D0,1.DO,'P',O.D0)
CALL SOURCE(C,'V','C',40.D0,1.D7,500.DO,O.DO)
CALL RLC(D,'S',O.DO,O.D0,0.5DO,'P',O.D0)
CALL RLC(E,'S',0.D0,0.D0,0.06D0,'S',0.D0)
CALL RLC(F,'S',O.DO,LFB4O.D0,1P,O.D0)
CALL RLC(G,'S',ROUT,LOUT,0.D0,1P1,300.D0)
CALL PAR(C,E)
CALL CAS(B,C)

Page 53

CALL CAS(B,D)
CALL NLOAD(B,4,50.D0,70.1)0,200.DO/FREQ,3.D0)
CALL SER(B,F)
CALL CAS(A,B)
CALL CAS(A,G)
CALL SAVECKT(A,4,4,PK)
CALL NPERFORM(A,1,(50.DO,O.D0) (50.DO 0.D0),GT,TN)
CALL MTRANS(A,4,0)
GS = 25.D0/(A(2,1)**2+A(2,2)**2)
SN = TN/50.D°
SM = 10.DO*(A(1,1)**2+A(1,2)**2)
S = EXP(10.D0*(1.DO-PK))
FVAL = GS+SN+SM+S
IF (OPT .EQ. 1) RETURN
IF (FREQ .NE. 1.6D0) GO TO 12
WRITE(6,30) GS,SN,SM,S,FVAL

30 FORNATCP MEASURES FOR GAIN, NOISE, MATCH, K-FACT (F=1.6):
14(2X,G11.4)/' FVALUE = ',G12.5)

GO TO 12
END

Fig. 6c The listing of BW.FARANT23CIR.FOR

Page 54
TYPE "Y" TO HAVE OPTIMIZATION
TYPE "N" TO DO NORMAL CIRCUIT ANALYSIS

WHAT IS THE NUMBER (INTEGER) OF PARAMETERS TO BE OPTIMIZED ?
PLEASE ENTER THE INITIAL GUESSES OF:
CAUTION: USE NO ZEROS
PARAMETERS * 1 =
PARAMETERS * 2 =
PARAMETERS * 3 = ?
PARAMETERS 0 4 =
DATA ENTERED ARE AS FOLLOWS:

15.00000 -2.000000 3.000000 5.000000
TYPE "Y" IF DATA ARE CORRECT
TYPE "N" TO CHANGE THE SET OF DATA

LIN = 15.00000 LFB = 0.4656505 ROUT = 30.08554 LOUT = 25.00000

MEASURES FOR GAIN, NO MATCH, K-FACT (F=1.6): 2.257 1.602 6.414 14.0
FVALUE = 24.407

E53 PARAMETERS IN MAGNITUDE AND PHASE

11 12 21 22
FREQ NAG ANG NAG ANC NAG ANG MAC ANC FACT
1.400 0.6650 106.8 0.0446 -4.6 4.7422 59.4 0.6055 -17.7 0.61
1.500 0.7423 86.3 0.0379 -12.4 3.9709 48.0 0.5929 -18.7 0.67
1.600 0.8008 72.3 0.0321 -17.1 3.3281 39.2 0.5919 -20.0 0.74
1.700 0.8432 62.3 0.0272 -19.3 2.8135 32.1 0.5965 -21.6 0.81
1.800 0.8739 54.8 0.0232 -19.4 2.4048 26.4 0.6033 -23.6 0.89'

TRANSDUCER-GAIN WAS REQUESTED, WHICH DEPENDS ON: Zsource, ES], :Mond

NOISE PERFORMANCE PARAMETERS

FREQ G (dB) Tn Tmin Ropt Xopt Gn Rs XS
1.400 13.52 65.24 56.10 71.78 • 7.00 3.01 50.00 0.00
1.500 11.98 66.92 56.07 71.80 -12.15 3.01 50.00 0.00
1.600 10.44 80.08 56.03 71.82 -30.09 3.00 50.00 0.00
1.700 8.99 102.79 55.99 71.84 -47.06 3.00 50.00 0.00
1.800 7.62 133.60 55.96 71.87 -63.20 2.99 50.00 0.00

TYPE ANY CHARACTER TO CONTINUE >

INITIAL VALUES OF VARIABLES ARE:

15.00000 -2.000000 3.000000 5.000000

INITIAL FUNCTION VALUE = 24.40722

SENSITIVITIES:
16.608 -61.203 -32.131 65.023

THESE ARE INITIAL RELATIVE SENSITIVITIES OF THE VARIABLES (IV1*dFVAL/dV)

STEP 1 EX):

14.912 0.44582 3.560 3.9606
FVAL = 8.596773

SENSITIVITIES:
19.255 -0.10626 1.9733 -2.2912

STEP * 2 EX]:
13.622 0.83821 3.4015 4.4699

FVAL = 6.713297
SENSITIVITIES:

14.750 0.40446E-01 0.45704 -0.23038

-0.58163E-05 0.16583E-06 0.87022E-08 0.72080E-07

STEP 31 (X3:
9.0832 0.13207 1.5289 3.8613

SENSITIVITY:
-0.13809E-07 0.60426E-09 -0.83046E-09 0.10632E-07

Pa6e 55

FVAL = 3.684124

OPTIMIZATION HAS TERUINATED AFTER 32 STEPS.

INITIAL FVAL = 24.40722 INITIAL VALUES:

15.00000 -2.000000 3.000000 5.000000

FINAL FVAL = 3.684124 FINAL VALUES:

9.083211 0.1320683 1.528931 3.861288

= 9.083211 LFB = 1.1 5234 ROUT = 14.61324 LOUT = 14.90955

MEASURES FOR GAIN, NOISE, MATCH, K-FACT (F=1.6): 1.897 1.498 0.2358 0.5270E-01
VALUE = 3.6841

ES] PARAMETERS IN MAGNITUDE AND PHASE

11 12 21 22
FREQ. MAC ANC MAC ANC MAC ANC MAC ANC FACT
1.400 0.2539 -112.4 0.0409 97.5 3.9817 105.1 0.7156 14.9 1.39
1.500 0.1603 -149.4 0.0447 96.9 3.8316 95.1 0.7196 10.0 1.36
1.600 0.1535 153.5 0.0489 96.1 3.6301 85.6 0.7240 5.4 1.29
1.700 0.2271 116.8 0.0535 95.1 3.3970 76.8 0.7286 0.9 1.22
1.800 0.3169 98.0 0.0583 93.8 3.1507 68.7 0.7331 -3.4 1.14

TRANSDUCER-GALN WAS REQUESTED, WHICH DEPENDS ON: Zsource, [S], Zload

NOISE PERFORMANCE PARAMETERS

FREQ. C (dB) Tn Tmin Rop t Xopt Cu Rs Xs
1.400 12.00 115.37 57.24 72.16 53.58 2.98 50.00 0.00
1.500 11.67 90.34 57.16 72.22 37.83 2.97 50.00 0.00
1.600 11.20 74.92 57.07 72.30 23.28 2.96 50.00 0.00
1.700 10.62 67.18 56.99 72.38 9.72 2.95 50.00 0.00
1.800 9.97 65.67 56.90 72.47 -3.00 2.94 50.00 0.00

TYPE ANY CHARACTER TO CONTINUE >
STATISTICS FOR THIS JOB:
p4APSED TIME = 10.44922 SEC.
CPU TINE = 9960 NS BUFFER I/O COUNTED = 0
DIRECT I/0 COUNTED = 0 PAGE FAULTS COUNTED= 0
TIME: 16:14:00 DATE: 16-AUG-83

Fig. Pesults of tih optimization using FARANT 2.0.

Lin 1 ohm 0.06pF
(?)'-"'L 1

50u0h/1 s

I

4 Lout

' 0.5pF 13.... '',..
1,,,

Page 56

Fig. 6e Circuit diagram of the network to be optimized.

In the printout the following significent differences and

similarities between BASIC and FORTRAN version of FARANT can be

found:

1. In the FORTRAN program, all the variable types have to be

declared at the beginning of the program.

2. In the FORTRAN versions, every real constant must be

represented in exponential form using "D" instead of "E",

e.g. 1 as real constant should be written as 1.D0

Page 57

3. All the program statements are typed in upper case for the

FORTRAN versions.

4. In the FORTRAN versions, FREQ instead of F is used to

represent frequency in the subroutine CKTANALYSIS. However,

F i used for representing frequency in the other subroutines

of FARANT.

5. IF and GOTO statements are used in FORTRAN program instead of

FOR and NEXT statements.

6. END and RETURN replace SUBEND and SUBEXIT in FORTRAN

subroutines.

7. FORTRAN does not have OPTION BASE, DEG and FIXED statements.

8. ICOU and IFLAG substitute for COUNT and NOGO in FARANT 1.0

and 2.0.

9. The square of any variable, X, is represented by X**2 in

FORTRAN.

10. FORMAT statement is used in FORTRAN to put the printout in

right format.

11. All the results of BASIC and FORTRAN versions agree up to

digits.

Page 58

12. FARANT 2.0 and .10 only took about 9.2 and 10.6 seconds of

cpu time to obtain the answers while BASIC version took about

10 minutes to obtain the same results. However, this is not

a fair comparison because the HP 9845 compiles, executes and

prints results at the same time but FARANT in the VAX has

been compiled before it is run. Moreover, the cpu time shown

for FORTRAN versions does not account for the time spent in

compiling CKTANALYS IS.

13. Both BASIC and FORTRAN versions took about 30 steps to

optimize the function.

14. At the end of parameter printing, the terminal screen will be

frozen for the FORTRAN versions until the carriage return is

hit.

Differences on FARAJT 1.0 and 2.0 observed from the results

and programs are:

1. FARANT 1.0 is faster than FARANT 2.0 by one second cpu time

because the two port matrices in FARANT 2.0 have to be

rearranged. (For details, see section 3.3)

2. Results of both FORTRAN versions are almost the same except

the sensitivies are different. This is owing to round-off

error in calculation of gradient. The details about the

Page 59

calculation of gradient will be found in section 3.4.1.

3. In subroutine CKTANALYSIS the two-port descriptions of FARÄNT

2.0 contain in (4x4) arrays A through H but those of FARANT

1.0 contain in (5X1) real matrices Al through H1 and (5X1)

complex matrices A through H.

4. In FARANT 1.0, magnitude of S parameters are computed using

the function ABS(X(I)) but calculated in FARANT 2.0 using the

formula:

2 2 1/2
= [(real part of MI)) + (imaginary part of MI))]

Page 60

3.0 PROGRAMINg POW gE vim AND $0ME SUGGE$TIONS

This section provides a summary of the differences

between BASIC and FORTRAN versions, differences between

FARANT 1.0 and 2.0, and differences between BASIC

language in HP 9845 and VAX FORTRAN. Suggestions are

given in both programming and the setup of Digital

Command Language (DCL) procedure in the VAX. Finally,

an example will be given to illustated these

suggestions.

3.1 Flpw Chart a FARANT

2-port subroutines
two-port gc_noise parameter transformation

ckt elements defined, connected, &analysed 1
- simple plotting

ckt data stored and/or print

Subroutine OPTIMIZE —1
- call CKTANALYSIS

r- - finds X minimizing FVAL(----..

Subroutines NREAD &PREAD
1- obtain data interactively_

Subroutine FARSTART
assigns initial guess X interactively

- calls CKTANALYSIS
- calls OPTIMIZE

- enables control/c trappping
- gives job process information

1

1Main program
' —1 sets COMMON storagel

- calls FARSTART !

- Subroutine CKTANALYSIS
user specification of ckt (and objective function)
- requests for prints &plots of ckt information N

prQgriam__

PORTION
OF FARANT

Page 61

3.2 Initialization in The Subroutine CKTANALYSIS

The user is advised to copy all the DATA and COMMON

statements in the subroutine CKTANALYSIS exactly, if he wants to

use his own subroutines in FARANT. In the following paragraphs,

statements apply only to FARANT 1.0 is enclosed by braces ,{),

while statements apply only to FARANT 2.0 is enclosed by

bracket,[1.

IMPLICIT REAL*8 (A-H L,K O-Z)

This statement declares all the variables begin with letter

A through H, 0 through Z, L and K are real variable with double

precision.

[DIMENSION X(24)]

[DIMENSION A(4,4),B(4,4),...,H(4,4)]

{DIMENSION Al(5),B1(5),...H1(5))

{DOUBLE COMPLEX A(5),13(5),...11(5))

These statements allocate space to store the two-port

descriptions and objective variables for OPTIMIZE. In FARANT

1.0, all the descriptions for a two-port are stored in one (4X4)

real matrix. In FARANT 2.0, all the descriptions for a two-port

are stored in a (5X1) complex matrix for two-port parameters and

a (5X1) real matrix for noise parameters. The number of matrices

for two-port descriptions and the dimension of objective

Page 62

variables can be increased.

INTEGER OPT

This statement declares OPT is an integer variable,

otherwise OPT will be a real variable. The user needs not copy

this statements in his subroutines.

cow= IFLAG,ZO,FREQ,ICOU,DB(101,18)/BVPI

This statement puts the above variables in common storage so

that subroutines in FARANT can have access to these variables.

IFLAG It is the same as "NOGO" in BASIC and signals the

failure in two-port transformation if it is one.

ZO It is the reference impedance for S parameters and is

defined to be 50 Ohms in the subroutine CKTANALYSIS.

FREQ FREQ respresents frequency and is the same as as ' I F" in

BASIC version.

ICOU It holds the number of rows in data base, DB.

D13(101,18) -- It is the data base in double precision. The user

needs not copy it into his subroutines if he does not

use DB.

/B1/PI PI stored the pi constant in common storage. If the

user wants to use pi, he must copy "/B1/PI" to the

COMMON statement of his programs.

Page 63

3.3 Complex Number Manipulations in FORTRAN VERSIONS

Using a 2X2 matrix to represent a complex number is one of

the reasons that the BASIC version is slow. However, VAX FORTRAN

supports complex number operations. Therefore, most of the

matrix operations in FARANT are replaced by complex algebra. In

FORTRAN, complex numbers are represented in rectangular

coordinates, e.g. (X,Y) where x and Y are the real and imaginary

parts, respectively. It is used extensively in FARANT 1.0 but

not in FARANT 2.0; only subroutines ZIO, MTRANS, NTRANS, CAS,

LOSSYLINE, and NPERFORM in FARANT 2.0 use complex algebra.

Sometimes, subroutines in FARANT 2.0 use real numbers or polar

coordinates to manipulate complex numbers. The conversion

between polar and rectangular coordinates are done by subroutine

POLAR. It actually contains only two statements:

PH = ATAN2D (X,Y)

NAG = (X*X Y*Y)

The function ATAN2D in the math library of FORTRAN will perform

the same function as the statements for finding PH in SUB POLAR

of the BASIC version. To sum up, the complex number manipualtion

and accuracy in FORTRAN versions heavily depends on the math

library in VAX FORTRAN.

Page 64

Since the complex number manipulation in FARANT 2.0 is quite

different from that of FARANT 1.0, the argurments for some of the

subroutines -- MTRANS, ZIO and NTRANS -- have one more argument

,KFLAG , that does not occur in corresponding subroutines of

FARANT 1.0. This KFLAG enables subroutines using complex algebra

to call the other subroutines using complex algebra directly.

For example, ZIO can call MTRANS without transforming complex

numbers into real numbers which then are passed to MTRANS and

converted back into complex numbers in MTRANS. This problem in

calling other subroutines does not occur in subroutines using

real numbers to represent complex numbers. Moreover, the

two-port descriptions of those subroutines using complex

operations in the whole routines need to be rearranged after

entering and before leaving the subroutines. As a result, FARANT

2.0 is a little bit slower than FARANT 1.0.

3.4 Differences betweeen The BASIC and FORTRAN Versions

Differences that affect the results of FARANT are mentioned

first. The other differences will be found under the heading

miscellaneous.

Page 65

3.4.1 The Calculation of Gradient in The Subroutine OPTIMIZE -

Two subroutines, GRAD and GRADIENT, are used by the

subroutine OPTIMZIE for finding the gradient of a objective

funtion. Subroutine GRADIENT takes two points of the objective

function to find the gradient at one of the two points using the

formula:

gradient = (f(X+10 *XINIT) - f(X))/(10 *XINIT)

Where f(X) = value of the objective function at X
XINIT = initial guess of X

The above expression is not accurate since it actually gives the

gradient for the point between X and X+1.E-5. The inaccuracy

becomes significant when the optimization reaches a relative

"flat" region at which the objective function changes very little

with the objective variables. As a result, the subroutine

OPTIMIZE loses the "sense of direction" and the accurate of final

variable values may be limited.

Therefore, the subroutine GRAD is introduced. It computes

the gradient using following expression:

-5
gradient = (f(X + 10 *XINIT) f(X - 10 *XINIT))/(2*XINIT*10)

52 3
-(XINTI*10) *f(X) /6

This expression uses three points of the objective function to

compute a gradient. Consequently, the speed of optimization will

be decreased. Moreover, the accuracy of the subroutine GRADIENT

GTYPE = 2

GTYPE = 3

GTYPE = 4

Gp = GTI
IZS = ZIN

RS
Ga

2
ROUT*IA+C*ZSI

Page 66

becomes important at the last state of optimization but not at

the beginning. As a compromise, the subroutine OPTIMIZE will

switch to GRAD when the change in FVAL, the value of the

objective function, is less than 5E-6. Further, the loss in

speed is compensated by the reduction in number of steps and the

activity of searching around.

3.4.2 Modifications in Subroutine NPERFORM

Subroutine NPERFORM is the same as SUB Nperformance in the

BASIC version. Some modifications in calcultaion of gain has

been made to avoid the error in taking the logarithm of a

negative number. In the BASIC version, gain is calculated as

follows:

GTYPE = 1
2

4*IZINI *RS*RL
GT =

2 2
IZIN+ZSI *IA*ZL+BI

1
Gmax =

1/2
1 A*B-C*D1*(K+ (K2- 1))

Page 67

If the numerator of the expression of GYTPE = 1 through 3 is

negative or zero, it is set to lE -99. If the denominator of the

expression equals zero, it is set to lE 99. By this way, taking

logarithm of a negative number is avoided when GTYPE is equal to

1 or 2 but not equal to 3 because ROUT may be negative.

However, the formula for GTYPE = 2 is different in the

FORTRAN versions.

2
IZINI *RL

2
RIN*IA*ZL+BI

If the numerator of the expression for gain is zero or either the

numerator or denominator, but not both, of the expression is

negative, the numerator is set to lE -38. If the denominator of

the expression equals zero, it is set to lE 38. Therefore,

results of both version are consistent if ROUT is positive.

Otherwise, results may not be the same.

3.4.3 Miscellaneous -

Summary of the small differences between BASIC and FORTRAN

versions are as follows:

Page 68

1. Subroutines PREAD and NREAD are changed to acquire data

interactively for the FORTRAN versions(For details, see

sections 2.2.1.6 and 2.2.1.7)

2. In FARANT 2.0, MTRANS, NTRANS and ZIO have one more

parameter, KFLAG. (For details, see sections 3.3)

3. Subroutine FARSTART has changed to request data for

optimization interactively, enables the trapping of control/c

and issues job process information in the FORTRAN versions.

4. After printing parameters, the FORTRAN versions of subroutine

PRT will freeze the screen until the user hits the carriage

return.

5. Defined constant like pi is not supported by FORTRAN.

However, pi is defined in the main program of FARANT, the

user can use it in his subroutines by adding "/B1/PI" in the

COMMON statement.

6. In FORTRAN versions, the two-port and noise parameters are

arranged differently. Two-port and noise parameters are

stored in a real (5X1) and a complex (5X1) arrays

respectively for FARANT 1.0. For FARANT 2.0, a real (4X4)

array contians all the parameters. (For details, see section

2.0)

Page 69

3.5 RE 9$45 DA$IC And VAX FORTRAN

The following list only shows some of the significant

differences. It is assumed the user understands FORTRAN ri7. For

detailed information about VAX FORTRAN, the user should consult

[7].

1. In order to use double precision for all real variables, the

IMPLICIT statement has to be used in FORTRAN program whereas

HP 9845 always uses 12 digits to represent real variable if

the user does not specify.

2. The data type does not assoicate with the first letter of

variable in HP 9845. However, all variables begin with

letter A through H, 0 through Z, L and K are assumed to be

real type with double precision as they are declared in the

subroutine CKTANALYSIS of FORTRAN versions. Variables begin

with other letter are assumed to integer type. Moreover, all

the constants have to be written in exponential form, e.g. 1

is 1.DO. The decmial point and exponent are especially

import4nt for optimization because contants without them are

considered to real numbers with single precision. If the

user wants to do optimization, every constant and variable

must be in double precision.

Page 70

3, Apostrophes, ' , is used to specify a string in FORTRAN

versions whereas quotes, " ", are used for the same purpose

in HP 9845, e.g. "S" is used instead of 'S'.

4. Every string variable in HP 9845 must be followed by a dollar

sign, $. On the other hand, names of string variables are

the same as for ordinary variables in FORTRAN versions.

5. All the local variables within a called program will be saved

after the control is returned to the calling program in VAX

FORTRAN. Hence, the pass parameters can be equated to some

local variables during the first call of a subroutine. In

the next call, parameters are set to the old values if the

user sets a flag inside the subroutine interactively or

through the subroutine CKTANALYSIS. This special feature is

used in subroutines NREAD and PREAD and saves time for

reading data if those data are the same as the previous set.

For HP 9845, all the variables are set to zero at the

beginning each call. The only way to save pass paremeters is

to put them in COM statement.

6. Upper case letters will not be translated to lower case in

FORTRAN. Moreover, upper and lower case letters have

different ASCII values. Since FORTRAN versions are typed in

upper case, the user is advised to lock the keyboard to type

capital letters. However, the BASIC program is typed in

upper and lower cases.

Page 71

7. In BASIC version, the dimension of an array can be passed

using the symbol, (*). However, the dimension of an array

must be defined in a subroutine or it should be a pass

parameter explicitly in FORTRAN. Moreover, only the array

name is needed to be typed in a CALL statement. For

instance, CALL OPTIMIZE(X,N) instead of CALL OPTIMIZE(X(*),N)

is used in FORTRAN versions.

8. The dimension of an array in VAX FORTRAN has a lower bound of

one if it is not specified whereas a OPTION BASE statement

must be used in HP 9845.

9. FORTRAN supports complex number operations but the BASIC in

HP 9845 does not.

10. However, VAX FORTRAN does not have matrix operations which

are supported by HP 9845 BASIC. The user must write his own

subroutines to manipulate matrices.

11. In HP 9845, the same name can be used for a single variable

and an array but this is invalid in FORTRAN. For instance, F

for frequency and F(6,4) for two-port descriptions are used

in the SUB CKTANALYSIS of BASIC version. However, frequency

is represented by FREQ in • CKTANALYSIS of the FORTRAN

versions.

Page 72

12. DEG and RAD statements do not exist in VAX FORTRAN.

Nevertheless, it does support trigonometric functions in

degree and rad. Those functions accept degree as input

ususlly have letter "D" at the end of their function name. A

good summary of those functions can be found in table C-1 of

UN.

13. Since the dimension of an array must be defined within the

subroutine, some of the data type statements which are not in

the BASIC version must be changed in FORTRAN version if the

user wants to increase the data base, number of objective

variable for optimization, and number of two-port

identifiers. Those statements need to be changed are

indicated by "!!!" in the comment. Therefore, the user can

easily find them.

14. The comment line in VAX FORTRAN can be the same as BASIC,

using II II in the first column. ft II and "D" can also be used

as comment line indicators. Actually, is the debug

statement indicator. If "/D_LINE" is specified with "FOR"

command, e.g. "FOR/D_LINE file name, the compiler will

compile those statements with the debug statement indicator.

Otherwise, "D" has the same function as "C" or "!".

Page 73

15. FORTRAN program must begin in the sixth column and end in

seventy second column.

16. BLOCK IF statement which has the form:

IF (expression) THEN

block

ELSE IF (espression) THEN

ELSE

END IF

and is not supported by HP 9845 BASIC and FORTRAN Iv can be

found in VAX FORTRAN. Some other statements that cannot be

found in both HP 9845 BASIC and FORTRAN ry are -- END DO, DO

WHILE and PARAMETER statements. The form of DO WHILE

statment is as follows:

DO s WHILE (expression)

where s is the label of the last statuAnent inc1ude3 within

the range of a DO statememt. The purpose of DO END statement

is to terminate the range of a DO statement. For instance,

the above example can be written as follows:

DO WHILE (expression)

Page 74

END DO

PARAMETER statement assigns a symbolic name to a constant.

Its form is:

PARAMETER (p=c, q=d,

where p and q are the symbolic names and c and d are the

contants. The statment is non-executable. The symbolic

names are replaced by corresponding contants during

compilation.

3.6 Suggeot Setup in User's Working Areas

In order to make the manipulation of files in VAX easier,

some command files are set up, besides RUNFRT.COM , under the

directory [SW]. They are listed and described in the following

paragraphs.

Name.type

LOGIN. CON

Function

Every times the user gets on the VAX. It will

search for the command file LOGIN.COM . If this

file is found, it will be executed. The first

command in LOGIN.COM informs the VAX user's

terminal is VT52 (equivalent to VISUAL 50). This

Page 75

command should be changed "SET TER/DEV=VT100" if

the user uses a VISUAL 100 terminal. This

command also enables the user to get into the

keypad mode if he uses the EDT editor. Then the

procedure defines symbols "ED" and "C" and

executes DIR.COM . LOGIN.COM is shown in the

following lines.

$set ter/dev=vt52
$run [larry]cookie
SED: ==EDIT/EDT/COMMAND= [SW] COM . EDT
$C:==@[SW]
SODIR

DIR.COM It shows the names of subdirectories inside the

directory and asks which subdirectory the user

wants. If the user wants to use any sub-

directory, he can type in the subdirectory name.

Otherwise, he can hit the carriage return and

stay in his directory automatically. The user

must be cautious in typing subdirectory names

because this simple procedure does not check the

existance of the subdirectory name typed. If the

user types a wrong name, he may not find his

files and must issue the command:

"SET DEFAULT fusernamel" to get back to his

directory or "'C'DIR to execute DIR.COM again.

DIR.COM is listed below.

Page 76

$ DIR/NOTR [SW].DIR
$ INQUIRE SDIR n ENTER FILE NAME TO SELECT SUBDIR; HIT RETURN TO CHOOSE THE
MAIN DIR"
$ IF SDIR .NES. "" THEN SDIR="."-i-SDIR
$ SET DEF ESW'SDIR'l

COM. EDT

INCL FMAIN.FOR
TY .-5:.-1 /STAY

It is a command file containing commands of the

EDT editor. Each times the user issues the

command symbol "ED" defined in LOGIN.COM . He

will enter the EDT editor, get a copy of

FMAIN.FOR and see the last six lines of

FMAIN.FOR. COM .EDT is shown below.

If the user wants to copy these command files, he should

change the "[SW]" in the above listings into "Iusernamel".

Setting up in this way, the user can store all the command files

in his directory and files with similar function are grouped into

one subdirectory. When he want to execute a command file in his

directory from a subdirectory by typing "'C'file name". The user

must not put a space between the apostrophe and the file name.

If he wants to write a new program using FARANT, he can enter the

subdirectory containing FARANT 1.0 or FARANT 2.0 and type "ED

file specification". He will enter the EDT editor and get a copy

of FMAIN.FOR automatically. Therefore, the user is advised to

use the EDT editor. Moreover, it does not contain too many

commands, most of which can be used by stroking one or two keys

Page 77

on the keypad.

The user can enter the EDT editor by issuing "EDIT/EDT file

specification". Then he will be in the line mode of the EDT

editor. Within this mode, he can use the following commands the

abbrevaitions of which are enclosed by brace, O.

{R}EPLACE a:b

WOVE a:b c:d

{I}NSERT a:b

{CO}PY a:b

{T}YPE a:b

{ MANGE

{INOLUDE file specification

where a:b is the range specification and a and b is the starting

and ending lines, respectively.

When the user issues "C" (CHANGE), they will enter the

keypad mode, he can use the keypad on the right hand side of the

keyboard. Hitting the arrow, "<--", and function keys of VISUAL

50 together and then the arrow, "-->", key, the user can get the

HELP instruction for each key. Since the keypad is different for

different terminals, it is impossible to describe how to use the

keypad. For detail information, the user should consult "VAX-II

Text Editing Reference Manual". A good introduction and summary

can also be found in the updated version of "VAX/VMS Primer".

The keypad for the VISUAL 50 is reproduced in the following

Page 78

diagram which should be found on each terminal.

GOLD HELP DEL L
UND L

APPEND SPECINS REPLACE SECT/

PAGE FNDNEXT DEL W

COMMAND FIND UND W

ADVANCE BACKUP DEL C

BOTTOM TOP UND C

WORD EOL CUT
ENTER 1

CHGCASE DEL EOL PASTE

LINE SELECT 1 SUBSTI-

OPEN LINE RESET ; TUTE

Fig. 7 The keypad of the VISUAL 50.

3.7 Buggustions for Programming in FORTRAN

Following paragraphs discusses some special features of VAX

FORTRAN. These features may help users to use VAX FORTRAN

efficiently. Also they will be demonstrated in the next section.

In VAX FORTRAN, the user can open, close and assign a file

to a certain logical unit. In FARANT, unit 5 and 6 are used for

reading and printing respectively. And the controlic trapping

routine uses unit 7 to write to a file called FIRR.DAT. The form

of CLOSE and OPEN statements are listed as follows:

Page 79

OPEN (list of parameters ...)

CLOSE (list of parameters...)

Some of the useful parameters are:

UNIT •NI• ••10 It specifies the logical unit to which the file is

assigned.

FILE It is the name of the file to be open. Default file

type is DAT. Therefore, the user only needs to give

the file name if he wants to create a data file.

DISP -- Some of the options are "SAVE" and "DELETE". "SAVE"

means to keep the file. "DELETE" means the file to be

deleted when the CLOSE statement is executed. (see

[9] for details)

Another unique feature of VAX FORTRAN is the retaining of

local variables after the control is transfered back to the

calling program. This feature enables the user to recall the

previous values of pass parameters by equating the pass

parameters to the calling program. Its advantage will become

more conspicuous in the example after this section.

Namelist-directed READ statement allows the user to put long

list of data in small group inside a file. For instance, data

for variables -- A, B, C, D and E -- are read in a program. The

user can write his program using namelist- directed READ

statement as follows:

NAMELIST /G1/A,B,C /G2/D,E

Page 80

•

READ(5,NML=G1)

READ(5,NML=G2)

where G1 and G2 are group names.

The data file assigned to logical unit 5 will be as follows:

$G1
A=l
B=

= 3
$END
$G2
D= 4
E= 5

$END

All the statements in the data file should be start at second

column because the first column is supposed to contain

carriage-control characters. In this way, the VAX will search

for the group names G1 and G2 sequentially. Therefore, G1 and G2

must be put in the order in which they appear in the READ

statement. However, the variable names inside G1 or G2 can be

put in any order. Using namelist-directed READ statement, the

user can put all the data for several program in one data file.

As long as the data are arranged in the order that the group

names appear in READ statement, the right data will be read.

(see UN)

Page 81

Lastly, the INCLUDE statement can be used in FORTRAN

program. It has a form of "INCLUDE 'file

specification(module) '/ M1LIST". The brackets, "M", in the

above statement indicates optional elements. Using this

statement, the user can copy a text or source file into their

program. Further, he can set up a text library which can be

manipulated in the same way as the object module library. Using

INCLUDE statement can save space for storage of source file by

putting those statements ocurring many times in a text file.

(For details ,see [6])

3.8 Example: Fitting A FET Model Using Optimization

On the following pages, listings and printout of FARANT 1.0

and 2.0 are shown for the optimization program. Some of the

subroutines used are stored inside a user's library. Pieces of

these programs can be found under the subdirectories ESW.FARANTli

and [SW.FARANT2]. The following files can be found in both

subdirectories having the same names.

Fil.type Descriptions

FITNE.FOR It cantains the user's version of CKTANALYSIS for

fitting a FET model and the main program of

FARANT.

FITNE.EXE It is the image of the optimization program

for program execution.

Page 82

SWLIB.FOR It is the FORTRAN source file containing

user's subroutines -- OUTPUT describing the

output circuit, INPUT describing the input

circuit, FET describing the PET model, PACK

containing the two-port descriptions for

input and output circuits and UNPACK recall-

ing the stored two-port description of input

and output circuits.

SWLIB.OLB The object module library of SWLIB.FOR.

FIT2AUG83 It contains the component values of input and

output circuits and the NE673A FET model.

The purpose of this program was to fit the FET model of

NE673A to the following data:

Frequency Square of S parameters

(Ghz) Sll 512 521 S22

21.6 0.16 0.01 3.16 0.5
22.6 0.06 0.025 6.00 0.008
23.6 0.125 0.0125 3.16 0.4

The data were read interactively and stored in array P of the

subroutine CKTANALYSIS. However, the data for subroutines INPUT,

OUTPUT and FET were read form FIT2AUG83 using the

namelist-directed READ statement. The program minimizes the

differences between the S parameters calculated by the program

and the square of S parameters, P, read using following equation:

Page 83

23.6
FVAL = 10ER (1,1) + ER (1,2) + ER (2,1) 10ER (2,2)

f=21.6

where f = frequency in Ghz
2 2

ER (i,j) = CS (i,j) P (i,j)]

i and j are the subscripts for S parameters e.g. S(1,2)=512.

The circuits described in subroutines INPUT, OUTPUT and FET are

shown in Fig. 13, Fig. 14 and Fig. 15 respectively. As shown

in Fig. 15, elements TR(1), TR(3), TR(11) TR(13) and TR(10) of

the FET model were going to be optimized. Their initial values

were:

Variables Initial values Constraining Initial
Function X(i)

2
TR(1) 7.3008 Ohms X(5) 2.702

2
TR(3) 0.0001 pF X(1) 0.01

2
TR(11) 0.2933 nH X(2) 0.5416

2
TR(6) 0.5671 pH X(3) 0.024

2
TR(13) 0.30647 nH X(4) 0.5836

2
TR(10) 1.6384 Ohms X(6) 1.28

c**

THIS IS THE MAIN PROGRAM OF THE FARANT

c**

C ASSIGN COMMON DATA BLOCK TO :
C IFLAG -- INDICATES THE SUCCESS OF AN OPERATION BY HAVING A VALUE

ZERO (INTEGER)
C ZO -- CHARACTERISTIC IMPEDENCE (REAL)

Page 84

C F FREQUENCY (REAL)
C ICOU -- INDICATES THE SIZE OF DB (INTEGER)
C DB -- DATA BASE FOR STORAGE OF DATA TO BE PRINTED OR PLOTTED (REAL)

DOUBLE PRECISION ZO,DB,PI,F
CHARACTER*8 HMS,DMY*9

C !!! DATA BASE CAN BE INCREASED

COMMON IFLAG,ZO,F,ICOU,DB(101,18)/81/PI
PI = 3.141592653589793233D0
CALL FARSTART
CALL DATE(DMY)
CALL TIME(HMS)
WRITE(6,10) HMS,DMY

10 FORMAT(' TIME: 1 , A8,49X,'DATE: ',A9)
STOP 'SUCCESSFUL EXIT FARANT VERSION 1.0'
END

c***

C FUNCTION: CKTANALYSIS

C INPUT: X,OPT

C OUTPUT: FVAL, OPT

C SUBROUTINES CALLED: SPECIFIED BY USERS

C DESCRIPTION: CKTANALYSIS IS A SUBROUTINE WHICH IS WRITTEN BY THE
USER. ITS PURPOSE IS TO CARRY OUT CIRCUIT ANALYSIS
AND EVALUATE THE OBJECTIVE FUNCTION.

C FVAL -- THE VALUE OF THE OBJECTIVE FUNCTION (REAL)
C X -- THE PARAMETERS TO BE OPTIMIZED (REAL; MAX. DIMENSION IS 24 IN

PROGRAM)
C OPT -- A FLAG USED FOR INDICATING WHETHER FVAL IS NEEDED. WHEN

OPT = 1, FVAL IS NEEDED; WHEN OPT = 0, CARRY OUT NORMAL
RCUIT ANALYSIS (INTEGER)

c***
SUBROUTINE CKTANALYSIS(X,FVAL,OPT)
IMPLICIT REAL*8 (A-H,L,0-Z)

C !!! DIMENSION OF X NEEDS TO BE CHANGED IF MORE THAN 24 PARAMETERS ARE
USED

C I!! MORE ELEMENTS CAN BE ADDED HERE

DIMENSION Al(5),B1(5),C1(5),D1(5),E1(5),F1(5),G1(5),H1(5),X(24)
DIMENSION Q(2,3,12),P(3,4),TR(20),CIN(15),OUT(15),ER(4),X1(70)
DIMENSION Y1(4,70)

Page 85

NAMELIST /INNET/ CIN /OUTNET/ OUT /NE673A/ TR
DOUBLE COMPLEX A(5),B(5),C(5),D(5),E(5),F(5),G(5),H(5)
CHARACTER ANS,CH(12)*18,VAS*21/ I X AXIS DB I /,HAS*21/ I Y AXIS FREW/
CHARACTER TITL*73/' 1 - S11, 2 - S12, 3 - 521, 4 -S22I/
CHARACTER CHA(4)/ I 1 , 1 2', 1 3','4 1 /, NOF*20
INTEGER OPT

C !!! DATA BASE CAN BE INCREASED

COMMON IFLAG ZO,FREQ,ICOU,DB(101,18)/BVPI
ICOU =
IFLAG = 0

C !!! FARANT'S REF ZO IS ASSIGNED ONLY HERE

ZO = 50.DO

C USER'S PROGRAM BEGIN IN THE FOLLOWING LINES

IF (IR .EQ. 0) THEN
FREQ1 = 21.6D0
F2 = 23.6D0
NF = 3
DF = (F2-FREQ1)/(FLOAT(NF)-1.D0)
WRITE(6,30)

30 FORMAT(1 1 PLEASE TYPE THE SQUARE OF S PARAMETERS'/' THE S
l'PARAMETERS SHOULD BE ENTERED ON THE SAME LINE AS FOLLOWS:')
DO 40 I = 1,NF
FT = DF*(I-1)-1- FREQ1

32 WRITE(6,35)
35 FORMAT(' AT ',G14.7,' GHz I /7X, 1 P(I , I1, 1 ,1),',10X, I P(' I1 ' 2) 1

READ(5,*) (P(I,J),J = 1,4)
WRITE(6,50) (I,P(I,J),J = 1,4)

50 FORMAT(' P(1,11,1,1) = ',G14.7,' P(',I1,',2) = ',G14.7/
1 1 P(',I1,',3) = ',G14.7,' P(',I1,',4) = ',G14.70" TYPE'
1,' "Y" (IF DATA IS CORRECT) OR "N" (TO CHANGE DATA) 'P > ',$)

READ(5, 1 (A) ') ANS
IF (ANS .NE. 'Y') GO TO 32

40 CONTINUE
TYPE *,' ENTER NAME OF THE FILE CONTAINING COMPONENT VALUES:
READ(5, I (A20)') NOF
OPEN (UNIT=7,STATUS=IOLDI,FILE=NOF)
READ(7,NML=INNET)
READ(7,NML=OUTNET)
READ(7,NML=NE673A)
CLOSE(UNIT=7,DISP=IKEEPI)
END IF

Page 86

IF (OPT .EQ. 0) THEN
DO I = 1,NF
FREQ = FREQ1 + (FLOAT(I) 1.D0)*DF
CALL INPUT(A,A1,CIN)
CALL PACK(A,A1,Q,1,I)
CALL OUTPUT(A,A1,OUT)
CALL PACK(A,A1,Q,2,I)
END DO

END IF
FVAL = 0.DO
ICOU = 0
TR(1) = X(5)*X(5)
TR(3) = X(1)*X(1)
TR(11) = X(2)*X(2)
TR(6) = X(3)*X(3)
TR(13) = X(4)*X(4)
TR(10) = X(6)*X(6)
DO 90 I = 1,NF
FREQ = FREQ1 + (FLOAT(I) 1.D0)*DF
CALL UNPACK(G,G1,Q,1,I)
CALL FET(B,B1,TR,0)
CALL RLC(A,A1,'P',0.D0,CIN(15),0.D0,IPI,0.D0)
CALL SER(A,A1,13,131)
CALL CAS(G,G1,A,A1)
CALL UNPACK(A,A1,Q,2,I)
CALL CAS(G,G1,A,A1)
CALL MTRANS(G,4)
ER(1) = (ABS(G(1))**2-P(I,1))**2
ER(2) = (ABS(G(2))**2-P(I,2))**2
ER(3) = (ABS(G(3))**2-P(I,3))**2
ER(4) = (ABS(G(4))**2-P(I,4))**2
FVAL = FVAL + 10.D0*ER(1) + ER(2) + ER(3) + 10.D0*ER(4)

90 CALL SAVECKT(G,G1,40,-1.D0)
IF (OPT .EQ. 1) RETURN
WRITE(6, 1 (1H1) ')

95 DO 100 I = 1,ICOU
X1(I) = D13(I,1)
Y1 (1,I) = 10.D0*LOG10(DB(I,2)**2+DB(I,3)**2)
Y1(2,I) = 10.D0*LOG10(DB(I,4)**2+D13(I,5)**2)
Y1 (3,I) = 10.D0*LOG10(DB(I,6)**2+DB(I,7)**2)-30.D0

100 Y1(4,I) = 10.D0*LOG10(DB(I,8)**2+DB(I,9)**2)
CALL PLOT(X1,Y1,CHA,1.D0,1.D0,-30.D0,0.D0,0,4,ICOU VAS,HAS,TITL)
IF (IR .EQ. 1) THEN

WRITE(6,101)
101 FORMAT(' COMPONENT VALUES OF THE INPUT CIRCUIT:VT30,1Z0',15X,

11LENGTH1/1X,60('-'))
WRITE(6,102) CIN

102 FORMAT(' INPUT TRANSFORMER',T25,G14.7,5X,G14.7/' TUNING L' ,T25,
1G14.7,5X,G14.7/' GATE LEAD',T25,G14.7,5X,G14.7/' GATE BIAS' ,T25,
1G14.7,5X,G14.7/' GATE CAP',T25,G14.7,5X,G14.7// 1 DISCONT. CAP =

Page 87

1G14.7,10X,'END CAP = ',G14.7/' BIAS RESISTOR = 1,G14.7,10X,'BIAS'
1, 1 CAP = ',G14.7/ 1 SOURCE INDUCTOR = ',G14.7)

WRITE(6,103)
103 FORMAT(/' COMPONENT VALUES OF THE OUTPUT CIRCUIT:1/T30,1Z0',15X,

11LENGTH1/1X,60(1-1))
WRITE(6,104) (OUT(II),II=1,6),(OUT(II),II=10,13),(OUT(II),II=7,

1 9),OUT(14),OUT(15)
104 FORMAT(' DRAIN LEAD I , T25,G14.7,5X,G14.7/ 1 DRAIN BIAS',T25,G14.7,

15X,G14.7/' DRAIN CAP',T25,G14.7,5X,G14.7/' T2',T25,G14.7,5X,G14.7
1/ 1 OUT LINE',T25,G14.7,5X,G14.7//' END CAP = ',G14.7,10X,'DISCON.'
1, 1 CAP = 1 ,G14.7/' DISCON. CAP = 1 ,G14.7,10X,'BIAS BYPASS CAP ',
l'= ',G14.7/ 1 BIAS BYPASS RESISTOR = ',G14.7)

END IF
CALL PRT(4,-4)
WRITE(6,105) TR(1),TR(3),TR(11),TR(6),TR(13),TR(10)

105 FORMAT(2X,'TR(1) = 1 ,G14.7, 1 TIM) = ',G14.7, 1 TR(11) = 1,
1G14.7/' TR(6) = 1 ,G14.7, 1 TR(13) 1,G14.7,1 TR(10) = ',G14.7)
IR = I
RETURN
END

Fig. 13 Program listing of (SW.FARANTIAFITNE.FOR.

Page 68

X 01
-15004

A -30001
X -4500
I -6000
S -7500

-9000
D-10500
B-12000

- 13500
- 15000
- 16500
- 18000
-19500
-21000
-22500
- 24000
-25500
- 270002
- 285001
-300003 - - - - - -

E -3 21600 21886 22171 22457
I - Sll, 2 - S12, 3 - S2I, 4 -S22

TYPE ANY CHARACTER TO CONTINUE. >

A
4 X X

1

2
2

3
3

22743 23029 23314 23600
FITE -3

ES) PARAMETERS IN MAGNITUDE AND PHASE

11 12 21
FREQ MAC ANG MAG ANG MAG ANG

21.600 0.6773 160.5 0.0455 95.7 0.9944 95.6
22.600 0.3373 124.9 0.1020 40.8 2.0365 40.8
23.600 0.6010 -133.2 0.0959 -57.8 1.7537 -57.8
TYPE ANY CHARACTER TO CONTINUE >
TR(1) = 7.300804 TR(3) = 0.1000000E-03 TR(11) = 0.2933306
TR(6) = 0.5760000E-03 TR(13) = 0.3064730 TR(10) = 1.638400

INITIAL VALUES OF VARIABLES ARE:

22
NAG ANG FACT

0.9073 158.5 0.00
0 . 6444 138.3 0.00
(4.5840 -161. 7	0.00

(4.1000000E-01 0.5416000 0.2400000E-01 0.5536000

2.702000 1.280000

INITIAL FUNCTION VALUE = 12.37276

SENSITIVITIES:
-0.20402 -141.59 0.91065 -426.78 49.667

13.835

THESE ARE INITIAL RELATIVE SENSITIVITIES OF THE VARIABLES (1V1*dFVAL/dV)

STEP # 1 EX):
($.11518E-01 0.56106 0.21176E-01 0.61098 2 . 7006

1.2792

0.56312

0.57542E-03

0.56312

0.12006E-05

-0.12267E-03

STEP # 82 EX):
-0.44503E-01 (4.53734 0.55898E-01

1.0853

SENSITIVITY:
-0.36338E-05 0.43594E-03 -0.88313E-05
-0.31946E-04

STEP # 83 DO:
- 0.44502E-01 0.53734 0. 55897E-01

1.0853

SENSITIVITY:
0.71246E-07 0.12559E-05 -0.96863E-07

- 0.42770E-06

FVAL = 42.60838

2.6484

FVAL = 7.269432

-0.66051E-04

2.6484

FVAL = 7.269432

-0.18494E-05

OPTIMIZATION HAS TERMINATED AFTER 84 STEPS.

23600
FITE -3

23029 2331422743

LENGTH

21
NAG ANG

1.1384 92.2
2.4704 27.4
1.5565 -71.6

22
NAG ANC

0.3742 156.6
0 • 4469 135.8

. 7496 - 1 63 . 5

FACT
0.00
0.00
0.00

60E-02 TR(11) = 0.2887337

Page 69

X 01
-15004

A -30001
)1 -45001
I -60001
S -75001

-9000
D-10500
B-12000

-13500
-15000
-16500
-18000
-19500
-21000
-22500

 -
3

-24000
-255002
-270001
-285003
-30000+ - - - - - - - -

E -3 21600 21886 22171 22457
I - Si!, 2 - SI2, 3 - S2I, 4 -S22

TYPE ANY CHARACTER TO CONTINUE. >
COMPONENT VALUES OF THE INPUT CIRCUIT:

ZO

4 A
1 X

a

INPUT TRANSFORMER
TUNING L
GATE LEAD
GATE BIAS
GATE CAP

26.00000
50.00000
100.0000
90.00000
39.00000

0.1260000
0.1450000
0.1000000E-01
0.1250000
0.7500000E-01

DISCONT. CAP = 0.0000000E+00 END CAP = 0.4000000E-01
BIAS RESISTOR = 50.00000 BIAS CAP = 0.5000000
SOURCE INDUCTOR = 0.1000000E-02

COMPONENT VALUES OF THE OUTPUT CIRCUIT:
ZO LENGTH

DRAIN LEAD 100.0000 0.1000000E-01
DRAIN BIAS 90.00000 0.1250000
DRAIN CAP 39.00000 0.4000000E-01
T2 15.00000 0.1260000
OUT LINE 50.00000 0.0000000E+00

END CAP = 0.4000000E-01 DISCON. CAP = 0.3000000E-01
D/SCON. CAP = 0.3000000E-01 BIAS BYPASS CAP = 0.5000000
BIAS BYPASS RESISTOR = 50.00000

[S] PARAMETERS IN MAGNITUDE AND PHASE

11 12
FREQ. NAG ANG NAG ANG

21.600 0.7209 160.1 0.0542 98.3
22.600 0.3611 106.3 0.1289 34.2
23.600 (p .6029 -135.2 0.0807 -64.0
TYPE ANY CHARACTER TO CONTINUE >
TR(1) = 7.014131 TR(3) = 0.19804

TR(6) = 0.3124524E-02 TR(13)
STATISTICS FOR THIS JOB:
ELAPSED TIME = 72.83203
CPU TIME = 63440 MS
DIRECT I/O COUNTED =
TIME: 16:03:14

• 0.3171046 TR (10) =

SEC.
BUFFER I/O COUNTED =
0 PAGE FAULTS COUNTED=

1.177848

0
0

DATE : 16-AUG-83

Fig. 9 Pesults of the optimization program using FARANT • <.)

Page 90

c**

THIS IS THE MAIN PROGRAM OF THE FARANT

c**

C ASSIGN COMMON DATA BLOCK TO
C IFLAG -- INDICATES THE SUCCESS OF AN OPERATION BY HAVING A VALUE

ZERO (INTEGER)
C ZO -- CHARACTERISTIC IMPEDENCE (REAL)
C F -- FREQUENCY (REAL)
C ICOU -- INDICATES THE SIZE OF DB (INTEGER)
C DB -- DATA BASE FOR STORAGE OF DATA TO BE PRINTED OR PLOTTED (REAL)

DOUBLE PRECISION ZO,DB,PI,F
CHARACTER*8 HMS,DMY*9

C !!! DATA BASE CAN BE INCREASED

COMMON IFLAG,ZO,F,ICOU,DB(101,18)/BVPI
PI = 3.1415926535897932300
CALL FARS TART
CALL DATE(DMY)
CALL TIME (HMS)
WRITE(6,10) HMS,DMY

10 FORMAT(' TIME: ',A8,49X,'DATE: ',A9)
STOP 'SUCCESSFUL EXIT FARANT VERSION 2.0'
END

c***

C FUNCTION: CKTANALYSIS

C INPUT: X,OPT

C OUTPUT: FVAL, OPT

C SUBROUTINES CALLED: SPECIFIED BY USERS

C DESCRIPTION: CKTANALYSIS IS A SUBROUTINE WHICH IS WRITTEN BY THE
USER. ITS PURPOSE IS TO CARRY OUT CIRCUIT ANALYSIS
AND EVALUATE THE OBJECTIVE FUNCTION.

C FVAL -- THE VALUE OF THE OBJECTIVE FUNCTION (REAL)
C X -- THE PARAMETERS TO BE OPTIMIZED; ITS MAXIMUN NUMBER IS 24 BUT IT

CAN BE MODIFIED (REAL)
C OPT -- A FLAG USED FOR INDICATING WHETHER FVAL IS NEEDED WHEN

OPT = 1, FVAL IS NEEDED; UHEN OPT tt J, CARRY OUT NORMAL
CI,tC l !TT ANALYSIS. (IIHE(EP)

c,*****-x**
SUBROUTINE CKTANALYSIS(X,FVAL,OPT)

Page 91

IMPLICIT REAL*8 (A-H,L K,O-Z)

C !!! DIMENSION OF X NEEDS TO BE CHANGED IF MORE THAN 24 PARAMETERS ARE
USED

DIMENSION X(24)

C !!! MORE ELEMENTS CAN BE ADDED HERE

DIMENSION A(4,4),13(4,4),C(4,4),D(4,4),E(4,4),F(4,4),G(4,4),H(4,4)
DIMENSION Q(2,3,12),P(3,4),TR(20),CIN(15),OUT(15),ER(4),X1(70)
DIMENSION Y1(4,70)
NAMELIST /INNET/ CIN /OUTNET/ OUT /NE673A/ TR
CHARACTER ANS,CH(12)*18,VAS*21/ 1 X AXIS DB 1 /,HAS*21/ 1 Y AXIS FREW/
CHARACTER TITL*76/' 1 - S11, 2 - S12, 3 - S21, 4 -S22I/
CHARACTER CHA(4)/111,I21,I31,141/,NOF*20
INTEGER OPT

C !!! DATA BASE CAN BE INCREASED

COMMON IFLAG,ZO,FREQ,ICOU,DB(101,18)/BVPI
ICOU =
IFLAG = 0

C !!! FARANT'S REF ZO IS ASSIGNED ONLY HERE

ZO = 50.DO

+
C USER'S PROGRAM BEGIN IN THE FOLLOWING LINES

IF (IR .EQ. 0) THEN
FREQ1 = 21.00
F2 = 23.6D0
NF = 3
DF = (F2-FREQ1)/(FLOAT(NF)-1.D0)
WRITE(6,30)

30 FORMAT('1 PLEASE TYPE THE SQUARE OF S PARAMETERS'/' THE S
l'PARAMETERS SHOULD BE ENTERED ON THE SAME LINE AS FOLLOWS:')
DO 40 I = 1,NF
FT = DF*(I-1)+ FREQ1

32 WRITE(6,35) FT,I,I,I,I
35 FORMAT(' AT ',G14.7,'

READ(5,*) (P(I,J),J = 1,4)
WRITE(6,50) (I,P(I,J),J = 1,4)

50 FORMAT(' P(',I1,',1) = 1 ,G14.7, 1 	P(',I1,1,2) ',G14.7/
1 1 	P(1,11,1,3) = ',G14.7,' P(',I1,',4) = ',G14.7/' TYPE'
1, 1 "Y" (IF DATA IS CORRECT) OR "N" (TO CHANGE DATA) 'P > ',$)

Page 92

READ(5, 1 (A) 1) ANS
IF (ANS .NE. 'Y') GO TO 32

40 CONTINUE
TYPE *,' ENTER NAME OF THE FILE CONTAINING COMPONENT VALUES:
READ(5,'(A20) 1) NOF
OPEN (UNIT=7,STATUS='OLD',FILE=NOF)
READ(7,NML=INNET)
READ(7,NML=OUTNET)
READ(7,NML=NE673A)
CLOSE(UNIT=7,DISP='KEEP')
END IF
IF (OPT .EQ. 0) THEN

DO I = 1,NF
FREQ = FREQ1 + (FLOAT(I) - 1.D0)*DF
CALL INPUT(A,CIN)
CALL PACK(A,Q,1,I)
CALL OUTPUT(A,OUT)
CALL PACK(A,Q,2,I)
END DO

END IF
FVAL = O.DO
ICOU = 0
TR(1) = X(5)*X(5)
TR(3) = X(1)*X(1)
TR(11) = X(2)*X(2)
TR(6) = X(3)*X(3)
TR(13) = X(4)*X(4)
TR(1()) = X(6)*X(6)
DO 90 I = 1,NF
FREQ = FREQ1 + (FLOAT(I) - 1.D0)*DF
CALL UNPACK(G,Q,1,I)
CALL FET(13,TR,O)
CALL RLC(A,1PI,0.D0,CIN(15),0.D0,'P',0.D0)
CALL SER(A,B)
CALL CAS(G,A)
CALL UNPACK(A,Q,2,I)
CALL CAS(G,A)
CALL MTRANS(G,4,0)
ER(1) = (G(1,1)**2+G(1,2)**2-P(I,1))**2
ER(2) = (G(1,3)**2+G(1,4)**2-P(I,2))**2
ER(3) = (G(2,1)**2+G(2,2)**2-P(I,3))**2
ER(4) = (G(2,3)**2+G(2,4)**2-P(I,4))**2
FVAL = FVAL + 10.D0*ER(1) + ER(2) + ER(3) + 10.DO*ER(4)

90 CALL SAVECKT(G,4,0,-1.D0)
IF (OPT .EQ. 1) RETURN
WRITE(6,1(1111)')

95 DO 100 I = 1,ICOU
X1(I) = DB(I,1)
Y1(1,I) = 10.D0*LOG10(D13(I,2)**2+D13(I,3)**2)
Y1(2,I) = 10.D0*LOG10(D13(I,4)**2+DWI,5)**2)

Page 93

Y1(3,I) = 10.DO*LOG10(DB(I,6)**2+DB(I,7)**2)-30.DO
100 Y1(4,I) = 10.DO*LOG10(DB(I,8)**24-DB(I,9)**2)

CALL PLOT(Xl,Y1,CHA,FREQ1,F2,-30.DO,O.D0,0,4,ICOU,VAS,HAS,TITL)
IF (IR .EQ. 1) THEN

WRITE(6,101)
101 FORMAT(' COMPONENT VALUES OF THE INPUT CIRCUIT:'/T30,'ZO',15X,

11LENGTH1/1X,60('-'))
WRITE(6,102) CIN

102 FORMAT(' INPUT TRANSFORMER',T25,G14.7,5X,G14.7/' TUNING L',T25,
1G14.7,5X,G14.7/ 1 GATE LEAW,T25,G14.7,5X,G14.7/ 1 GATE BIAS',T25,
1G14.7,5X,G14.7/' GATE CAP',T25,G14.7,5X,G14.7//' DISCONT. CAP =
1G14.7,10X,'END CAP = ',G14.7/' BIAS RESISTOR = ',G14.7,10X,'BIAS'
1, 1 CAP = ',G14.7/ 1 SOURCE INDUCTOR = ',G14.7)

WRITE(6,103)
103 FORMAT(/' COMPONENT VALUES OF THE OUTPUT CIRCUIT: /T30,1Z0',15X,

1'LENGTH'i1X,60('-'))
WRITE(6,104) (OUT(II),II=1,6),(OUT(II),II=10,13),(OUT(II),II=7,

1 9),OUT(14),OUT(15)
104 FORMAT(' DRAIN LEAD',T25,G14.7,5X,G14.7/' DRAIN BIAS',T25,G14.7,

15X,G14.7/' DRAIN CAP,T25,G14.7,5X,G14.7/ 1 T2',T25,G14,7,5X,G14.7
1/' OUT LINE I , T25,G14.7,5X,G14.7//' END CAP = ',G14.7,10X,IDISCON.'
1,' CAP = ',G14.7/' DISCON. CAP = ',G14.7,10X,'BIAS BYPASS CAP',
1 1 = ',G14.7/' BIAS BYPASS RESISTOR = ',G14.7)

END IF
CALL PRT(4,-4)
WRITE(6,105) TR(1),TR(3),TR(11),TR(6),TR(13),TR(10)

105 FORMAT(2X,'TR(1) = ',G14.7,' TR(3) = ',G14.7,' TR(11) = ',G14.7/
1' TRW = ',G14.7,' TR(13) = ',G14.7,' TR(10) = ',G14.7)
IR = 1
RETURN
END

Fig. 10 Program listing of [SW.FARANT2]FITNE.FOR.

Page 94
X 01

-15004
A -30001
X. -4500
I -6000
S -7500

-9000
D-10500
B-12000

-13500
- 15000
- 16500
-18000
- 19500
-21000
-22500
-24000
- 25500
-270002
-285001
-300003

E -3 21600 21886
1 - 511, 2 - 512,

TYPE ANY CHARACTER

22171 22457
3 - 521, 4 -522
TO CONTINUE. >

A
4 X X

2
2

3
3

22743 23029 23314 23600
E -3

ES] PARAMETERS IN MAGNITUDE AND PHASE

11 12 21
FREQ MAC ANG MAC ANG NAG ANG

21.600 0.6775 160.5 0.0455 95.7 0.9944 95.6
22.600 0.3375 124.9 0.1020 40.8 2.0365 40.8
23.600 0.6010 -133.2 0.0959 -57.8 1.7537 -57.8
TYPE ANY CHARACTER TO CONTINUE >
TR(1) = 7.300804 TR(3) = 0.1000000E-03 TR(11) =
TR(6) = 0.5760000E-03 TR(13) = 0.3064730 TR(10) =

INITIAL VALUES OF VARIABLES ARE:

22
NAG ABG FACT

0.9073 158.5 0.00
0.6444 138.3 0.00
0.5840 -161.7 0.00

0.2933306
1.638400

0.1000000E-01 0.5416000 0.2400000E-01 0.5536000

2.702000 1.280000

INITIAL FUNCTION VALUE = 12.37276

SENSITIVITIES:
-0.20402 -141.59 0.91065 -426 .78 	49.667

13.835

THESE ARE INITIAL RELATIVE SENSITIVITIES OF THE VARIABLES (1V1*dFVAL/dV)

STEP # 1 IX]:
0.11518E-01 0.56106 0.21176E-01 0.61098 2.7006

1.2792
FVAL = 42.60838

STEP # 2 IX]:

STEP # 83 [X]:
-0.44502E-01 0.53734

1.0853

SENSITIVITY:
0.22240E-05 -0.51820E-04

- 0.17515E-05

STEP # 84 IX]: .
- 0.44502E-01 0.53734

0.55897E-01 0.56312 2.6484

FVAL = 7.269432

0.10471E-05 -0.79578E-04 -0.12386E-04

0.55897E-01 0.56312 2.6484

1.0853 FVAL = 7.269432

Page 95

X 01
-15004

A -30001
X -4500
I -6000
S -7500

-9000
D-10500
B-12000

-13500
-15000
- 16500
-18000
-19500
-21000
-22500
- 240001
-255002
-270001
-285003
-30000+ - - - - - - - -

E -3 21600 21886 22171 22457
- Si!, 2 - 512, 3 - S21, 4 -522

TYPE ANY CHARACTER TO CONTINUE. >
COMPONENT VALUES OF THE INPUT CIRCUIT:

ZO

4 A
1 X

4
1

2

3

22743 23029 23314 23600
E -3

LENGTH

INPUT TRANSFORMER
TUNING L
GATE LEAD
GATE BIAS
GATE CAP

DISCONT. CAP = 0.
BIAS RESISTOR =
SOURCE INDUCTOR =

26.00000
50.00000
100.0000
90.00000
39.00000

0000000E+00
50.00000
0.1000000E-02

0.1260000
0.1450000
0.1000000E-01
0.1250000
0.7500000E-01

END CAP = 0.4000000E-01
BIAS CAP = 0•5000000

COMPONENT VALUES OF THE OUTPUT CIRCUIT:
ZO LENGTH

DRAIN LEAD 100.0000 0.1000000E-01
DRAIN BIAS 90.00000 0.1250000
DRAIN CAP 39.00000 0.4000000E-01
T2 15.00000 0.1260000
OUT LINE 50.00000 0.0000000E+00

END CAP = 0.4000000E-01 DISCON. CAP = 0.3000000E-01
DISCON. CAP = 0.3000000E-01 BIAS BYPASS CAP = 0.5000000
BIAS BYPASS RESISTOR = 50.00000

[S] PARAMETERS IN MAGNITUDE AND PHASE

11 12 21 22
FREQ NAG ANG NAG ABC NAG ANG NAG ANC

21.600 0.7209 160.1 0.0542 98.3 1.1384 92.2 0.8742 156.6
22.600 0.3611 106.3 0.1289 34.2 2.4704 27.4 0.4469 135.8
23.600 0.6029 -135.2 0.0887 -64.0 1.5565 -71.6 0.7496 -163.5
TYPE ANY CHARACTER TO CONTINUE >
TR(1) = 7.014131 TR(3) = 0.1980460E-02 TR(11) = 0.2887337

FACT
0.00
0.00
0.00

TR(6) = 0.3124524E-02 TR(13) =
STATISTICS FOR THIS JOB:
ELAPSED TINE = 186.2891
CPU TIME = 76810 NB
DIRECT I/0 COUNTED =
TIME: 15:58:38

0.3171046 TR(10) = 1.177848

DATE: 16 -AUG -83

SEC.
BUFFER I/O COUNTED =
0 PAGE FAULTS COUNTED=

Fig. 11 Pesults of the optimization program using FARANT 2.v

Page 96

$1NNET
CIN=260.126,50,.145,100,.01,90,.125,39,.075,0,.04,50,0.5,.001
$END
SOUTNET
OUT=100,.01,90,.125,39 .04,.04,.03,.03,15,.126,50,0,.5,50
$END
$NE673A
TR=,0.42,0.2,1.55,,369,49,0.3,,,0.26,10.26,0,13.9,207,805,.079,0
$END

Fig. 12 Listing of FIT2AUG83.

Several points deserve the attention of the user:

1. The program is divided into three portions -- a) reading data

and finding out two-port descriptions for input and output

networks, b) the actual beginning of circuit analysis,

putting three networks -- input and output circuits and FET

model -- together and calculating of FVAL; and c) printing

tables and graphs.

2. The portion a) of the program is only executed once by using

the flag, IR. It also makes use of the VAX's special feature

-- the saving of local variables of a subroutine after

leaving the subroutine. Therefore, those parameters read

will stay and can be used on the second call of the

subroutine CKTANALYSIS.

(0 (13)
.e
> --- PO4),

-d i 71!

Pe

(t)

PO, f)(i) roo

\N

Page 97

K P(K)

26 Ohms
2 0.126 in

50 Ohms
0.145 in

5 100 Ohms
6 0.01 in
7 90 nhms
8 0.125 in
9 39 Ohms

10 0.075 in
11 0.0 pF
12 0.04 pF
13 50 Ohms
14 0•5 pF
15 1.

Fig. 13 The circuit diagram of the input network.

1 100 Ohms
2 0.01 in
3 90 Ohms
if 0.125 in

39 Ohms
6 0.04 in
7 0.04 pF
8 0.03 pi'
9 0.03 pF

10 15 Ohms
11 0.126 in
12 50 Ohms
13 0.0 in
14 0.5 pF
15 50 Ohms

Fig. 14 The cirèuit diagram of the 3utput network.

Page 98

1
2 0.42 pF

0.2 pF
5 1.55 Ohms
6
7 369 Ohms

49 mEh....,z,
0.3 psec

10
11
1 2 0.26 pF
1 3
14 0.26 pF

P(11) P(1)11)(3)1
< >

P(1Z)

P(4)p(7)
1 I

6 -tf

1) (10) P(13)'

PC 14

ROL__

P(6) gra=P(8)
=P (9)

* Elements to be optimized
Fig. 15 The Fet model used.

Page 99

3. The OPT flag is used for obtaining plotting and printing of

parameters are used in portion c) of the program.

4. DO statement in FORTRAN is used instead of FOR and NEXT

statements.

5. FARANT 1.0 took about 70 seconds to execute the program while

FARANT 2.0 takes about 60 seconds.

6. Both versions take about 85 steps to minimize the objective

function, and the objective function is minimized to a value

about 7.27.

Page 100

4.0 REFERENCES

1. Dan L. Fenstermacher, "A Computer-aided Analysis Routine

Including Optimization for Microwave Circuits and Their

Noise," EDIR No. 217, 1981

2. W. C. Davidon, "Optimally Conditioned Optimization

Algorithms without Line Searches,"Matb, ProgrAmmillg, Vol. 9

(1975), pp. 1-30.

3. "VAX-11 Fortran User's Guide," 1982, PP. 6-1 to 7-20.

4. "VAX/VMS I/O User's Guide (Volume 1)," 1982, pp. 9-1 to

9-43.

5. "VAX/VMS System Service Reference Manual," 1982, pp. 6-1 to

5-14, pp. 167-172, pp. 124-132.

6. "VAX-11 Fortran User's Guide," 1982, pp. 1-19 to 1-22.

7. "VAX-11 Fortran Language Reference Manual," 1982, pp. C-1 to

C-34

8. "VAX/VMS Guide to Using Command Procedures," 1982, pp.3-1 to

3-20, pp. 4-1 to 4-10, pp. 6-1 to 6-10, pp. 7-1 to 7-10,

pp. 8-1 to 8-7.

Page 101

9. "VAX-11 Fortran Language Reference Manual," 1982, pp. 9-1 to

9-16.

10. "VAX-11 Fortran Language Reference Manual," 1982, pp. 7-18

to 7-22.

ACKNOWLEDgMENTS

The author would like to thank Dr. Sandar Weinreb, Dr.

John Granlund and Dr. L. R. D'Addario of Electronics Division

in Charlottesville for their guidance, direction and

encouragement in translating and changing FARANT. He also wishes

to express his appreciation to Mr. Fred Schwab for providing

frequent consultation in using the VAX.

