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I. USER ' S MANUAL FOR FARANT 

1.1 Introduction 

The Program FARANT is a steady-state a -c microwave circuit analysis routine

that was developed to provide flexible approaches to designers' analysis

problems. It can be described as a "coo perative" set of subroutines that the

user controls and exploits , as opposed to an interactive program that asks the

a run. In this sense FARANT is passive and vulnerableuser for information during

o the user's manipulations.

organization of FARANT lets the user control his analysis by calling

subroutines from within a designated area of the program. That area is itself

a subroutine called "SUB Cktanalysis" and is placed at the end of FARANT for

convenience. Almost all of the user's commands consist of statements he places

within that subroutine, with exceptions noted in the individual command

descriptions. Since any BASIC statements are allowed there, individual analysis

approaches can be tailored to the user's requirements, and he can even add other

subroutines to FARANT if he so desires.

This manual is intended to be a guide to using FARANT on the HP 9845A with

special sections being devoted to usage on the VAX. The two versions of FARANT

are logically identical but there are several differences in the specific details

of their usage. For instance, BASIC syntax varies slightly between the two

machines, file manipulations are quite different on the VAX, and the VAX is

accessed through a terminal (an Apple computer being one possibility) whereas

the HP 9845A is a stand-alone machine. This last difference is the reason that

graphics, for example, are not yet available from the VAX version of the program,

as they are on the HP 9845A.



all of which are equivalent. FARANT's subroutines use the variable "Nset"

1 . 2 Conventions and Definitions 

Since FARANT is controlled by Pass ing information to and from its sub-

routines, certain conventions are established to standardize the notation and

information-sharing mechanisms. The units used throughout the program for

subroutine arguments and Printouts are:

Ohms

Milli-Mhos (10-3)

Nano-Henries (10-9)

Pico-Farads (10-12)

Pico-Seconds (10-12)

Giga -Hertz (109)

Inches

Degrees (of arc)

Degrees Kelvin (temperature

Two-port parameters, which are used to describe the behavior of two-

terminal-pair circuits at a given frequency, are designated in five different

sets or representations. As shown in the following, a number is used to identify

each equivalent set of parameters [1]:

[A] = 1 (ABCD matrix)

[Z] = 2 (Impedance matrix)

•[Y] = 3 (Admittance matrix)

[S] = 4 (Scattering matrix)

[T] = 5 (Transmission matrix)

The variable "Pset" is used in several subroutines to specify a certain type of

network parameter set and takes on values from 1 to 5.

Similarly, the 4 real numbers which are needed to describe the behavior of

the random noise generators within a two-port can be designated in many ways,



specify a specific noise parameter set accordin g to the following:

The definitions of these parameter sets

of this document.

The statement which runs FARANT is the "CALL" statement which transfers

control to a specific subroutine for specific operations to be performed. It

has the form:

CALL element or function (list of Parameters)

The elements are two-port circuits such as R-L-C circuits, transmission lines,

controlled sources, etc. Functions do such things as to connect the elements,

calculate their properties, print parameters for an overall circuit, and so forth.

The parameter list can consist of values, strings, variables,

expressions of either sign. When variables are used, they need not have the

same names that the subroutines use, but they must correspond in number and

type to each parameter in the list. The following definitions apply to the

parameters in the CALL statement:

two-port description: an array of dimension (6 X 4) that when passed

to and from subroutines is denoted by a "two-port identifier, a



letter A - H followed by (*), e.g., D(*). When fully loaded it

contains two-port parameters in rows 1 - 4 (see section IV.3),

their label--"Pset"--in element (5,1), noise parameters in row 6,

and their label--"Nset"--in element (5,2). (Elements (5,3) and

(5,4) are never used.)

input parameters: those variables in a subroutine's parameter list which

carry values to a subroutine. They can be previously-assigned variables

(whose values will not be changed by the subroutine), constants, or

numeric expressions.*

output parameters: those variables in a subroutine's parameter list which

receive values from a subroutine. They must be actual variables if

they are to receive their new values. (Constants or expressions cannot

be assigned new values; their use causes the new values to be lost.)

Thus, if a parameter is used for input and output it must be a variable,

not a constant or expression.

Note that when a two-port identifier is used as input to a subroutine,

its set of two-port or noise parameters may be changed, but they will

still describe the same circuit.
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1.3 User Commands 

1.3.1 Frequency Specification 

The user must specify the frequencies for analysis before calling the

subroutines of FARANT. This can be done in a variety of ways using BASIC

statements, but all must assign values (in GHz) to the variable F which is

reserved for frequency. For instance,

F= 5

would specify 5 GHz as the only analysis frequency,

FOR F = 1 to 2 STEP .1

NEXT F

would set up a loop for analysis over a range of frequencies. Within a

frequency loop such as this, the overall circuit can be built up, analyzed in

various ways, and stored for later use at each frequency.

1.3.2 Two-Port Elements

R-L-C 2-Ports: 

CALL R1c(X(*),Type$,R,L,C,Place$,Tamb)

X(*) is a two-port identifier used for output and names the two-port which

is created; a letter A through H followed by (*). All other parameters

are used for input only.

Type$ and Place$ refer to the type of R-L-C (series or parallel) placed in

series or parallel in the two-port. Thus, both parameters require

either "S" or "P", and the quotes are necessary.



ITU in "S"

_9_

R,L,C are the values of resistance, inductance and capacitance in units

of ohms, nano-Henries and pico-Farads. Positive or negative values

are allowed, but a value of zero denotes the lack of that element in

the two-port (which is sometimes equivalent to its having zero value

and sometimes infinite.)

Tamb is the physical temperature in degrees Kelvin which determines the

thermal noise properties of the two-port. It should be positive if

R 0 and noise analysis is desired. It should be 0 for all other cases.

A "S"eries R-L-C placed in "S"eries
---J

VVVV gawp

"S" in "P" "P" in "P"

Lossless Transmission Lines (TEM): 

CALL Trline(X(*),Zg,Length,K)

X(*) is the two-port identifier for output; other parameters for input.

Zg is the (real) characteristic impedance of the lossless line



g , Length, K_
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Length is the physical dimension in inches.

K is the relative dielectric constant,  ep for permeable dielectrics.
6 p0 0

Lossy Transmission Lines (TEM): 

CALL Lossyline(X(*),Zg,Length,K,Cattn,Dattn,Fo,Tamb)

The first four parameters are as in the lossless case above.

Cattn is the attenuation in dB/inch that the line would have with only

conductor losses.

Dattn is the same, but for the dielectric losses only.

Fo is the frequency at which Cattn and Dattn were determined, usually

different from the current analysis frequency.

Tamb is the physical temperature used to determine the thermal noise. It

should be positive if noise analysis is desired, otherwise zero.

Ideal Transformers: 

CALL Tf(X(*),Turnsl,Turns2)

X(*) is the two-port identifier for output.

Turnsl 
Turns2 is the actual turns ratio and can be negative to reverse the

polarity of port 2's current and voltage. The two numbers are

used as input. Shown is the positive sense of I and V for a

positive turns ratio:

-I- I
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Controlled Sources: 

CALL Source(X(*),Control$,Source$,Gain,R1,R2,Delay)

X(*) is the two-port identifier for output. All other parameters are

for input.

Control$ is either "C" or "V" for a current- or voltage-controlled

source.

Source$ is also "C" or "V" for the source itself.

Gain is either p, a, rm , gm where the trans-conductance gm is given in

mMhos. The convention is to have positive current into port 2 when

shorted, but the Gain can, of course, be negative.

R1,R2 are the resistances at ports 1 and 2 and can be in the range 0 to

010 1 or so, and all values, including zeroes, are interpreted numerically.

Delay is the time lag between the control and the source, in pSec.

Measured Two-Port or Noise Parameters: 

CALL Pread(X(*))

X(*) is a two-port identifier used strictly for output. Upon exit from

SUB Pread, X(*) is loaded with the type of two-port parameters given

by the data and has no noise representation.
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In addition to the CALL, the user must store his measured data in the last

lines of SUB Pread(X(*)) in DATA statements. The necessary values are:

Pset (1 to 5), "MPH" or "RI", Number of Frequencies

F1. and 8 values at that frequency, for each frequency.

Pset must correspond to the type of data that the user inputs and is not changed

by the subroutine. "MPH" tells Pread to interpret each set of 8 values as

magnitudes and phases (in degrees) for each parameter 11, 12, 21, 22; otherwise

the 8 numbers are interpreted as real and imaginary parts of the 4 parameters.

There is no limit to the number of frequencies, but only those frequencies which

are stored can be used in subsequent analyses calling Pread, or else FARANT will

terminate execution. The requirements for data are listed in a comment statement

in SUB Pread just before the lines reserved for the data, so they can be viewed

from the keyboard. The frequencies must be distinct, but need not be in order.

CALL Nread(X(*))

X(*) is a two-port identifier which is used for output. Although the two-

port parameters in X(*) are not used by Nread, they should be defined

before Nread is called since certain noise parameter transformations

that FARANT performs require the two-port parameters.

As in Pread the user must store his noise data in the last lines of this

subroutine in DATA statements. The requirements are shown in a comment statement

there and consist of:

Nset (1 to 8), Number of Frequencies

F. and 4 values at that frequency, for each frequency.

The 4 noise parameters for each of the 8 sets are given among the conventions

in section 1.2.
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The frequencies need not be in order but must be unique. If the user calls

Nread at a frequency for which there are no parameters, they are taken as zero

and a warning is printed. Otherwise X(*) is loaded with the noise parameters

in the given parameter set for the current analysis frequency.

CALL Nload(X(*) ,Nset,N1 or Tamb,N2,N3,N4)

X(*) is the two-port identifier used for output and should contain two-

port parameters when Nload is called.

Nset is input as 0 to 8 where a zero value causes Nload to calculate and

assign thermal noise to X(*) (which in that case must be a passive

two-port), and values 1 - 8 to designate the type of noise parameters

that follow.

Ni to N4 are input as a set of 4 noise parameters at the current analysis

frequency to be assigned to X(*). If Nset = 0, then N1 is interpreted

as a physical temperature and N2 to N4 have no effect.

This CALL functions similarly to a CALL of Nread except that here the data is

passed directly to the subroutine instead of being stored in DATA statements.

Since Ni to N4 are only used for input, they can be expressions and, for example,

could serve to describe the non-thermal noise of an active two-port as a function

of frequency.

1.3.3 Exchanging_ Ports and Creating Branch Elements 

CALL Flip (X(*))

X(*) is a two-port identifier used for input and output, and after the CALL

describes the same circuit as on input, including the noise, but with

ports 1 and 2 reversed.
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CALL Branch(X(*),Type0

X(*) is a two-port identifier used for input and output. On output it

describes the branch-element two-port created from port 1 of the

input circuit and its noise, with port 2 left open.

Type$ is input as "S" or "P" to indicate a series or parallel branch as

shown in the following:

"S"eries Branch "P"arallel Branch

1.3.4 Cascadin Parallelin and Puttin 2-Ports in Series

CALL Cas(X(*),A(*))

CALL Par(X(*),A(*))

CALL Ser(X(*),A(*))

X(*) and A(*) are two-port identifiers used for input, X(*) being used for

output as well. The two circuits are connected as shown below and X(*)

gets both the two-port and noise parameters of the composite two-port.

(A(*) can be the same identifier as X(*), in which case a duplicate of

X(*) is connected to itself.)

Zi

Ser
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1.3.5 Transforming 2-Port and Noise Parameter Sets

CALL Mtrans(X(*),Pset)

CALL Ntrans(X(*),Nset)

X(*) is a two-port identifier used for input and output. SUB Mtrans will

change its two-port parameters into the Pset type, leaving any noise

representation alone. Calling Ntrans changes the noise parameters

into the Nset type and may also change the two-port parameter set

(if the noise parameters change to or from the 2 or 3 set).

Pset is input as 1 to 5 according to the 2-port parameter conventions

described in section 1.2.

Nset is input as 1 to 8 according to the noise conventions.

For the cases in which the two-port parameters are undefined and thus cannot

be obtained, Mtrans quietly sets the variable Nogo = 1 and leaves X(*) with some

other parameter set, not the one requested by Pset.

1.3.6 Saving Circuit Parameters 

CALL Saveckt(X(*),Pset,Nset,Kfact)

X(*) is a two-port identifier used for input describing the circuit to be

saved in the "data-base." (See section 11.3.)

Pset is input as 1 to 5 to name the desired type of two-port parameters to

be stored.

Nset is similarly input as 0 to 8, where a zero ignores any noise parameters

in X(*) and stores zeroes instead. Using zero therefore saves analysis

time.

Kfact is used for input and optionally for output as well. If its value

is negative, no K-factor is calculated and a zero is stored; otherwise
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the K-factor is calculated and stored in the data base. If Kfact

is a non-negative valued variable rather than a constant, it receives

the K-factor in addition to its being stored. This allows the user

the option of using K directly from Saveckt, instead of having to

get it from the data-base, and gives him full precision (12 digits)

instead of the data-base's 6 digits.

Note that it is most accurate and efficient if Pset and Nset name the types of

parameters asked for in later printouts because the data-base is kept only to

6 digits, but this is not required. However, in order to maintain consistent

parameters in the data-base, Pset and Nset must be the same each time Saveckt is

called, for any given run of FARANT. Saveckt also increments the variable

Count -- the number of frequencies currently stored in the data-base to keep

track of where the next storage position should be.

1.3.7 Noise Temperature and Gain Analysis 

CALL Nperformance(X(*),Gtype,Rs,Xs,R1,X1,Gain,Tn)

X(*) is a two-port identifier used for input and names the circuit to

be analyzed for gain and noise temperature. It should be the circuit

which was used in calling Saveckt.

Gtype is input as 0 to 4 to specify the type of gain to be calculated. Zero

omits any gain calculation, whereas 1 to 4 request transducer, power,

available, and maximum available gain calculations respectively.

Rs,Xs are input as the real and imaginary parts of the source impedance

driving the two-port.

R1,X1 are input as the real and imaginary parts of the load impedance

driven by the two-port.



Gain is used for output and receives the gain in dB provided Gtype = 1 to 4.

Tn is used for both input and output. It receives the noise temperature of

the two-port driven from Rs + jXs provided Rs > 0, the two-port had

noise parameters, and Tn was non-negative on input. A negative Tn

on input thus suppresses the noise temperature calculation and saves

time.

Nperformance should only be called subsequent to a CALL of Saveckt, and should

use the same two-port X(*). It stores the source impedance in the data-base,

as well as the gain and noise temperature if these were requested. The gain-type

must be the same on each call of Nperformance, and will be the type produced in

later printouts.

1.3.8 Reflections and Impedance Calculations 

CALL Gammaz(Option,U,V,R,X)

Option is input as -2 to 2 to specify the following conversions:

-2 Z to Gamma (rectangular)

-1 Z to Gamma (polar)

0 Nothing

1 Gamma (polar) to Z

2 Gamma (rectangular) to Z

U,V are for input or output of the reflection coefficient gamma, i.e.,

U + jV (rectangular) or U exp(jffV/180) (polar), according to the

value of Option.

R,X are for input or output of the impedance in rectangular form, i.e.,

Z = R + jX, according to the value of Option.
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In making the Gamma ±-± Z conversion, the current Zo is used, e.g., 50 ohms.

All real values of the 4 parameters are allowed including reflection coefficients

whose magnitudes are greater than 1 and negative resistances.

CALL Zio(X(*),Rs,Xs,R1,X1,Rin,Xin,Rout,Xout)

X(*) is a two-port identifier used for input.

Rs,Xs,R1,X1 are input as the real and imaginary parts of the source and

load impedances attached to the two-port.

Rin,Xin,Rout,Xout are for output and receive the real and imaginary parts

of the input and output impedances as shown:

1.3.9 Printing Circuit Parameters 

CALL Prt(Pset,Nset)

Pset is input as 4-1 to +5 to produce a printout in Pset parameters of all

the two-ports previously saved in the data-base by Saveckt. The data-

base is also transformed if necessary into Pset parameters. Values of

-1 to -5 suppress printing and simply transform the data-base. A

zero suppresses both the printing and transforming of any two-port

parameters.

Nset is similarly input as +1 to +S to specify a noise parameter set for

printing and transforming the data-base, or -1 to -8 to perform the

transformation without the printing. A value of zero suppresses both.
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This CALL allows the user to print either or both of 2 sets of network

descriptions. For positive Pset values, the printout is:

Frequency X11 X12 X21 X22 K-factor

where "X.." stands for some two-port parameter, e.g., S 21 ,
 
and is printed in

polar form. Positive values of Nset produce a printout as follows:

Frequency Gain T
n
	4 Noise Parameters Rs 	Xs

All of the two-port and noise parameters that were saved by calling Saveckt will

be printed here; the frequencies need not be unique or ordered, nor must each

set of parameters (i.e., line of printout) describe the same circuit. The K-factor,

gain, noise temperature, and noise parameters, of course, must have been properly

requested earlier in order that non-zero values be printed here.

The feature of being able to re-store network data without printing it is

useful when making plots from the data-base. (See sections 11.3 and 11.4.) Note

that time is saved and precision preserved, however, by requesting the same Pset

and Nset parameters that were saved by the call of Saveckt.

1.3.10 Plotting on a Smith Chart 

CALL Smith(Xmin,Xmax,Ymin,Ymax)

Xmin...Ymax are input as the left and right-hand, bottom and top coordinates

respectively of the extremes of the Smith chart desired.

This CALL produces a Smith chart of any size or any portion thereof. The largest

full chart, for example, is obtained using parameters -1, 1, -1, 1, but any part

of the chart can be expanded (to the full size of the plotter) by giving

coordinates with magnitudes less than 1. Magnitudes greater than 1 produce a

large plotting area, and thus a smaller Smith chart. Previous graphics are not
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erased by this CALL; the plotting area is only scaled to the given specifications

and overlaid with a Smith chart. Note that the scaling is always done so as to

maintain a circular chart no matter how "oblong" the dimensioning parameters are.

CALL Splot(I,J)

I,J are input as 1 or 2 to indicate the subscripts of the S-parameter to

be plotted.

This CALL assumes that one circuit was analyzed at many frequencies when calling

Saveckt. Splot produces a plot of that circuit's specified S-parameter over

the frequency range stored and puts tic marks at those frequencies. Note that

in doing so it first transforms the data-base's two-port parameters into the

[S] parameters by calling Prt(-4,0).

1.3.11 Optimization 

CALL Optimize(N,X(*))

N is input as the number of variables on which to operate when minimizing

the user's objective function. This will be explained below.

X(*) is used for input and output and is not a two-port identifier. It is

a one-dimensional vector which on input contains initial guesses for

the N variables, and on output contains the values of those variables

which the optimization subroutine found to minimize the objective

function.

This CALL exists in only one place, i.e., in the subroutine immediately preceding

Cktanalysis called Farstart. (See section IV.1 for a flaw diagram of FARANT's

CALLing sequences, including the CALL of Optimize.) In turn, SUB Optimize calls

only one other subroutine namely Cktanalysis:

SUB Cktanalysis(X(*),Fvalue,Opt)

X(*) is used for input to Cktanalysis and is the same vector of variables

that is used by the Optimize subroutine. These variables determine

the objective function.
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Fvalue is an output of Cktanalysis set by the user's program statements

to the value of the objective function given the values of the variables

in X(*).

Opt is input to Cktanalysis as a flag having a value of either 0 or 1.

When equal to 1, Cktanalysis is being called only to provide the calling

subroutine -- SUB Optimize -- with a value of the objective function.

A value of 0 means that Cktanalysis is being called with either the

initial or final X(*) values and should therefore produce the output

that the user desires.

The Objective Function: 

FARANT's optimization capability is set up to minimize the value of a

function of several variables, i.e., X(1), X(2)...X(N). The user uses these

variables in any way he desires to define his function, and assigns the function's

value to the variable Fvalue in SUB Cktanalysis. The variables are typically

circuit-element values such as resistances, inductances, capacitances, transmission

line lengths, transconductances, and so forth -- values of parameters passed to

FARANT's subroutines. For example, CALL R1c(B(*),"S",X(1),0,X(4),"P",0) uses

X(1) and X(4) to define a R-L-C element. But there is no restriction on the

variables except that they have a differentiable effect on the objective function.

The objective function is some net measure of performance that the user wants

to optimize numerically by making it as small as possible. It should be set up

to have a minimum greater than or equal to zero, so a sum of squared terms is a

typical choice. It can use any of the analysis results of FARANT, e.g., gain,

noise temperature, 15 11 1
2
, Kfactor, etc. and/or any user-derived results. It

can be a combination of performance criteria at several frequencies in a given
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band. In other words, the user can tailor the objective function to any form

he likes, and SUB Optimize will find a minimum of that function. The short-

comings of this method are:

1) extensive computation time (proportional to the number of frequencies

used in determining Fvalue, and to the number of variables).

2) the possibility of finding a local rather than a global minimum.

By exercising discretion in building up the objective function, and using care

when picking an initial guess, the extent of these shortcomings can be minimized.

Initial Guesses: 

In order for the optimization to begin, initial values of each variable

must be assigned by the user to X(*). To do this, one must put the number of

variables and their initial values in the data statement on line 6030 of SUB

Farstart. This line is clearly marked with a comment statement to this effect.

Zeroes must not be used, but the variables can be in any units, be positive or

negative, and be of any relative size. The optimization performs best, however,

when the initial guesses are not too different in magnitude from the values that

will indeed produce a minimum, so some care is required to produce reasonable

initial guesses.

Getting Under Way: 

SUB Farstart is set up to structure the flow of optimization automatically.

Its default is simply to call Cktanalysis (with the Opt flag set to zero) for

normal (non-optimizing) analysis procedures. To run optimization, the user needs

only to change the comment: ! CALL Optimize(N,X(*)) in line 6040 into an

executable statement by deleting the exclamation point. The flow of control of

FARANT then procedes as follows:

CALL Cktanalysis(X(*),0,0) for initial-guess analysis
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CALL Optimize(N,X(*)) to find the best values of X(*)

CALL Cktanalysis(X(*),0,0) this time called from SUB Optimize

(with its best values) for final

analysis

Using the "Opt" Flag: 

The last parameter passed to SUB Cktanalysis is the Opt flag, having a

value 0 or 1. When FARANT is run using the optimizing capability, Cktanalysis

is called for two different reasons, corresponding to the values of Opt. When

Opt = 1, SUB Optimize is requesting a value of the objective function and the

user should have Cktanalysis set up to perform the minimal number of calculations

needed to define that function and put its value in the variable Fvalue. When

Opt = 0, Cktanalysis is being called with either the initial values in X(*) or

the final values. In this case, Cktanalysis can be set up to do more extensive

procedures such as making plots, printing parameters, etc. One can make the

distinction by using conditional statements with the Opt variable as a true/false

antecedent, for example:

IF Opt THEN SUBEXIT
or

IF Opt = 0 THEN CALL Prt(...

By appropriate use of the Opt flag, one can get a fancy pre- and post-optimized

output without slowing the intervening optimization process with unnecessary

computation.

Output: 

During the optimization procedure the values of the variables in X(*)

are continuously changing, and the function value is decreasing. At each

improved function value, SUB Optimize produces a listing of the updated X(*)

values, the corresponding function value, and the sensitivity of the function
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to separate changes in each variable. These sensitivities are in units (function

change) per (factor-of--e change in a given variable); specifically

"sensitivity" = . 1 dF 
dxi

and each sensitivity should go to zero as the optimization process settles on

a minimum. At completion, the optimization subroutine will print a summary of

initial and final variables and their function values. It then calls Cktanalysis,

passing it the last X(*), and uses an Opt flag of zero to allow Cktanalysis to

produce its final output.

1.4 Summar FARANT's Subroutines and Their Parameters in Pro ram Order

SUB Mtrans(X(*),Pset)

SUB Ntrans(X(*),Nset)

SUB R1c(X(*),Type$,R,L,C,Place$,Tamb)

SUB Source(X(*),Control$,Source$,Gain,R1,R2,Delay)

SUB Trline(X(*),Zg,Length,K)

SUB Tf(X(*),Turnsl,Turns2)

SUB Lossyline(X(*),Zgo,Length,K,Cattn,Dattn,Fo,Tamb)

SUB Flip(X(*))

SUB Branch(X(*),Type$)

SUB Nload(X(*),Nset,N1,N2,N3,N4)

SUB Polar(X,Y)

SUB Cas(X(*),A(*))

SUB Par(X(*(,A(*))

SUB Ser(X(*),A(*))

SUB Saveckt(X(*),Pset,Nset,Kfact)

SUB Nperformance(X(*),Gtype,Rs,Xs,R1,X1,Gain,Tn)
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SUB Prt(Pset,Nset)

SUB Smith(Xmin,Xmax,Ymin,Ymax)

SUB Splot(I,J)

SUB Gammaz(Option,U,V,R,X)

SUB Zio(X(*),Rs,Xs,R1,X1,Rin,Xin,Rout,Xout)

SUB Optimize(N,X(*))

SUB Nread(X(*))

SUB Pread(X(*))

SUB Farstart (no passed parameters)

SUB Cktanalysis(X(*),Fvalue,°pt)

1.5 Example Using Optimization 

On the following pages is shown a sample listing and output from a

demonstration run of FARANT that uses the optimization capability. The listing

starting at line 6000 shows the user's portion of FARANT -- the initial guesses

in line 6030, the CALL of Optimize in 6040, and the entire circuit description

in lines 6145-6210. The purpose of this particular run was to optimize a

combination of performancecriteria at 1.6 GHz. The gain and input return loss

were to be maximized, the noise temperature was to be minimized and the K-factor

was to be greater than unity. For this purpose a function was constructed

consisting of a sum of four positive terms, one for each of the performance

criteria, whose values were close to 1 at a desirable level of performance:

Fvalue - 
25 

, + 1015 1
2 A.

10(1-10

15211-
11 50 e

Four circuit elements were allowed to vary in order to minimize this function,

but their variation was constrained in the following way:
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Variable Constraint Initial Value aCa.s IJAIL_Ey_A1_c_t_12]I Initial X(i)

Lin + any value 15 nH Lin = X(1) 15

Lfb 	.2 < Lfb < 2 .466 nH Lfb = 100
arctan(X(2))

1.1 -2-I- 

R

out Rout > 10 30 ohms Rout = 10 + ?() 3

Lout Lout > ° 25 nH Lout = X(4)
2 	5

The final two-port circuit identified by A(*) in line 6215 looks like the

following:

In the printout the following items can be observed:

1) The Opt flag was used to obtain a listing of parameters at several

frequencies while calculating Fvalue only at 1.6 GHz.

2) Each of the 4 performance criteria actually did improve with optimization

but did so by very different amounts.

3) The sensitivities went smoothly to zero as the optimization came to its

completion. This signifies ample precision in the calculation of Fvalue.

4) Approximately 30 gradient steps were taken. To obtain 4 sensitivities

and 1 function evaluation perEtep this required about 150 calls of Cktanalysis

during optimization. Total time for this run on the HP 9845 was about 10 minutes.
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!#FREOS CURRENTLY STORED IN DATA BASE

FOR TRIG FbNtT1ONS-I5 'DEGREES
FOLLOWING:LINES

sUB,Fastart
üFTION BASE 1
DIM X(20)
READ
REDIM X(N)
READ Xe.*)
DATa 4, 15, -2, 3
CALL Cktanalysis(
CALL Optimize(N,X
SULEND
SUE Cktanalsi
OPTION EASE 1
COM Nc,g0,20,F,
DIM A(6,4),B(6,4),C
FIXED 3
CourtNogo0
Zo=50
EEG !DEFAULT
REM USER'S PROGRAM SHOULD BEGIN IN THE

C c u nt SHORT rat(5 1:=.4) !EDAT3 HOLDS CKT AND NOPEE

0)

!FOR INITIAL GU:ES5ES•.....0:LY WHEN ..6RTIMIZI1G
.!PULN, IUITIHL GUESSÉS HERE OSE NO ZEROS':

! FOR PRE-OPTIMIZED ANALYSISL . . HE DE...FAULT
! USE THIS . ' STATEMENT TO 11 .0 ORTIMIZATION

!IISER*c CONTROL 2.F FARANT BEG NS HERE ###;--#414

!IF N)10, MUST DIM E.--A LARGER
!# OF PARAMETERS TO CPTIMI2E

!########if

LOADALL

14E- " I
;
 E M:=1
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LIST

60.:15

60:0

EC,0
607:5

45C145
.11 17.`:

60'745

6070
6075
6080

60i;0
tU 5
E 1 00

6105

6110

6115

6120

t 25
6130

6140
6145
t150
6155
6160
6165
6170
6175
61L:0
61S5
6190

i7.7. 200
.77. Z05

.71
.
 I a

r.

177-7:1 5

5

7: :5

6,?10

r

a

F=1.4 TO 1.8 STEP .1
R1c.4'.Ar*),"S',1,Lin,0,"S",300)
R1c(B(*),"S",0,1,"P")
Source(C(*),"ws,"C",40,1E7,500,0)
R1c(D“-),"S",0,0,.5,"P",0)
R1c(E(*)4"S",.0,0,.06,"8",0)

"S",0,Lfb,0,"P",0)
R1c(G(*),"S",Rcut,Lout,0,"P",300)
Par(C(*),E<*))
Cas(B(*),C(*:4)
Cas(B(*),D(*))
N1oad(B<*)„4,50,70,20A/F,3)
Set-(B(*),F(*))
Cas(A(*:4,B(,-))
Cas(A4'*:4„G(t)

HpErforrtlanc“Fik,-),1,50,0,
MTrans. ),4',

•

TERMS OF

! ANALYZE BAND OF FREOUENCIES
!INPUT INDUCTOR (LOSSY)
! GATE CAPACITANCE
! VOLTAGE CONTROLLED CURRENT SOURCE
! DRAIN CAPACITANCE
!INTERNAL FEEDBACK CAPACITANCE
! SOURCE-LEAD (FEEDBACK) INDUCTANCE
! OUTPUT TUNING INDUCTANCE

! Tmin, Popt Xopt Gn FOR THE FET

FOR
CALL
CALL
CALL
CALL
CALL
CHLL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

G=25/(A(3,1)."-2+A(3 )--2)
N=Tn/50
M=10*(A(1,1)%2+9(1,2) )
S=EP(10*(1-K))
F4)alue-.-G+N+M+S
IF Opt THEN SUEEXIT

IF F>1.6 THEN 62S5
PRINT LIH(1);"MEASUPES
PRINT "F y aluri =":FyaluE.

NEYT F

•

Lin=X(1) ! DEFINING THE 4 CKT ELEMENTS
Li‘b=ATN(X(2))/100+1.1 ! X(1) . . X(4)
Rout=10+EXP(X(70)
Lout=X(4)/-2
F=1.6

IF Opt THEN 6145
PRINT "Lin = ";Lin."Lfb = ":Lfb,"Rout =";Rout,"Lout =";Lout

!SAVE [S] AND T HE 4t4 NOISE REP.
cin,c,Gt,Tn) ! TRIziNSDUCER -GAIN, AND NO TEMP

!GET [SJ FOR THE CKT'S 111L16211

! MINIMIZE: 25/13211.A.2
! MINIMIZE: Tn/50
! MINIMIZE: 10:. ,111."-2
! MINIMIZE: EXPE10*(1-K)]

!ADD CONTRIBUTIONS TO THE ERROR FUNCTION
!FOR OPTIMIZATION, WE NEED ONLY DEFINE F.4,-,a1..1.1

GA114, .140JSE, MATCH, . 6):":G;N:

!PRINT-ES3 ANL 4 4 ' 4Ui 3E :APFI-NETE7'S
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Lib --- .466 ol.4t. 2 t.
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J NITIAL VALUES OF VARIABLES ARE:
.15.0000 -2.0000 3.0000 5.0000

INITIAL FUNCTION VALUE 24.4072

SEW3IT IVITIES: 16.6072 2015 -32.1314 65.0214

IiESE FiRE INITIAL RELATIVE SENSITIVITIES OF THE 'LES ( V *dF fdV)

1 1 4.9115 3.8561 3.9606 1VZ

SENITIvITIES: 15.2553 -.1063 1.9734
::...:TEP# 2 1,D.6217 3.4015 4.4699 7

14.7499 .0405 .4571 -.2384
ST c F ,t4 8.6001 1. 1531 2.8281 4.6855

SLI-1.31TIVITIE5:-1.4312 . 5492 -.6149
STEE# 4 EX]: 9.3126 . 9154 3.0 7 121 4. 4125. ,

SE ITIVITIES: .5471 .'1:.':0716 01
r.; : . . F.
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II. DETAILED USER. INSTRUCTIONS

11.1 The Reference Z
0
 for S-Parameters

The reference or normalization impedance for all S-parameters is assigned

in Cktanalysis a value of 50 ohms when FARANT is run. The user can change this,

however, by re-assigning the variable Z o or by editing line 6090 of Cktanalysis.

The use of transformers also comes in handy for changing the reference of a set

of S-parameters measured in other than a 50-ohm system. For instance, after

S-parameters are read into a matrix by the subroutine Pread, they can be changed

to another reference impedance by sandwiching the 2-port between ideal transformers.

The impedance ratio--the square of the turns ratio--must transform the relative

impedance from Zref of the initial parameters (next to the device) to Zo of the

new parameters at the outside ports. Transformers can arbitrarily normalize the

input and output to any line impedance that is desired.

Perhaps a simpler way of changing the Z ref , however, is to use the subroutine

Mtrans to change from [5] parameters to either [A], [Y] or [Z], with Z o temporarily

set equal to Zref of the initial device parameters. The variable Z o is used by

Mtrans as a common storage location for the normalization impedance. Thus, the

statements CALL Pread(A(*)), Zo = 73, CALL Mtrans(A(*),2), Z o = 50 would change

the 73 ohm S-parameters in A.(*) to [Z] parameters and maintain a consistent 50

ohm system.

11.2 Creating Storage Space for More Elements 

In line 6075, Cktanalysis sets up storage matrices of dimension (6 X 4) for

8 elements named A through H. There is nothing special about the number 8 or

those particular letters, and the user should feel free to add to the list or
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change the names according to his desires. Each dimensioned matrix takes about

200 bytes of memory, whether or not it is used in later statements. Two-port

identifiers used in Cktanalysis must, of course, use the same names as these

matrices.

The data-base matrix Dat(51,18) is not so flexible, however. The structure

and size of the data-base is taken for granted by many of FARANT's subroutines

and should not be changed unless a thorough editing of FARANT accompanies that

change. Thus, the user can expect trouble if he tampers with the data-base.

11.3 Using. the Data-Base 

Although its structure should not be changed, the data-base can be used

freely for plotting, making tables, and obtaining circuit parameters. The first

50 rows of Dat(51,18) all contain the items shown below. Three labels are kept

in row 51 to describe the parameters in the first 50 rows. These labels

are: Pset in element (51,1), Nset in element (51,2), and Gtype in element (51,3).

As discussed in section 1.3.9, the Prt subroutine can transform the data-base's

two-port or noise parameter sets, but at any one time the entire data-base must

be described by these labels. The 18 items stored in each row are the following:

1 2,3 4,5 6,7 8,9 10 - 13 14 15 16 17,18
X11 X12 X21 X22 4 Noise it's Tn G K Rs ,Xs

Each time Saveckt is called to store circuit parameters in the data-base,

the variable Count is incremented by 1. This variable is held in COMmon storage

(as is the data-base and some other variables -- see section 1V.2) and designates

the number of rows of the data-base that have been assigned by calling Saveckt.

Thus, when making his own plots or tables, Count tells the user the number of

items he has to work with.
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One point that is worth emphasizing is that the data-base on the 9845 is

stored using short precision which keeps about 6 digits of accuracy. This is

sufficient for graphs and listings of circuit data but not precise enough for

optimization purposes. When optimizing, one should take data directly from the

two-port matrices or from the subroutine pass-parameters, e.g., for gain, noise

temperature, and K.

It must also be noted that while the units for input to the subroutines and

printouts are given in section 1.2, the data-base and the two-port matrices use

a slightly different set of units which can be summarized as follows:

Internal Calculations and Storage Input/Printout 

Mhos Milli-Mhos

Correlations (of Noise Sources) Correlation Coefficients

Rectangular Coordinates Polar Coordinates

All other units are those given in section 1.2.

11.4 Alternate Plotting and Analysis 

Since the user can put any BASIC statements he likes into SUB Cktanalysis,

there is ample freedom to generate special graphs or perform alternate kinds of

analyses. On the 9845 the following will plot the reactive part of Z 22 from a

circuit that was stored using Saveckt over a range of frequencies between 1 and

2 GHz:

CALL Prt(-2,0) - to transform the data-base to [Z]

GRAPHICS - to display the plotting on the CRT

GCLEAR - to erase previous graphs
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LORG 5 - to center the labels

LINE TYPE 1 - to plot in solid lines

SCALE 1,2,-300,300 - 1 to 2 GHz, j300 ohms

AXES .1,50,1,0,5,2 - axes with tic marks

MOVE Dat(1,1),Dat(1,9) - set the pen at the 1st point

FOR I = 1 TO Count

PLOT Dat(I,1),Dat(I,9) - plots a line to F,X 22

LABEL USING "K";"X22" - "X22" is labelled and

centered correctly

NEXT I

LETTER - allows user to label his graph

It is possible that the user would like analysis over a specialized set

of frequencies not specified by a simple FOR-NEXT loop. Frequency bands,

for example, can be specified by a loop construction as follows:

FOR I = 1 to 2 - two bands

READ Fl, F2, Delta - initial F, final F, and increment

DATA 0, 10, 1, 15, 100, 5

FOR F = Fl to F2 STEP Delta - 0 to 10 GHz by 1

• - 15 to 100 GHz by 5

•

•

NEXT F

NEXT I
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A logarithmic variation of frequency is achieved, for example, by:

M = (F2/F1) 1/10

F = Fl

FOR I = 0 to 10

•

•

•

F = M * F

NEXT I

Using the READ-DATA statements in combination with FOR-NEXT loops, one can tailor

a frequency specification in any way he may desire.

Many more complicated tasks can also be programmed by the user in Cktanalysis

or in separate subroutines that the user wants to add to FARANT. These tasks

may include, for example, algebraic or matrix calculations, interactive input

of decisions or data, special printouts, microstrip or waveguide analysis, data

storage on magnetic tape, etc. The combination of user-defined procedures and

FARANT's subroutines constitutes a versatile tool for a wide variety of design

problems.

11.5 Using Optimization to Solve Constrained-Variable and Minimax Problems 

The optimization algorithm that FARANT employs is taken from Davidon [2]

and is one which minimizes a function of several variables. Because the function

and the variables are completely described by the user, however, it is possible

to use this optimization routine fairly effectively to solve more complicated

classes of problems, for example, constrained-variable and minimax problems.
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To constrain a variable during the optimization process, one must equate

it to a function of another variable which in turn is allowed to vary freely

between positive and negative infinity. The function's range should be chosen

to correspond to the desired constraint. The argument of that function is

passed to Davidon's algorithm, but the user takes the function as his new

variable. Examples of this can be seen in the demonstration run in section 1.5.

The chosen function should be smooth and non-periodic, for example:

Constraint Suggested Function Function to Avoid 

x
' > 0 t = (x) 2 = ix'

or

a < x' < b x
,
 = 

/2
---

-a 

arctan(x) x
b+a ,	(b-a) . b+a 

180 2 2 sin(x) + 2

By employing functions such as the above, it is possible to constrain variables

to specified ranges and still use the optimization capability of FARANT.

Problems requiring more general constraints on the variables can approximately

be solved by constructing an objective function which gets very large as the

variables deviate from those required to satisfy the constraints exactly. If

the variables are represented by X(*), then a constraint of the form g(X(*)) = 0

might be incorporated into the optimization process by adding a term of the form

Q . g
2

, where Q is a large positive constant. Similarly, if one wishes to satisfy

h(X(*)) > 0, he might add a term of the form exp(-Rh), where R is a large positive

constant. In either of these cases the constraint may not be satisfied exactly,

but the optimization process will tend toward the X(*) values which more nearly

do satisfy it.

Minimax problems constitute another important kind of optimization in which

the maximum value of a function over a limited domain of a given variable is to
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be minimized. Minimax problems are sometimes called "equal ripple" problems and

are common in band-pass circuits and filters. Since Davidon's algorithm cannot

handle minimax problems directly, it is necessary to translate this type of problem

into one that it can handle, namely minimization of a given objective function.

This can be done as follows:

1. Sample the function at a sufficient number of points along the domain

of the given variable, e.g., frequency. This number might be chosen

as 5 to 10 times the number of peaks one expects in the function when

made equal ripple.

2. Set the objective function equal to a sum of positive terms, one for

each sample point, such that the larger points strongly dominate the

sum. For instance, these terns might be exponentials of the form

exp(Q-fn) where fn is a sample point.

3. Run optimization as usual using ?value set equal to this objective

function.

If the objective function is truly dominated by the largest terms, and enough

samples were taken, then the peaks will be reduced until they are nearly equal.

The peaks will subsequently be reduced further until an approximate minimax

solution is obtained. It should be noted that this method of solving minimax

problems is indirect and approximate and may take considerably longer to obtain

a solution than algorithms specifically designed for this purpose. However, an

optimization carefully set up in this way may be satisfactory for many problems.
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FARANT ON THE VAX-11 and the HP 9845A

111.1 Using the Apple Computer as a VAX Terminal 

A program has been written [3] which allows the Apple II computer to be used

as a remote terminal for the VAX-11. This program acts as a liaison between the

Apple keyboard and the VAX and can direct information either to the CRT or

hardcopy printer connected to the Apple. In addition to an Apple mainframe,

disc-drive, video monitor, and printer, a Micromodem II interface card [4] connected

to a Microcoupler, which in turn connects directly to a telephone modular jack,

is required for remote access to the VAX.

The "terminal mode" that this program provides is entered by typing RUN VAX

followed by a carriage return. The Micromodem II dials the phone number of the

Charlottesville VAX (without the use of a telephone handset) and establishes

communication. The user must then type his name and valid password to log onto

the VAX. In this terminal mode certain characters of the Apple II keyboard are

intercepted and either modified or acted upon instead of being sent directly to

the VAX. These special characters are the following:

Character MeaninginTerminal Mode

ctrl-B (backslash)

ctrl-N (left bracket)

ctrl-V (underscore)

(left arrow) DEL (delete last character)

ctrl-P toggle the printer on or off

ctrl-A return to Apple II BASIC

(from which GOTO 1000 re-instates

terminal mode)
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ctrl -X hang up the phone and return to

Apple II BASIC

ctrl-I TAB (space 8 characters)

shift -M I (right bracket)

(right arrow) ctrl-U (ignore entire line)

These are not actually changed by the terminal simulator
program but appear to be changed since their meanings
are not obvious from the keyboard.

While in terminal mode the user can access and run FARANT files through the

VAX operating system. It is proposed as a future project to interface Apple II

graphics capabilities with the VAX version of FARANT, but as of this date,

graphics are only available with the HP 9845A version of FARANT, not with the

VAX version.

The terminal mode of the Apple also requires a "switch" to be set in the VAX

in order that all characters can be delivered to the printer. When prompted for

commands from the VAX monitor, i.e. the dollar-sign prompt $, one can type

SET TER/CRF=1 to set that switch to the necessary value.

111.2 Peculiarities of VAX BASIC 

The implementation of FARANT on the VAX required several minor modifications

to the HP 9845A version of the program. The modifications reflect small differences

and quirks of individual BASIC compilers and while the impact on the user is

minimal in many cases, it is important in others. The following list points out

most, though by no means all, of the compatability problems that were taken care of:
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HP 9845A BASIC VAX-11 BASIC version 1.0 

OPTION BASE 1 is needed to set the All arrays have lower bounds = 0 but

lower limit of array dimensions MAT statements ignore the 0th

to 1 rather than 0. row and column.

Arrays are passed to subroutines Arrays are passed to subroutines with

with an asterisk identifier, a comma identifier, e.g., A(,).

e.g., A(*).

PRINT (with or without a format) Only MAT PRINT A (unformatted) or

A(*) is allowed when printing PRINT A(i,j) (with or without a

arrays. format) is allowed.

Scalar multiplies or divides are Only scalar multiplies are allowed,

allowed, e.g., MAT A=B/(2), e.g., MAT A=(10)*B, and the

MAT A= (10)*B. order must be as shown.

MAT A = INV(A) is allowed. MAT A = INV(A) is not allowed.

The determinant function DET can

operate on an array argument

or return the determinant of

the last array inverted.

Zero-determinant arrays are inverted

in an unpredictable way, but

they do not cause execution

errors. Post-inversion checking

of DET is a valid error handler.

The REDIM statement is allowed and

preserves all values in the

array, even when shrinking the

The DET function cannot take an

argument. It always returns the

value of the last array inverted.

Inversion of a zero-determinant array.

causes an execution error and

must be handled by other means.

Ntrans uses the ON ERROR GOTO /

RESUME structure.

Matrices can only be redimensioned

implicitly and only when they

are redefined, e.g., MAT A =

working array size. ZER(2,3). FARANT uses SUB

COPYMAT to copy 4 X 4 arrays.
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HP 9845A BASIC 

Any variable can be passed by

reference between subroutines.

VAX-11 BASIC  version 1.0 

Individual array elements cannot be

passed by reference out of a sub-

routine if the entire array was

passed to that subroutine. The

updated BASIC compiler may have

fixed this.

Memory is scarce so the data-base Memory is plentiful so the data-base

is kept in short precision and is kept to full precision and

dimensioned (51,18). dimensioned (101,18).

Multiple assignments are allowed, Multiple assignments are interpreted

e.g., A = B = O. Multiple as logical equations, i.e., wrongly.

statements are not allowed. Multiple statements are allowed,

e.g., A = 0 B = 0.

Logical operators yield -1 if true,

0 if false.

The logical operators yield +1 if

true, 0 if false, e.g., (8 > 5)

evaluates to +I.

Trigonometric functions can be

evaluated in DEGrees, or

RADians.

Base 10 logarithms are obtained

with LGT(n).

Variable names in SPACE DEPENDENT

mode have only their first

letter capitalized. Keywords

are distinguished by using all

capital letters.

All trigonometric functions are in

radians.

Base 10 logarithms are obtained with

LOG10( )

Variable names use all capital letters.

Some of the unexpected keywords

are: ERR FF GE GT IMP LEN LF NUM

REF SI SO SP TYP VAL.
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HP 9845A BASIC VAX-11 BASIC version 1.0 

FARANT variables Count, Dat, Del, DBNUM, DB, DL, PLACEMENT$, SERPAR$

Place$, Type$ are VAX BASIC are used in the VAX version of

keywords. FARANT.

Statements can have labels in Statement labels are not allowed

addition to line numbers and and all GOTO's must use constants,

GOTO's can reference either, e.g., GOTO 1200.

e.g., GOTO Dotrans or GOTO 1200.

Comments denoted with exclamation Comments are not allowed in DATA

points are allowed anywhere. statements, nor can they contain

additional exclamation points.

READ statements don't require READ statements will not compile

DATA statements until they without at least one DATA

are executed. statement.

Integer constants do not Integer loops, e.g., FOR I% = 1% TO

appreciably speed up loops 10% are much faster.

and slow array element

references.

The LIN(n), SPA(n), TAB(n) Only TAB(n) is allowed.

functions are all allowed in

unformatted PRINT statements.

Formatting syntax is quite different A blatant formatting error exists in

from VAX BASIC's formatting. version 1.0 BASIC: PRINT USING

"##.###";.5421E-19 yields .054,

not .000
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RENumbering program lines is

accomplished by a single

statement, e.g., REN 100,5.

All BASIC statements are

automatically stored in order

by their line numbers.

To renumber a program, one must use a

Library Resequencing routine which

takes many statements.

In SOS, BASIC source code requires an

extra line number which does not

automatically order the program

lines until execution.

111.3 FARANT Program Pieces on Each Machine

Two aspects of the VAX make it necessary to store FARANT in a slightly

different way than is done on the 9845:

(1) The VAX makes available to the user enough storage space that all of

FARANT fits into the VAX easily, even if the user has written long

programs to go with it. The 9845's 64K of memory is nearly full when

it contains the text of FARANT alone.

(2) VAX BASIC is compiled separately from execution whereas HP 9845 BASIC

is compiled step by step as it is executed. Therefore, since compilation

of the body of FARANT takes over a minute on the VAX, it is convenient

to keep on file a compiled version of the part of FARANT which the user

does not have to change.

The order of FARANT's subroutines is listed in the summary of section 1.4

and will be used to describe the program pieces stored on each machine. Note

that at the very beginning of FARANT is kept a three line "main program, i.e.,

not a subroutine, that dimensions the common storage space, calls SUB Farstart,

and ends. Thus, for all practical purposes, FARANT can be thought of as

beginning at SUB Farstart and consisting of nothing but subroutines.
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The VAX has the following files stored on the default device DBAO with

directory name [FENSTER]:

Name.type;version Description 

FARANT.BAS;1 is the entire BASIC text of FARANT which includes all sub-

routines except Smith and Splot.

FARSUB.BAS;1
 

is the portion of FARANT that the user can leave as is,

i.e., all subroutines (except Smith and Splot) from the

beginning through SUB Optimize.

FARSUB.OBJ;1 is the compiled version of FARSUB.BAS;1 created with the

statement: $ BASIC/DOUBLE/WORD FARSUB.BAS;1

FARAFT.BAS;1 is the user-portion of FARANT which comes after the other

subroutines and consists of SUBs Nread, Pread, Farstart,

and Cktanalysis, i.e.,

FARSUB.BAS;1 + FARAFT.BAS;1 E FARANT.BAS;1

RUNFAR.COM ;1 is a command-language file that is used to link the user

portion of FARANT to the compiled subroutines and run them

both.
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FARANT files on the HP 9845A cassette tape labelled "FARANT" are the

following:

Name Type Description 

FARANT ALL is the entire BASIC text of FARANT including all subroutines

plus the HP 9845 typing-aid key definitions.

FSHORT ALL is the entire BASIC text of FARANT except 4 seldom used

subroutines: Lossyline, Flip, Nread, Pread. It also contains

the typing aids.

LOSSYL DATA These are the subroutines stored in separate files that were
FLIP DATA
NREAD DATA deleted from FARANT to make FSHORT. Each contains one entire
PREAD DATA

subroutine from the SUB to the SUBEND statement.

FARAFT DATA is identical to the VAX's FARAFT.BAS;1 and contains SUBs

Nread, Pread, Farstart, and Cktanalysis.

FARKEY KEYS contains just the typing-aid key definitions. These definitions

are included in FARANT and FSHORT above.

111.4 File Manipulations 

FARANT files stored on cassette for the HP 9845A are moved to and from

memory with simple statements. Since the full version of the program uses nearly

all of memory, however, it sometimes becomes necessary to delete subroutines
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to make room for user programs and variable storage. Subroutines that can be

deleted without affecting the rest of FARANT are  Ric, Source, Trline, Tf,

Lossyline, Flip, Branch, Nload, Nperformance Smith, Splot, Gammaz, Nread, and

Pread. These SUBs are not called by any other subroutines unless the user calls

them from Cktanalysis. When a subroutine is added or deleted, it should be

handled as a complete unit, i e., from the SUB to the SUBEND statement. FSHORT,

for instance, is missing four SUBs and has room for about two full pages of

user program statements. The following statements show useful ways of handling

various program pieces on the 9845:

LOADALL "FARANT" With the tape in the right-hand reader, this

brings all of FARANT into memory. Parts must

be deleted before running it, however.

LOADALL "FSHORT" This is recommended to get started.

GET "LOSSYL",8000 SUB Lossyline is added to memory starting at

line 8000, using the line number increments

that were saved, and higher numbered lines are

deleted.

LOAD KEY "FARKEY" The typing-aid key definitions are put into

memory.
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EDIT LINE 6100

STOREALL "MYPROG"

DEL 4625,4755

SAVE "MYCKT3",6000,9999

Allows the user to view and alter lines

around 6100, where SUB Cktanalysis has

room reserved for him to store statements.

All of memory is placed on tape with the

name "MYPROG". Names must be < six

characters.

This deletes SUB Gammaz, for example.

(Line numbers should be checked before

deleting SUBs.)

Saves SUB Farstart and Cktanalysis where

the user typically has his program text.

GET "MYCKT2",6000 Adds the contents of "MYCKT2" to memory

beginning at line 6000.

On the VAX, each user with a valid account has a directory name under which

files can be stored. FARANT program files are stored under the directory name

[FENSTER] but can be copied to one's own directory with the COPY command. When

prompted with the dollar sign prompt from the monitor, one would type:

$ COPY [FENSTER]*. ;1
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This statement copies the [FENSTER] version of the FARANT files (whose version

numbers are all 1) to one's own directory. All [FENSTER] FARANT files are

protected from user editing or deleting but can be copied to another user's

directory with this statement and can then be edited, listed, renamed and

so forth.

BASIC programs on the VAX can be manipulated from either the "BASIC

environment" or from the Digital Command Language monitor DCL, whose prompt

is the dollar sign. The author strongly recommends the use of the latter class

of operation, despite the seeming complexity of the DCL language and the various

modes one can enter from DCL.

In the DCL environment, programs must separately be compiled, linked and

executed. FARANT, however, can be run with one statement by using the command-

language file RUNFAR.C°M;1 which compiles the user section of FARANT, links it

to the already compiled version of the rest of FARANT, and runs the resulting

executable image. Thus, after one has stored all his FARANT commands in

FARAFT.BAS;1, he can run FARANT with the following statement:

$ @RUNFAR FARAFT

If one used MYCKT3 instead of FARAFT in the statement above, the file MYCKT3.BAS;n,

where n was the highest version number of MYCKT3.BAS files, would be compiled,

linked with the rest of FARANT, and run. Thus, one can edit FARAFT.BAS;1 to

contain commands that control FARANT, save it with a name like MYCKT3.BAS, and

run it using the @RUNFAR statement. The contents of RUNFAR.COM ;1 are

100 $BASIC/DOUBLENORD 'Pl'

200 $LINK/EXECUTE='Pl' FARSUB +
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300 $DELETE 'Pl'.OBJ.*

400 $RUN 'Pl'

where 'Pl' stands for the name of the file in the

@RUNFAR  statement. File type .BAS is

assumed for '131'.

Since the LINK operation is a complex one, it is not unusual for the @RUNFAR

statement to take 30 seconds or more, even if the user has no program statements

at all in SUB Cktanalysis. As long as no error messages are generated, this

period of inactivity is probably due to compilation and linking time and should

not be interrupted.

111.5 Typing Aids on the HP 9845A 

The typing-aid keys located in the upper right corner of the HP 9845A

keyboard area can be defined by the user to stand for various combinations of

keystrokes. A particularly useful set of typing aids for FARANT has been stored

with the FARANT and FSHORT files and is also stored by itself in the file called

FARKEY. There are 16 actual keys numbered 0 to 15, and used in combination with

the shift key, they form 16 more which are numbered 16 to 31. Some keys are

left undefined, and the user can define these or any other keys to his liking.

FARANT defines the following keys:

0: CALL R1c( (*)," ",

1: CALL Trline( (*),

2: CALL Cas( (*), (*))

3: CALL Par( (*), (*))

4: CALL Ser( (*), (*))
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6: REWIND":T14" Execute

7: REWIND":T15" Execute

8: PRINTALL IS 0 Execute (all typing is printed to paper)

9: PRINTER IS 0 Execute (all PRINT statements go to paper)

10: DUMP GRAPHICS Execute (graphics printed to paper)

11: GRAPHICS Execute (displays the graphics memory)

12: EDIT

13: EDIT LINE

14: LIST

15: SCRATCH

22: CAT":T14" (a catalog of files is printed for

left-hand tape)

23: CAT (same for the right-hand tape)

24: PRINTALL IS 16 Execute (all typing goes only to CRT)

25: PRINTER IS 16 Execute (PRINT statements go only to CRT)

26: GCLEAR Execute (erases the graphics memory)

27: LETTER Execute (allows labelling of graphics)

28: LINE TYPE 1 Execute (can use before KEY 27)

30: LIST 9999 Execute (displays AVAILABLE MEMORY)

A plastic overlay clearly labels the function of the various keys that FARANT

defines for the user.

111.6 A Word on VAX Text Editing 

One of the powerful features of the VAX is its text editor SOS which the

author recommends over the BASIC environment. The use of SOS is described in
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great detail in the "VAX-II Text Editing Reference Manual." BASIC syntax rules

and language elements are fully documented in the "VAX-11 BASIC User's Guide"

and the "VAX-11 BASIC Language Reference Manual," both of which are good

references but need not be studied in order to use FARANT. (For the user who

wants an overview of the VAX's operating system as well, the "VAX/VMS Primer"

is succinct and quite helpful.) The text editor itself is accessed by the $ EDIT

filename.type statement, at which point one receives the asterisk prompt instead

of the dollar sign. A comprehensive summary of Edit-Mode commands is given on

page A-2 of the Text Editing reference manual. Some of the most useful of these

commands for editing FARANT files are the following:

Alter Print

Delete Replace

End Substitute

Find Save World

Help eXtend

Input Ret and Esc

Within Alter mode, for instance, commands are analogous to the text editing

features of the HP 9845. Alter-mode is summarized on page 2-28. The transfer

of control between all the text editing modes and DCL level is well diagrammed

on page 2-5.

In addition to knowledge of the text editor, it is quite useful to understand

several control characters that the VAX responds to:

ctrl-Y is a general interrupt "yoohoo" that returns the user to

DCL level. It should not be used, for instance, in Edit-

mode until the current file is stored on disk, but is useful

to stop long listings, unwanted computations, etc. from DCL.
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ctrl-S "stops" the flaw of characters sent by the VAX to the terminal

in any mode of operation from which point:

ctrl-Q resumes the "queing" of characters from the exact

point it was stopped, or

ctrl-0 ignores the remaining "output" and returns to the

current mode, e.g., DCL or the text editor.

ctrl-U "undoes" the current line that the user had been typing,

in order that he may start fresh.

These control characters give the user a great deal of power no matter what

mode of operation he may be in. They should be used with discretion, however,

and not struck several times in succession. The VAX maintains a "type-ahead"

buffer which menas that all characters typed at the terminal are heard by the

VAX and acted on in the order that they were typed in - even if they are not

echoed back to the user's CRT for some time! This feature allows the user to

type his commands at any rate he desires but can cause mysterious results if it

is not understood.
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Iv. FROM THE PROGRAM S POINT OF VIEW 

IV.1 Flaw of Control in FARANT 

MAIN PROGRAM 

- set COMmon storage

- CALL Farstart

"2-Port" Subroutines 

- two-port & noise parameter transformations

- ckt elements defined, connected, & analyzed
- Smith chart plots made

- ckt data stored and/or printed

SUB Optimize (N,X(*)) 

- CALL Cktanalysis (for Fvalue,

and for final analysis)
- finds X(*) minimizing Fvalue

USER
PORTION
OF FARANT

SUBs Nread & Pread

- user data entry points

SUB Farstart

- assign initial guess X(*)
- CALL Cktanalysis

- CALL Optimize - optional

SUB 
CktanalYsis(x(*),Fvalue,0100 

- user specification of ckt (and objective function)
of ckt information- requests for prints & plots

- user "programs" allowed here
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IV.2 Initializations in SUB Cktanalysis 

OPTION BASE 1

This sets the default for the lower limit of dimensioned arrays

to I rather than 0. Thus, DIM E(6,4) creates an array whose rows are

1 to 6 and whose columns are 1 to 4. This statement is needed in every 

subroutine on the 9845 as well. It is not needed on the VAX.

COM Nogo, •Zo, F, Count, SHORT Dat(51,18) (--full precision DB(101,18) on the VAX.)

This statement sets up what is known as common storage space for

these variables such that all subroutines with a similar COM statement

can use them. (On the HP 9845 they remain assigned even after a STOP,

or when the user RUNs his program again, unless they are explicitly

re-assigned or a SCRATCH C is executed.)

Nogo - a flag set to I whenever a requested type of two-port parameters

cannot be obtained by SUB Mtrans.

Zo - the variable holding the reference impedance for S-parameters. It

is set = 50 at line 6090 of SUB Cktanalysis.

F - the variable holding frequency. The user must assign his frequencies

of analysis to this variable.

Count - holds the number of rows of the data-base matrix that have been

assigned by SUB Saveckt in the current run. It is set = 0 at line

6085 of SUB Cktanalysis and incremented only by SUB Saveckt.

SHORT Dat(51,18) - This is the data-base matrix which holds up to 50

rows of circuit data. SHORT precision retains about 6 significant

digits and allows an exponent in the range + 63.

DIM A(6,4),B(6,4),...,H(6,4)

These matrices are used to hold two-port descriptions. The size is

(6 X 4) to allow for a partitioned (4 X 4) of 4 complex two-port parameters
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(see section IV.3), the labels Pset and Nset in elements (5,1) and (5,2),

and 4 noise numbers in row 6. Note that BASIC distinguishes between F

(used for frequency) and F(*) (a two-port matrix identifier).

FIXED 3 (--not used on the VAX.)

The default for unformatted printout is set to 3 digits to the

right of the decimal point.

DEG (--not used on the VAX.)

The default for trigonometric functions is set to degrees. Sub-

routines which use trig functions need the DEG statement also.

IV.3 Complex Number Manipulations and Numerical Accuracy 

The circuit analysis routines in FARANT use complex numbers for many of their

calculations. Voltages and currents are considered to be "phasors" of some

magnitude and phase angle at a fixed frequency. Immittances, reflection coefficients,

noise correlation coefficients, etc. are all complex numbers and are manipulated

using both their real and imaginary parts. The Euler identity for expanding an

imaginary exponential is used extensively:

jeAe = A[cos(0) j sin(e)]

Alternatively, any complex number can be interpreted as a phasor having a magnitude

and an angle:

a 4. jb = Magee
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Complex algebra can effectively  be handled with matrix algebra by using

the following mapping:

- bb a

lz = a + jb a

z
1 z2

 +-* matrix product (order not important)

1 [I a b -1
z

1 
4-+ -b

(2 X 2) matrix of complex z's (4 X 4) (partitioned) matrix of real numbers

Product of complex (2 X 2)'s product of their (4 X 4)'s

Squared magnitude of a complex (2 X 2)'s determinant determinant of its (4 X 4)

The correct phase angle of a complex number is obtained from the principal-value

arctangent function by an appropriate offset of + 180
0
 As a utility to FARANT,

the following subroutine performs the transformation of complex numbers from

rectangular to polar coordinates:

SUB Polar(X,Y)

X,Y are input as rectangular coordinates of a complex number and output as

polar coordinates (magnitude, phase) with phase angle 0 such that -180
0
	8 < 1800

IF X*Y = 0 THEN 8 = [SGN(X)(SGN(X)-1) + SGN(Y)]*90

IF X*Y <> 0 THEN 8 = TAN-1 (Y/X) - [SGN(X)-1]*SGN(Y)*90

Mag = (X2 + Y2 ) 2

The use of (4 X 4) matrices of real numbers to represent complex (2 X 2)'s

has certain drawbacks which have only partially been overcome by FARANT's software.
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One problem concerns the speed of matrix operations. The (4 X 4) matrix

requires twice the number of adds and multiplies to perform a matrix multiply

or matrix inverse as would the actual complex (2 X 2). Since the HP 9845's

"MAT" statements are somewhat faster than an equivalent number of arithmetic

operations, this factor of 2 reduction in speed is really no more than a factor

of about 1.5, and the ease of programming using the MAT statements partially

compensates for this slower rate of arithmetic processing. On the VAX, however,

the situation is much more severe. MAT statements executed in VAX BASIC take

between 20 and 100 times more time than a corresponding number of simple

arithmetic operations. Thus, in order to gain the full speed of the VAX hardware,

much of FARANT will have to be re-programmed to avoid using MAT statements (and

compiled with the /NOSETUP qualifier). The (4 X 4) representation of complex

(2 X 2)'s should probably be reduced to a (2 X 4) storage format at the same

time that this re-programming is done.

Another drawback of (4 X 4) matrices is the need to keep the complex

number representation precise, i.e., to prevent roundoff errors from making the

diagonal elements of a single complex number unequal. For instance, each (2 X 2)

portion of any (4 X 4) should hold the values {a, b, -b, al for a complex

number z = a + jb. To overcome the roundoff de-symmetrization which occurs after

a matrix multiplication or inversion, these (2 X 2) portions must be made to have

the above form, say, by averaging their diagonal elements. This averaging

operation is done in SUB Mtrans, SUB Cas, and several other places where (4 X 4) 's

are inverted or multiplied.

Inverting (4 X 4) matrices of this sort also poses the problem of numerical

accuracy when the determinant of that matrix is very small. It was found that
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a quick check of the relative size of the determinant was necessary to determine

if the inversion was losing an unacceptable number of digits. The DET function

is available in BASIC; when applied to a (4 X 4) that represents a complex

(2 X 2), its value is the squared magnitude of the complex determinant of the

(2 X 2). The value of DET was used in an error analysis of this type of

(4 X 4) matrix inversion [5] to arrive at the following comparison:

Then about--3 ± 1 digits are lost in -1
performing [Z]

Instead of simply checking for a zero determinant, this comparison is used with

n = 8 for the HP 9845 (or n = 12 for the VAX in double precision) to check if the

determinant is near enough to zero to warrant the taking of precautionary steps

before performing the inversion. SUB Mtrans uses this comparison, for example,

to decide if it can obtain with sufficient accuracy a given set of two-port

parameters that requires a matrix inversion. In making this comparison, the

magnitudes of Zij are estimated as the sum of the absolute values of their real

and imaginary parts.

Thus, in summary, the accuracy of manipulating complex numbers in this way

is maintained to a very high level by keeping the diagonal elements of single

complex numbers equal and by preventing matrices with very small determinants

from being inverted. Arithmetic speed could be improved by about 30 to 50% by

circumventing the matrix representation of complex numbers on the HP 9845, but

could be enhanced by a factor of 50 to 100 by the appropriate re-programming

of the VAX version.
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IV.4 Two-Port Parameter Definitions and Transformations

Standard definitions of the two-port parameter sets [1], [6], [7] are

used throughout FARANT. These are as shown:

1. ABCD-Parameters

2. Z-Parameters

3. Y-Parameters

4. S-Parameters

5. T-Parameters

z

11 12

Z z2222

r- 11 12

Y21 2

S
1

Sil
2

21 22

T
11 T12

T

21 T22 J



%MN&

Naar

Z -Z1 22 12
Z

 21

Z
22

AMMO

A AD-BC
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Transformations from one parameter set to another employ the following

formulas:

4111M 0.111,

[Y] = [Z
-1

[Y]

[s) = [11 - [Y]Zo]X[ 1 + [Y -1 1
zo

r-T
11

 + T
1
 + T

2
 + T

22

2 1
-Z-

o

 (Tn. +T12 - T21 22
%ow

[A

[T] =--
s21

1 -s
22

s
11

—si2s21 slis22
*my

1 21
T11 [1

A+ + CZ D

A + CZ

[T] =

[Z] S]

"forward" path "reverse" path

SUB Mtrans can perform the set of cyclical transformations shown here:

[A] [T]

[Y]
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This cyclic patth was chosen on the basis of its simplicity (for example,

[Al --->- [Z] and [Z] ÷ [Al are equivalent transformations) and its completeness

as far as closing the loop. SUB Mtrans chooses the shortest path to the desired

parameter set and usually only performs I or 2 transformations. The [Al, [Z],

[Y] matrices are used for cascade, series and parallel connections, the [5] matrix

for plotting and often for printing, and the [T] matrix primarily to provide

an alternate path to the desired matrix if one path fails.

Handling Undefined Matrices:

In many cases, a particular matrix will not be defined because its elements

are infinite. For example, the [Y] matrix of a parallel impedance, [Z] of a

series impedance, FY] or [Z] of a lossless half-wave transmission line, [Al or

LT] of a "broken" or "shorted" 2-port, and even [S] for a few special cases

can ideally be infinite. Given a defined matrix and a transformation to be

performed, however, SUB Mtrans tests if the result will be finite by checking

for division by 0 or the inversion of a matrix whose determinant is practically

zero before making the transformation.

Since there exist two possible "paths' to the desired matrix, this

cyclical transformation will only fail if

1. the final matrix is infinite

2. [S] and [Z] don't exist, or

3. [Al (and [T]) and [Y. ] don't exist (note that [Al and [T] are

finite or infinite together)

Now case 2 is actually impossible, and we assume case 3 can't happen for any

meaningful 2-port. Thus, the only consideration is what to do when the

requested matrix is infinite. Each subroutine that uses Mtrans deals with

that locally.



Mtrans first chooses the shortest path by the statements:

forward distance

IF (N =P)*(N-P) (N<P)*

ON P GOTO 11l21314l' 2' 31 4
ON 6-P GOTO 1 1 16' 7' 8 1 9' 10

(P = present type of parameter set)

5+N-P THEN

1
6

1

1
9

1
10

7

Flow of Control in Mtrans: 

Matrix
Program Change
Line (P411) 

1 1 + 2

1
2
	2 ÷ 3

1
3
	3 ÷ 4

1
4
	+ 5

1
5
	5 ÷ 1

GOTO 11

(forward path)

5 ± 4

4 ± 3

3±22

2 -÷ 1

1 ÷ 5

GOTO 1
6

(backward path)

If a infinite matrix is encountered, the variable

Nogo is set equal to 1. This variable is held in

common so all other subroutines can check N go after

calling Mtrans to see if it failed. In all cases

X(5,1) gets the type parameters of the final matrix

that Mtrans obtained.

IV.5 Noise Parameter Definitions and Transformations 

In general, the various sets of two-port noise parameters consist of four

real numbers which depend only upon the two-port and completely describe its

noise properties over a narrow frequency band [8]. The process of modelling the

noise of a two-port consistsof removing the noise waveform from the interior of

the circuit and assigning its equivalent RMS spectral components to noise sources

placed at the terminals of the two-port. For instance, the open circuit voltages
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at a given frequency appearing at the terminals of a two-port can be represented

by a random voltage generator in series with each port The four numbers needed

to describe this representation are the average squared magnitude of each

voltage--two real numbers--and the complex average of their product--one complex

or two real numbers. All noise representations are equivalent and can be thought

of as derived from this fundamental model of two series voltage generators, or

from their dual of two shunt current generators. The following will be a

comprehensive summary of the noise representations used in FARANT with emphasis

on the transformations employed in SUB Ntrans to manipulate them.

Several of FARANT's noise representations can be described with simple

diagrams and of these, four relate directly to two-port parameter sets:



2le
1,2
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In the following definitions, the variable names in the above diagrams will

be used in conjunction with complex conjugates (asterisks), magnitudes (vertical

bars), and time averages (horizontal bars) to derive the quantities used for

noise parameter representations. Some noise parameters are used in several

representations--where the symbol is the same, the meaning is the same, e.g., Gn

is used by representation (1), (3), (4) and (7). T is the standard temperature

of 290°K, k is Boltzmann's constant 1.38 x 10
-23 (Watts/AHz °K), and Af is the

bandwidth of the noise spectral components.

(1): Rn	G Ipl (I) (see references 8], 91)

I eld 2
i 2
n e* i= n nR n 4kT

0
Af G =n 4kToAf

(2): R1 	R
2

R =1,2 4kToAf

NOTE: R for example, is not an equivalent resistor whose thermal noise in some

hypothetical circuit could account for the noise of the device but rather a

number proportional to the mean of a squared voltage over a narrow bandwidth.

We can, however, find an equivalent temperature, whose available thermal power



at
eq.

non-thermal
noisy, linear
device

thermal,
noisy,
linear device

G
1,2 

= 
4kT0Af

l 2
2

-64-

from an actual impedance would be that of the device. This equivalent temperature

and for a one-port we have:R1
is Rin

2 el1available power p
av = for both;4R. R1 = 4kToAfin

(3): GI 	G2 Inc' (Pc

NOTE: Instead of the correlation coefficients for representations (1), (2),

and (3), FARANT stores the real and imaginary parts of un-normalized quantities

which are denoted here as "C r's". They are defined as follows:

Cor = p V RnGn 	Cor
v
 = pv Cor = pc c

Both the two-port matrices and the data-base store these complex

Cor's as the third and fourth noise parameters rather than p's. Haw-

ever, the correlation coefficients p, pv, pc are still used for input



(4): T i 	R X Gmn opt opt n
(see 1 101)

2Bn
kAf

An nTb -
.  'An 12 

a kAf Pab =

where
2
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(in magnitude, phase) to SUBs Nload and Nread and for printout from SUB Prt, as

implied by the conventions in section 1.2

Tm
in

 = the minimum equivalent temperature that when added

to the temperature of a certain passive source would

account for the available noise power at the output

terminals of the two-port due to the two-port itself.

R
opt 

+ j Xopt = that impedance which when driving the t

port would minimize the equivalent noise temperature

of the two-port to Tmin.

G
n
 is defined under (1).

(5): T
a T

b 	IPabl (see [ll 12])

This noise representation defines equivalent right and left

going noise waves An and Bn from representation (l) 's noise

voltage and current generators en and in . The available power
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that would be delivered by these generators in a Z o system

is thus split into the two waves and equivalently into the

two temperatures Ta and Tb.

(6): Tmin Tb I

r
0 , L opt

The parameters used by this representation are defined under

(4) and (5) . 'opt is the optimum source reflection coefficient

defined by Ropt j Xopt and Zo.

(7): rn 	Gn cor Xcor (see [9])

Zcor 
= R

cor j Xcor is called the correlation impedance and

is the proportionality constant (with dimension of ohms)

between the noise current source in the (1) representation

and the fraction of the noise voltage source which is

correlated to that current. Thus, splitting the noise voltage

en into an uncorrelated part and another part totally correlated

to the noise current in , we define Z cor by:

en = eunc Zcorin where --junciwn =

leunc12 
n 4kT0Af = Rn(1

(31'2r
)
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(8): Rn Gn Gcor Bcor

This is the dual of (7) and defines Ycor = Gcor Bcor by:

= lune Ycoren

liunc12 g = G (1 -Ip12)n 4kToAf n

NOTE: G
cor 

and Bcor (as well as Gn and gn) have the dimension of conductance

and therefore take on the units of milli-mhos for input and printing, mhos for

storage.

SUB Ntrans transforms any of these 8 noise representations into any other

by means of the algebra that will follow. The transformations are performed using

the (1) representation as an intermediate step (with the exception of the

(5) -÷-* (6) transformation) instead of going straight from one representation to

another. Note that for all but the transformations involving the (2) and (3)

noise parameters, no two-port parameters are required, i.e., noise representations

which describe generators only to one side of the two-port can stand alone and

do not need the two-port parameters to be transformed into each other. Since

Ntrans makes few assumptions about the validity of the noise representation it

receives, there exist possibilities of transformations for which the formulas

are undefined, e.g., division by zero or taking the square root of a negative

number. These situations can occur if a noise immittance or temperature which

is defined as a positive quantity, e.g., R n , Gl , Ta , Ropt , etc., is negative on
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input to Ntrans or a correlation coefficient is bigger than 1. Appropriate

safeguarding steps are taken whenever such a situation occurs and these are

clearly described under each noise transformation.

(2) ±-÷ (1) ±-÷ (3) Noise Transformations

11

-Z21 -Y2 1 i
n

(1) ÷ (2) (2) (1)

- 2Re{Z11Cor}

R
2
 = 1 Z

21

12

G
n

= R2/ Z 12

Cor
v
 = Z

21
(Z
11

Gn Cor) Cor = ( 1 R
2

Z

21 
Cor)/1Z1
 v

(1) -÷ (3)

-2RefY11Cor*1

G2 = IY211

2

Rh
2

Gn = (1Y21 1 G1 +
,2 2
I G

2
 - 2Re Y

11 Y
 Corc l)/IY I

Cor
c
 = Y

21
(Y
11

R - Cor
*

) ,,,Cord/ IY211

2

Cor = (Y11
G 

2 - Y LI
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 =G
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(1) -± (4) (4) (1)

Rn = Gn (Rop
2
t
-

X
opt 

= Im1Corl/Gn

R/G - X 2
n n opt

. := 2T (G R RelCorl)Tulin o n opt

R
opt 

=

= G

ReWorl =

ImiCorl =

min/

G Xn opt

T G R0 n opt
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NOTES: (1) ± (2) and (1) (3) are valid provided [Z] and [I] respectively

exist. If these two-port parameters are underdefined, so are the

respective noise representations, so Ntrans prints a message to this

effect and quits without obtaining the new noise parameters.

For the (2) -÷ (1) and (3) ÷ (1) transformations, the respective

[Z] or [Y] has to exist if the initial noise representations were to

be meaningful. If [Z] or [Y] do not exist, an error is printed and

Ntrans quits. If Z21 or Y21 is zero, Ntrans sets Rn = RI or Gn = Gi

and sets the other three parameters to zero, but unless R 2 or G2 were

also zero, this action is erroneous and an error message is printed.

NOTES: The (1) ± (4) transformation is safeguarded in two ways. If G = 0,

the only noise generator is a series voltage source R whose Z = .,n opt

and Train = O. But since the (4) (1) transform could not recover the

Rn = Os**, Zopt is set to 0 thus setting all noise parameters to 0 if G
n

was 0. If a negative quantity appears under the radical, this is

equivalent to I Z0pt 1 2
 < IXopt 112 which is invalid, so Ro t is set to O.

Rn and Gn should never be negative.



To 2Ta = 
zo

(Rn + z0 
2G + 2Z RefCorl)

Zn
= 4To  a Tb Re{p })

Re{pab} =

ImfP ab l =

2
(-Rn + Zo Gn)

2Im{Cor})

RelCorl = ( Ta TO/4T0

ImfCorl =
To

Ta'Tb

(5) ÷ (6)

Tmin = Td - Tb
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(1) -* (5) (5) -* (1)

T, 2
Tb = + Zo Gn - 2Z Re{Cor})Zo

1 = T
4To Zo a b 2 -V TaTb Re{p })

NOTES: The (1) (5) transform stores lp b l and cb ab , not the real and

imaginary parts. It is safeguarded by setting both of these quantities

to 0 if either Ta or Tb = O. Neither temperature should ever be negative.

Iropti

(P opt =

= (

NOTES:

= ')/TaTb 1PabliTd

ii - (P ab

+ Tb + + Tb ) 4TaTb 1Pab

IP ab l = (Tmin Tb) r0pt1/

(P ab = (Popt

),/2

Meys' "Tc" = TaTb A A If TaTb = in ± (5)IP ab k "Tc = Tab' 0 the (6)

transform, Ip ab l is set to O. If Td = 0, opt is set to 0.
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(1) ÷ (7) (7) ± (1)

2 2
Zcor n

= Cor R = r + G (Rco + 
X
cor )n n n r 

G
n
 = G

n 	G n 
= G

n

rn = Rn Gn (R
2

 + X0)cor cor Cor = G Zn cor

(1) ÷ (8) (8) ( 1)

NOTES: In the (7) and (8) noise representations, Rothe & Dahlke reverse the

notation of gn and Gn from what is used here. If G n = 0 in (1) 
4- ( 7),

or Rn = 0 in (1) ÷ (8), then Z cor or Ycor are set to 0 respectively.

One further noise transformation that FARANT performs involves the thermal

noise of passive lossy networks. It can be shown [13] that given any passive

n-port network at temperature Tamb , the average squared magnitudes and cross-

correlations of the open circuit noise voltages appearing at each port can be

expressed quite simply in terms of the n-port Z-parameters:

Z. +z.Zji
eke. Af = 4kTambAf 	 2
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The shunt current generators are similarly expressed in terms of the Y-parameters.

Thus for two-ports whose Z-parameters are defined, the following relationships

define the (2) set of noise parameters:

T
amb 

Re {Z
To

R2 
Tanb

= Re{Z22}
 To

T

amb Z21 + 12 C r =
V T

o 	2

Subroutines R1c, Lossyline and Nload make use of this derivation of the noise

parameters when passed a value for the ambient temperature T amb > 0.

IV.6 Calculations and Logic in the Subroutines 

SUB Mtrans(X(*),Pset)

The formulas used in Mtrans and the cyclic nature of the transformations

are carefully described in section IV .4. The logic at each of the 10 transformation

starting points is as follows:

1. If Pset = the matrix type to be changed, starting at the present

line, then the changes have been successful; set Nogo = 0 and finish.

2. If change is impossible AND Nogo = 1 already, then set X(5,1) = P

and subexit. (Failure has occurred in both directions.)

3. If change is impossible but Nogo is still 0, then set Nogo = 1

and branch to the other path to try that.

4. Perform the change normally and then set P = [the type parameters

just created].



Placed in Parallel [A] = [Al
[yi
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SUB Ntrans(X(*),Nset

This subroutine assumes that X(*) contains a valid noise representation

on input, with its label in X(5,2), and that Nset is 1 to 8. The transformations

are sequenced as shown with the numbers following the L naming the noise trans-

formation. For instance, L17 is the line where the (1) ÷ (7) transform begins.

Transforms to the Transforms from (1)

(1) Noise Parameters to the final Nset

L81 L12 (also does (1) -± (3))

L71 L14

L65 SUBEXIT? L15 ÷ SUBEXIT?

L51 L56

L41 L17

L31 (also does (2) -÷ (1)) L18

IF Nset = 1, THEN SUBEXIT These all SUBEXIT with the final Nset.

Each transform uses the present noise parameters, which are assigned to variables

A, B, C, D for convenience, assigns new parameters to row 6 of X(*) and their

label to X(5,2), and branches or subexits according to the above.

SUB R1c(X(*),Type$,R,L,C,Place$,Tamb)

Series Type Parallel Type

Placed in Series [A] = 0 I [A] [01
 1/Y

1

Z = R+j (41,-1A0C) Y = 1/R4j C IAA)
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At d-c (0 GHz) the subroutine uses 10-1° GHz to calculate an open circuit

capacitor or shorted inductor. At a frequency where L and C are exactly

resonant and R = 0, 10-8 ohms of resistance are added to a series L-C in parallel

and 10-8 mhos of conductance are added to a parallel L-C placed in series. A

value of zero passed to SUB Ric for R, L or C causes it to omit that element in

the two-port and ignore the corresponding term in the Z or Y calculation.

If both R and Tamb are positive, Nyquist s formulation of the thermal noise

parameters is used to assign a noise representation according to the following:

Placed in Series 

Series Type Parallel Type

= G Tamb R 
G1 2 or .

290 R2 4. x2
- -c amb

2 - or _ G= G 290

Placed in Parallel

Series Type Parallel Type

SUB Trline(X(*),Zg,Length,K)

ABCD-parameters for the lossless line are assigned as follows:

[A] =
cos(0) jZg sin(e)

jsin(e)/Zg COS(0)

where e = 2TT Lengthik
-

c = 11.8028527 x 10
9

 in sec = speed of light in vacuum
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SUB Lossyline(X(*),Zgo,Length,K,Cattn,Dattn,Fo,Tamb)

The conductor and dielectric attenuations--Cattn,Dattn--in dB/inch are

converted to nepers/inch by 2n(10) nepers = 20 dB and put in Ac,Ad. It can be

shown [14] that for relatively good conductors and dielectrics at microwave

frequencies, the distributed impedance of the conductor and admittance of the

dielectric are given by:

L =go 1/7-(!i
--
c (c = speed of light in free space

C = 1/FicZ--go

R = 4F/Fo
l 2Ac(Ac + 2Ac LC) /w0C

G = (F/FODAd Ad + wo LC /

From these the series impedance per length in the conductor and the shunt

conductance per length in the dielectric are

z = R + j(wl, R)

y = C + j (wC)

The complex characteristic impedance of the line and the propagation constant

are directly related to z and y by:

Zg =-"trz-Ty1

The angle of y is taken between 0 and 90
0
 (not including 0); the angle of Z

between -45° and 45°. The ABCD-parameters are then assigned as follows:

[A] =

cosh

1 4-ufZ s-uukiLen)

Z sinh(yLen)

cosh(yLen)

where Len = Length, the physical length of the line.
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SUB Source(X(*),Control$,Source

V Source

V Controlled [Z] = 1

-R u
Alma

R2,Delay)

C Source

R1 	0 1
[Z

41.11.

A non-zero value of Delay changes the Gain term (Z21) into a complex
-j27rFTnumber with a phase factor of e , where T is the Delay.

SUB Tf(X(*),Turnsl,Turns2)

The ABCD-parameters for an ideal transformer are assigned to X(*):

turnsl 
turns2

[A] =
turns2 
turnsl

SUB Flip(X(*))

X(*) is first transformed to [Z] or [Y] parameters by Mtrans,and its noise,

if any, to the corresponding (2) or (3) parameters. The subroutine swaps the input

and output noise, and takes the complex conjugate of the correlation. Then the

diagonal elements of X(*) are exchanged, i.e., X 11 4--* X22 and X12 ±-*X21.

SUB Branch(X(*),Type0

The open circuit Z X(*) is used to define the branch element. If

= 0 or the Z-parameters are undefined, X(*) is left as a noiseless nulllz111

element whose ABCD-parameters form the identity matrix, and a message is printed

to this effect. Otherwise, the ABCD-parameters are assigned as in SUB Ric. Note
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that port 2 is left open and is thus inaccessible. If a shorted stub is desired,

for instance, then the short should be cascaded on before the element is made

into a branch.

The noise parameters of the branch element —shown as primed quantities--

are obtained from the (2) noise parameters of the element in X(*)--unprimed

quantities--before being made a branch. For a parallel branch the new noise

representation consists of noise voltages:

= C r = R1

For a series branch, the new noise representation has noise currents:

R
1

R
1= -Cor

If the Z-parameters of X(*) are undefined or Zll = , then no noise is assigned

to the branch element.

SUB Nload(X(*),Nset,N1,N2,N3,N4)

If Nset = 0 and the thermal noise is to be assigned, Nload assigns it from

the [Z] or [Y] of X(*) but prints an error message if the resulting noise

parameters do not describe the noise representation of a passive two-port. For

Nset = 1 to 8, Nload assigns the 4 noise parameters in program storage units, and

in either case assigns their label to X(5,2).

SUB Polar(X,Y)

See description under Complex Number Manipulations in section IV .3.

SUB Cas (X(*) ,A(*) )

The two-port parameters of the cascade are obtained by post-multiplying

the LA] matrix -- ABCD parameters -- for the element X(*) by the [A] matrix
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for element A(*) and putting the result in element X(*). If either element's

[A] matrix is undefined, meaning it has no forward transmission, the cascade

is not performed and a message is printed to this effect.

Before cascading the elements, hawever, the combined noise is calculated

in the following way. The noise in X(*) and A (*), if there is any, is put into

the (1) noise representation. Then the "noise correlation matrix" of element

A(*) shown below is transformed to the plane of element X(*) 's noise and added

to that noise by the following matrix operation:

[NJ
Tot

= [N] + [A]X(*) X(*) A(* ) 1X:(*)

where EN] = the noise correlation matrix of the (1) noise parameters

[A]X(*) = ABCD-parameters of element X(*)

t indicates the conjugate transpose of the matrix

Tot refers to the total noise resulting from the cascade of

X(*) and A(*), i.e., referenced to the left of element X(*)

X(*) and A(*) refer to the respective two-ports.

SUB ParaC(*) ,A(*))

SUB Ser(X(*),A(*))

In the Par and Ser subroutines the two-port parameters of the composite

elements are placed in X(*) and are obtained by summing the [Y] or [Z] matrices
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respectively of the individual elements. If either element has an undefined

matrix of the type needed for the connection, the connection is not made and

a message is printed to inform the user.

If noise parameters exist for either or both two-ports, they are transformed

into the respective types--(2) for Series or (3) for Parallel--and added directly,

as were the two-port parameters. For example:

f elements X(*) and A(*))R = sum of R1 R1 s

R2 = sum of R2's

Cor = sum of Cor
v
's

For paralleling, G1 ' G
2 ' Cor c

 for the combined circuit are calculated by an

analogous addition of those parameters from each two-port.

SUB Saveckt(X(*),Pset,Nset,Kfact)

This is the only subroutine which changes the variable Count, and it does

so by a positive increment of 1 each time it is called. The two-port and noise

parameters requested by Pset and Nset are obtained by calling SUB Mtrans and

Ntrans respectively. These requested parameter sets are stored in the next

available row of the data-base, and if this is the first row being stored, i.e.,

Count now is 1, their labels are stored in array elements (51,1) and (51,2) as

well. The parameter types of future rows are compared to these labels on

subsequent calls of Savedkt to ensure that the data-base holds but one type of

two-port and one type of noise parameters. A message is printed if the Pset or

Nset parameter is different from the parameter types that were previously stored

in the data-base. A message is also printed if the requested Pset parameters

are undefined.
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Rollett' K-factor [15] is also computed and stored in the data-base,

unless Kfact was negative on input. Y-parameters are used in this calculation

unless they are undefined, in which case Z-parameters are used  For either

[Y] or [Z] the formula is as follows:

K 2Re{X11}Re{X22} Re{X12

IX12X211

Where all the X are either Y or Z parameters. The pass-parameter Kfact

is given the value of K in full precision, whereas the data-base stores only the

first 6 significant figures.

SUB Nperformance(X(*),Gtype,Rs,Xs,R1,X1,Gain,Tn)

The noise temperature is calculated provided Rs # 0, there is a noise

representation in X(*), and Tn is non-negative on input. The noise temperature

of two-port X(*) driven from a source impedance of Rs + jXs is obtained from the

(4) set of noise parameters:

T G 2 2i
Tn = Train n f (Rs Ropt + x X )Rs 1' s opt

Both the data-base and the pass-parameter Tn receive the value of the noise

temperature; they receive 0 if the calculation is omitted. In the data-base is

also stored Rs and Xs , regardless of the other calculations.

The gain is calculated for Gtype = 1 to 4 but omitted for Gtype = 0. The

four types of gain are calculated using ABCD-parameters and possibly Z s , ZL,

Zin and Zout , the latter two of these being obtained from SUB Zio. However, Zs

and Z
L
 need only be input to Nperformance if they are required for the requested

type of gain. Standard definitions [7] for the various gain types are used by

21).
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FARANT and are shown in the following. Their functional dependence on the source

and load impedances, their expressions in terms of ABCD-parameters, and their

equivalence to special cases of the transducer gain are also shown:

Transducer Gain -- Gtype = 1

Power Gain -- Gtype = 2

G = fum zL ) = / Zin/2RL 
2 = GTP Pi

RinIAZL B Zs = Zin

Available Gain -- Gtype = 3

A 
PavO G = = f ( Zs,[A]) =

 PavS
Rs

Routi A Cs = Zout

	 E G2 T

Maximum Available Gain -- Gtype = 4

P
G

=  n n = f ull]) = 
"'max .Pi

L AB - CD (K +

= Zin

Z = ZL out

where: P
d
 = power delivered to the load = II 

12 

RL

P. = power absorbed at the input = I I I in

PavS I I / 4Rs= power available from the source =

avO = power available at the output = I V2
1 2

/4RoutP 
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The gain in dB = 10 logio(G) is stored in the data-base and assigned to the

pass-parameter Gain as well. If K < 1 and Gm
ax 

is requested, the maximum stable 

gain obtained by using a K of unity is calculated and stored instead of Gmax,

and a message is printed warning the user that this is taking place.

SUB Prt(Pset,Nset)

If either Pset or Nset is non-zero and different from that used when Saveckt

was called, a loop is set up internally to simulate a new run to store the

requested parameters. This is done by filling a (6 X 4) matrix with the two-port

and noise parameters from each row of the data-base taken one row at a time, and

calling Saveckt with that matrix and the appropriate Pset and Nset as the pass-

parameters. Then, if Pset and/or Nset were positive, printout is produced with

the proper headings and aligned columns. The K-factor, which is included with

the two-port parameter printout, is printed as a number in the range -999 to

+9999 such that if it exceeds these bounds, the true value is not printed. It

remains correctly stored, however. The noise parameter printout includes a title

stating the gain-type that was requested, and headings for each column. User-units

are printed throughout, e.g., milli-mhos, degrees, correlation coefficients, etc.

SUB Smith(Xmin,Xmax,Ymin,Ymax)

Circles of constant resistance or reactance are plotted for normalized values

of 0, .2, .5, 1, 2, 5, 10. Loops are set up to plot the 7 resistance circles

and the 13 reactive portions of circles and use DATA statements to read in the

circles to be plotted and their labels. The user could thus create a chart with

a different number of plotted circles by editing these DATA statements and the

corresponding number of loop iterations. To plot resistance circles, normalized

resistances and labels are read in. Reactive circles use angular coordinates

for each z = 0 + jx point, and labels.
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SUB Splot(I,J)

The data-base is first transformed, if necessary, into S-parameters and

then the appropriate parameter is plotted in rectangular coordinates from row 1

to row Count of the data-base. LINE TYPE 9 is used to put tic marks at each

plotted point but GRAPHICS is left in LINE TYPE 1 (solid line) when the plot is

complete. Note that if Smith was not called before Splot, a SHOW statement is

necessary in Cktanalysis to scale the plotting area to the desired dimensions,

e.g., SHOW -1,1,-1,1 for a unit-radius plotting area.

SUB Gammaz(Option,U,V,R,X)

The subroutine uses the following standard formulas:

(R2 4. x2 02) + j(2XZ )

(R + Z0 ) 2 + X2

) j(2r)

2r.

where r = rr jr i and Z = R+ jX.

If either denominator is zero, the resulting r or Z is taken as 10 + j0.

SUB Zio(X(*),Rs,Xs,R1,X1,Rin,Xin,Rout,Xout)

The ABCD-parameters are obtained for X(*), and the input and output impedance

are calculated by:

rr=
(1 -

AZ + B• . Zin CZL + D

DZ + B

out CZ
s
 + A

If either denominator is zero, the resulting impedance is taken to be 10
1

 + j0.
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SUB Optimize(N,X(*))

The Davidon algorithm used by FARANT requires the initial values of the

variables, a method of obtaining the value of the objective function and the

gradient vector. From successive steps in approximately the gradient direction,

it updates a Jacobian matrix of second derivatives for a quadratic approximation

to the objective function. At the start this matrix is set equal to an identity

matrix by the subroutine, but after several steps begins to reflect more accurate

second derivative information. The subroutine also chooses the value of the

algorithm's quitting parameter to be 10 -12 . The variable Eps, set equal to this

value, is used by the algorithm as a measure of the machine accuracy. It was

found experimentally that best performance was achieved for Eps in the range

-110
0

 to 10
-15 

depending somewhat on the particular optimization problem.

The taking of numerical derivatives requires a choice of a derivative

stepsize Ax. This choice is at best a compromise in that too small a Ax loses

too many digits in the evaluation of f( Ax) f( ), but too large a Ax

produces a derivative which is itself inaccurate due to curvature of the function.

Empirical studies again proved helpful in deciding on this parameter. It was

found that a 10-5 fractional change in each variable produced excellent results

for a variety of problems whose objective function was accurate to 10 or 11 digits.

It was also decided that this stepsize should not change as variables grew large

or small during the optimization process so 10 -5 of the initial value of each

variable is used to evaluate the derivatives at every step--thus the requirement

that no variable is initially zero.

Davidon's algorithm is claimed to be optimally conditioned in the method

by which it updates the second derivative matrix. It does not make line searches,
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maintains quadratic termination, and strongly non-linear functions can be

optimized with it. However, it happens on occasion that an optimization step

produces a larger function value instead of a smaller one. In this case, the

algorithm cuts that step in half enough times so as to produce a smaller value

for the function, if possible. The subroutine does not print the values of the

variables as this is happening so these steps are missing from the printout.

Usually about 80 to 90% of the steps will, however, improve the objective function

until the optimization process has found a minimum.

SUB Nread(X(*)) SUB Pread(X(*))

Each of these subroutines searches its DATA statements for the frequency

of analysis and installs the appropriate parameters in program storage units

into X(*). Note that SUB Pread first zeroes the entire matrix whereas Nread

only overwrites the noise representation.

If it is desired to label the data with some quantity other than frequency,

e.g., bias or device type, then another pass-parameter could be added to the

subroutine parameter list to facilitate identification of the proper set of data

on each call. The search that looks for frequency should then be modified to

look instead for the label passed to the subroutine by this additional pass-

parameter.
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