NATIONAL RADIO ASTRONOMY OBSERVATORY Green Bank, West Virginia

ELECTRONICS DIVISION INTERNAL REPORT No. 216

DESIGNS OF 300-1000 MHz UPPER SIDEBAND CONVERTERS

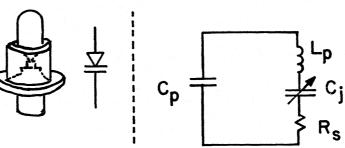
Albert Wu

JULY 1981

NUMBER OF COPIES: 150

NATIONAL RADIO ASTRONOMY OBSERVATORY

DESIGNS OF 300-1000 MHz UPPER SIDEBAND CONVERTERS


Albert Wu

Introduction

The purpose of this report is to describe the design and performance of the upconverters used in the 300-1000 MHz receiver box. The noise contribution of the upconverter to the system, theoretically, is negligible, which we have found to be quite accurate. There were three sets of such upconverters designed and working in our traveling feed receiver. One set of upconverters operate from 300 to 400 MHz with approximately 10 dB of gain. A second set of upconverters work from 500-700 MHz with approximately 7 dB of gain. A third set of upconverters operate from 700-1000 MHz with approximately 5.5 dB gain.

Manley and Rowe derived a set of general relationships of power and frequencies in an ideal (non-resistive) non-linear reactance which basically shows that, given two high-frequency generators feeding power to a non-linear reactive element will give rise to several other frequencies from the nonlinear reactance. The impedance of the non-linear reactive element will appear negative; therefore, if we send a signal into it we will find gain. The gain of the upper sideband upconverter can be calculated by the voltage and current relationships given in the Manley and Rowe matrix, but the end result will be described by an equation that contains the characteristics of the reactive element, in our case the varactor diode.

The varactor diode is a device that has a capactive reactance that changes with the voltages impressed upon it. Although a varactor is not a purely non-linear capacitor, it does have other characteristics which will be shown in the equivalent circuit, Figure 1B.

1A: Varactor Diode Symbol

1B: Equivalent Circuit

FIGURE 1

Table	1
-------	---

Upconverter Frequency	Gain max (dB)	Noise Temperature [1] (°K)	Noise Temperature [2] (°K)	R g Maximum Gain (ohms)
$.35$ $\begin{array}{c} D_1 \\ D_1 \\ D_2 \end{array}$	10.87 10.69	9.84 16.17	.66 1.08	26.29 31.57
.60 ^D * D * 2	8.53 8.30	13.72 22.62	.92 1.51	19.87 23.88
.85 D *	6.91 6.63	28.37	1.14 1.89	16.79 20.19

 $*D_1 = f_{C6} = 250$

 $D_2 = f_{C6} = 1.50$

$$D_{1} R_{s} = 0.8246 \Omega$$

 $D_2 R_s = 1.6224 \Omega$

[1] Varactor at 300°K.

[2] Varactor at 20°K.

As long as the varactor diode is in reverse bias, the above equivalent circuit can be considered accurate enough for analysis.

An upconverter will have three major frequencies involved. For instance, the signal frequency range in our case is 300-400 MHz. The pump frequency is at 4.2 GHz. Out output frequency is the sum of the signal and the pump frequency; in this case it would be 4.5-4.6 GHz.

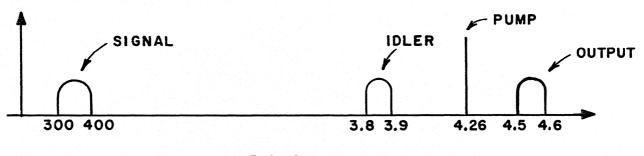


FIG. 2

In an upper sideband converter we will try to suppress the idler frequencies which is the difference between the pump and the signal frequencies, called the idler. This idler is what is enhanced in a parametric amplifier that would give us a large amount of gain. Whereas the upper sideband upconverter will have gains in direct ratio of the signal and pump frequencies modified by the varactor characteristics, namely, resistive losses. It turns out that the gain of the upconverter depends somewhat on the Q or the losses in the varactor diode.

The lower the R_s in the varactor the higher the Q of the varactor. There is, however, a trade off here because if we made Q of the varactor very high we will approach the theoretical gain of $(F_p + F_s)/F_s$, but the bandwidth would suffer because the Q is so high we will have a very narrow band of very high gain at the center of the signal frequency and the falloff is too fast. So, to compromise, we select a varactor with a Q of about 100. We find that we can have about 25% to 35% bandwidth at the signal frequency.

Design Considerations

Varactor specifications:

In order to tune the signal circuit to resonance, we must have an inductor in series with the varactor diode. For 300 MHz, we will have a relatively large inductor, so I bought the highest capacitance diode I could find, which is about 1.0 pF. An 0.2 μ H inductor was necessary to resonate the signal circuit. With the capacitance of the varactor determined, we use an analysis routine on the 9825A calculator to find the gain and noise of the upconverter. The equations for the 9825A program were entirely from the book by Blackwell and Kotzbue entitled <u>Semiconductor-Diode Parametric Amplifiers</u>.

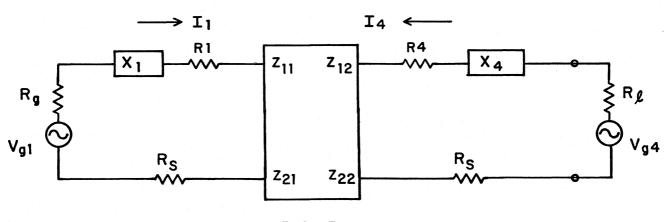


FIG. 3

Power output =
$$|I_{4}|^{2} R \lambda$$

Power input = $|V_{g_{1}}|^{2}/4 R_{g}$
 $Z_{T_{1}}$ = Total external circuit impedance at f_{1}
= $X_{1} + R_{g} + R_{s} + R_{1}$

$$Z_{T_4}$$
 = Total external circuit impedance at f_4
= X_{μ} + R + R + R + R

Transducer gain $g_t = \frac{4 R_g R_k |I_4|^2}{|V_{g_1}|^2}$ = $\frac{4 R_g R_k |Z_{21}|^2}{|(Z_{11} + Z_{T_1}) (Z_{22} + Z_{T_4}) - Z_{12} Z_{21}|^2}$

At mid-band, assuming

$$-X_1 = Z_{11}$$
, $X_4 = Z_{22}$

This means the matched input and output

$$g_{t} = \frac{4 R_{g} R_{l} \delta^{2}}{(\omega_{1} C)^{2}} \cdot \frac{1}{\left[R_{T_{1}} R_{T_{4}} + \frac{\delta^{2}}{\omega_{1} \omega_{4} C^{2}}\right]^{2}}$$

To simplify, assume

$$R_{T_1} = R_g + R_s$$
, $R_{T_4} = R_l + R_s$

and

$$g_{t} = \frac{4 R_{g} R_{l}}{\left[\left(R_{g} + R_{s}\right) \left(R_{l} + R_{s}\right) \frac{\omega_{1} C}{\delta} + \frac{\delta}{\omega_{4} C}\right]^{2}}$$

For maximum gain

$$R_g = R_{\ell}$$

and

$$R_{g} = R_{s} \sqrt{1 + \frac{\delta}{\omega_{1} \omega_{4} C^{2} R_{s}^{2}}}$$

since $1/\omega CR_s$ is defined as the effective Q of the varactor

$$R_{g} = R_{s} \sqrt{1 + \frac{\omega_{1}}{\omega_{4}}} (\delta Q)^{2}$$

With R as given above, we find

$$g_{t} = \frac{\omega_{4}}{\omega_{1}} \cdot \frac{\omega_{1} \omega_{4} (\delta Q)^{2}}{1 + \sqrt{1 + \omega_{1} / \omega_{4} (\gamma Q)^{2}}}$$

Let $\omega_1/\omega_4 \ (\delta Q)^2 = \chi$

$$g_{t} = \frac{\omega_{4}}{\omega_{1}} \cdot \frac{\chi}{\left[1 + \sqrt{1 + \chi}\right]^{2}}$$

(This is maximum gain at center of band.)

The impedance of the varactor is given by

$$Z_{in} = Z_{11} - \frac{12 \ 21}{Z_{22} + Z_{T_{4}}}$$
$$= \frac{1}{j \ \omega_{1} \ C} + \frac{\delta^{2}}{\omega_{1} \ \omega_{4} \ C^{2} \ Z_{T_{4}} \ j \ \omega_{4} \ C}$$

At resonance, all reactive components disappear and we get

$$z_{in} = \frac{\delta^2}{\omega_1 \omega_4 C^2 R_{T_4}}$$

and by symmetry

$$Z_{out} = \frac{\delta^2}{\omega_1 \omega_4 C^2 R_T}$$

Varactor Specifications (continued):

The cut-off frequency of a varactor diode is defined as

 $f_{C(v)} = \frac{1}{2\pi R_s C_j(v)}$ $Q = \frac{1}{2\pi f C_j R_s}$ $\delta = \frac{C_j(max) - C_j(min)}{2 (C_j(max) + C_j(min))}$

 $C_{j(max)}$ and $C_{j(min)}$ are usually defined, by the manufacturer, to be the capacitance at zero bias ($C_{j max}$) and 6 V reverse bias for ($C_{j min}$); for a GaAs varactor is usually 0.25.

With our decision made on an output frequency of 4.55 GHz and the first set of upconverters covering 300 MHz, we calculate the Q of the varactor at somewhere around 350 MHz. We find that we will have a Q of over 300. Faced with such high Q's, we must be limited to the bandwidths we can get at the input frequencies

$$BW = \frac{\omega_0}{Q} \qquad \qquad \omega_0 = \text{ center frequency}$$

According to this equation, with a single tuned input to our upconverter, the maximum bandwidth would be \sim 7 MHz. We were able to match into the upconverter with one-eighth wave distributed parameter transformers and some lumped constant shunt stubs to coax about 25 % bandwidth from the upconverter. In fact, at the higher frequencies the input Q of the varactors are lower. We were able to get up to 35% bandwidths from the upconverts.

Table 2

Analysis of Upconverters at Cryogenic Temperatures

Up Converter Up Converter Up Converter Sig/FreatGhz) Sis Frea(Ghz) Sig Frea(Ghz) .35 . 6 .85 Pump Free(Ghz) Pump Freg(Ghz) Pump Freq(Ghz) 4.2 4.05 3.75 (j0(pf) Cj0(pf) C30(pf) 1.156 1.156 1.156 Cj6(pf) CJ6(pf) $C_{j6}(pf)$.505 .505 :505 Fc6(Ghz) Fc6(Ghz) Fc6(Ghz) 275 275 275 9iodestemp(K) Diode temp(K) Diode temp(K) 20 20 29 Ambient temp(K) Ambient teme(K) Ambient temp(K) 399 300 300 Diode parameters Diode parameters Diode parameters Rs(ohm) = 1.1460Rs(ohm)= 1.1460 $R_{s}(ohm) = 1.1460$ Ωd= 343.2402 0d= 200.2235 Qd= 141.3342 Fc0(Ghz) =FcA(Ghz)= Fc0(Ghz)≃ 120.1341 120.1341 120.1341 For Max Gain For Max Gain For Max Gain $R_9(ohm) = 27.2989$ $R_{9}(ohm) = 20.6382$ R=(ohm) = 17.4443Rin & Rout= Rin & Rout= Rin & Rout= 26.1529 19.4921 16.2983 Gain(db)= Gain(db) ≈ 8.4102 Cain(db) = 6.761910.7746 F(db) = 0.0230F(db) = 0.0184F(dh) =0:0132 NT(K) = 21.2284 MT(K) =1.5378 NT(K) =0.8795 For Min Noise For Min Noise For Min Noise Re(ohms)= Re(ohms)= Ra(ohms) = 57:3770 40.5095 98.3476 Rin & Rout= Rin & Rout= Rin & Rout= 7.2556 7.2737 7.4770 Gain(db)= 4.6601 Gain(db)= 4.1346 Gain(db) = 5.1894 F(db) =0.0118 F(db) =0.0168 F(db)= 0.0068 H(T(K) =0.7881 MT(K) =1.1257 NT(K) =0.4559

Table 3

Analysis of Upconverters at Room Temperature

Up Converter Up Converter Up Converter Sia Freg(Ghz) Sig Freq(Ghz) Sig Free(Ghz) .35 . 6 . 85 Pump Frea(Ghz) Pump Freg(Ghz) Pump Frea(Ghz) 4.2 4.05 3.75 Cj0(pf) CjO(pf)C: j Ø (p f) 1.156 1.156 1,156 CJ6(pf) Cj6(pf) Cj6(pf) .505 .505 .505 Fc6(Ghz) Fc6(Ghz) Fc6(Ghz) 275 275 275 Diode temp(K) Diode temp(K) Diode temp(K) 300 SAA 300 Ambient temp(K) Ambient temp(K) Ambient temp(K) 380 300 300 Diode parameters Diode parameters Diode parameters: $R_{s}(ohm) = 1.1460$ Rs(ohm) = 1.1460 $R_{s}(ohm) = 1.1460$ 0 A = 343.2402 0d= 200.2235 Qd= 141.3342 Fc0(Ghz) = $Fc\theta(Ghz) =$ Fc@(Ghz)= 120.1341 120.1341 120.1341 For Max Gain For Max Gain For Max Gain $R_{9}(ohm) = 27.2989$ $R_{9}(ohm) = 20.6382$ R=(ohm)=17.4443Rin & Rout= Rin & Rout= Rin & Rout= 26.1529 19.4921 16.2983 Gain(db)≈ Gain(db) = 8.4102 Gain(db)= 6.7619 10.7746 F(db) =0.2675 F(Mb) = 0.3324F(db) =0.1932 NT(K) =18.4258 23,8676 NT(K) =MT(K) =13.1930 For Min Noise For Min Noise For Min Noise Re(ohms)= Ra(ohms)= Re(ohms)= 57.3770 40.5095 98.3476 Rin & Rout= Rin & Rout= Rin & Rout= 7.2556 7.2737 7.4770 Gain(db) = 4.6601Gain(db) = 4.1346Gain(db) = 5.18940.1735 F(dh) =F(db) =0.2458 F(db) =0.1012 NT(K) =11.8208 MT(K) = 16.8861NT(K) = 06.8383

In conclusion, we want a lower Q varactor diode for large bandwidths but high Q diodes for lower noise contribution. The gain variation is minimal in our case, so we disregarded the gain as a factor in our selection of the varactor diodes. As a matter of fact, we chose varactors with relatively low cut-off frequencies and large capacitances. The large capacitance for signal frequency resonance with relatively small inductances while the low cut-off frequencies to get as much bandwiths as possible.

Circuit Design

We plug our varactor parameters into the equations given by Blackwell and Kutzbue, <u>Semiconductor-Diode Parametric Amplifiers</u>, and find that for maximum gain the input impedance for the 300-400 MHz upconverter would be 25 Ω . A distributed parameter one-eighth wavelength with a shunt stub reactance compensation would provide up to 100 MHz bandwidth.

The pump frequency for this upconverter would be 4.2 GHz which will set our output at 4.5-4.6 GHz. The varactor diode in our case is not a frequency selective element; therefore, if we send in signal frequencies and a pump frequency we will get the sums and the differences of the pump and the signal frequencies. Since in an upconverter the sum frequencies are what we want and not the difference frequencies, we must suppress the propagation of the difference frequencies with very sharp filters. A side effect of the propagation of the difference frequencies would be instabilities in the upconverters; that is another reason why we must have very sharp pump filters as well as the output filters to select the wanted outputs from the undesired outputs and their side effects. So the upconverter would have three connections. The signal input port, the pump port and the output port. All three ports are connected to a common point on the varactor diode.

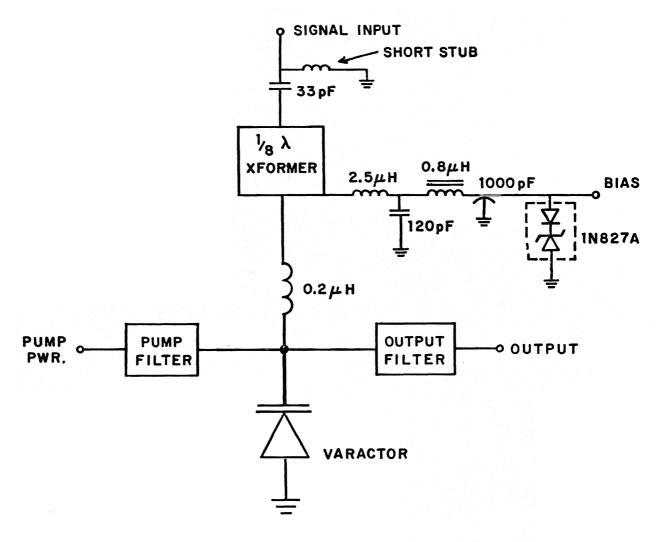


FIG. 4

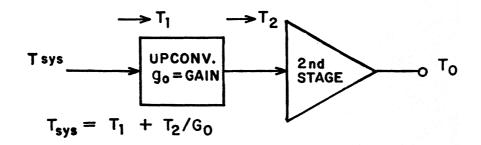


FIG. 5

Since the pump frequencies, output frequencies, and the difference frequencies of the signal and pump frequencies are in the GHz range, and the inductive reactance in the signal circuit is very high, we can neglect the possibility of an unwanted signal propagating in the signal line.

Using the given equations in Blackwell and Kotzbue, I made some analyses of the upconverters on the computer, as shown in Tables 2 and 3. One set of the computer printout is for room temperature operation and another set for 20°K operation. Of course, these analysis only assumes losses in the varactor diode but no loss in the matching and filtering networks. In our analysis there are two outputs, one set is for maximum gain of the upconverter and another set for minimum noise contribution by the upconverters. In all cases, we find it is more advantageous to build the upconverters for maximum gain and not for minimum noise because we know that an amplifier following the upconverter will have some noise contribution, and this contribution equation is as shown in Figure 5.

In any case, the system temperature would be the lowest if we can minimize the second stage noise contribution to the system, because the second stage noise contribution is high in our case. Let us take, for example, the 350 MHz upconverter. For the maximum gain case, we have noise contributed by the upconverter of about 1°K, gain of 10.8 dB (which is a ratio of approximately 12) and, assuming a second stage contribution of 20°K, the $T_{\rm SyS}$ = 1 + 20/12 = 2.7°K. Whereas, if we assume the same noise in the upconverter, we will have 0.5°K upconverter contribution and gain of 5.2 dB (which is a gain ratio of 3.3). This assumes the same 20°K second stage contribution $T_{\rm SyS}$ = 0.5 + 20/3.3 = 6.54°K. Therefore, the maximum gain case could be more advantageous.

The pump filter is very sharp and is a narrow-band, coupled-microstrip, double-pole filter. The loss through it is relatively high, approximately 2 dB. The output filter is a single-pole and relatively broad-band with approximately 0.75 dB loss. The output filter on the upconverter circuit board is really not sufficient to reject the pump frequency at the upconverter output, so we went to a commercial multipole filter at the output to give us pump attenuation. Both of these on-board filters were built with matching the output of 50 Ω to the lower impedance of the diode in mind. The diode-driving impedances for the various upconverters are on the computer printouts listed.

The circuit board is made of Epsilam-10 material which is a polystyrene resin loaded with some very high dielectric powder, such as rutile, to make it into a substrate with dielectric constant of 10.3, clad with 2 ounces of copper on both sides. After the circuit board is made, it is mounted on an aluminum slab and into an aluminum case. The aluminum slab where the substrate is mounted has a mounting hole for the varactor which is gold plated to avoid corrosion caused by dissimilar metals. After the diode is mounted, it is soldered onto the substrate with low temperature silver solder. All solder joints on the substrate is soldered with low temperature silver solder. Biasing the varactor diode is done with a 0.008 diameter phosphor bronze coil of wire solder directly to the low impedance point on the signal transformer, approximately at the same point where the inductance is soldered for signal resonance with the varactor diode. This inductor is also the .008 dia. phosphor bronze wire with enamel coating. The biasing coil is connected to a lowpass filter. All three ports of the upconverter is accessed through SMA connectors mounted on an aluminum case. The bias lead is brought out through a feedthru capacitor.

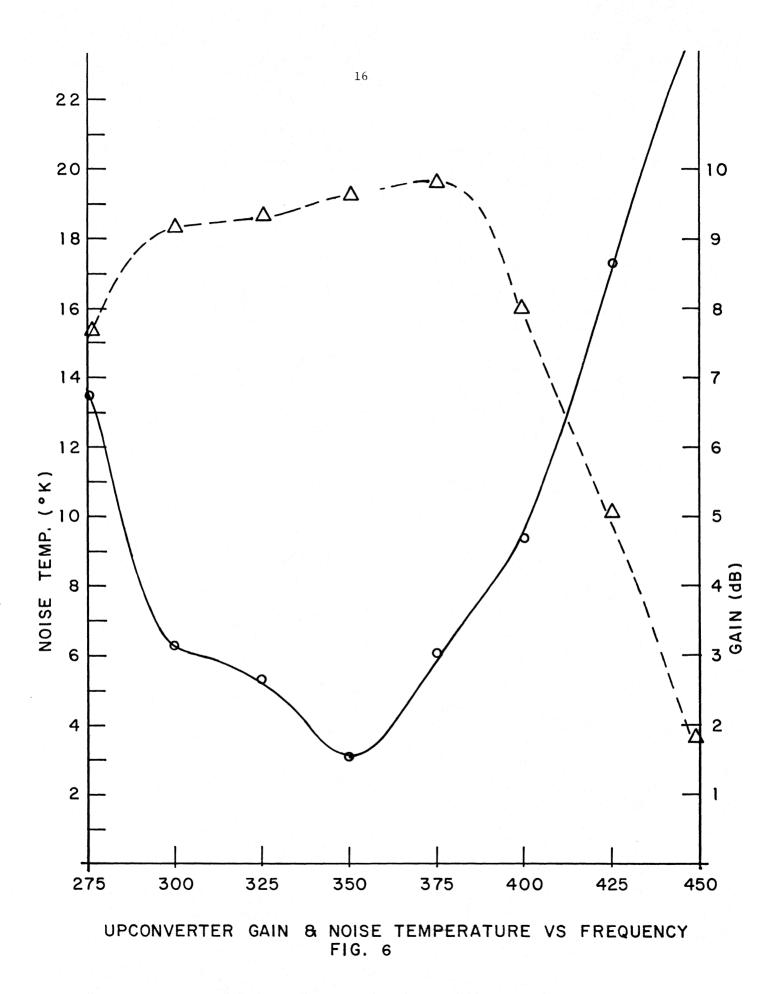
The performance of the upconverters were measured with a mixer measurement set up. At room temperature we measured about 40°K with 7 dB gain from the prototype upconverters built in the 300-400 MHz range. Subsequently, we have built two more of these upconverters that went into the traveling feed receiver which is cryogenically cooled. The gains of these upconverters are a little over 9 dB and the noise contribution is on the order of 4°K to 5°K. Currently these upconverters are on the telescope operating with a system temperature of about 20°K at the input flange. See Figures 6 and 7 for gain and noise plot of the upconverters. See Figures 8 and 9 for receiver noise performance.

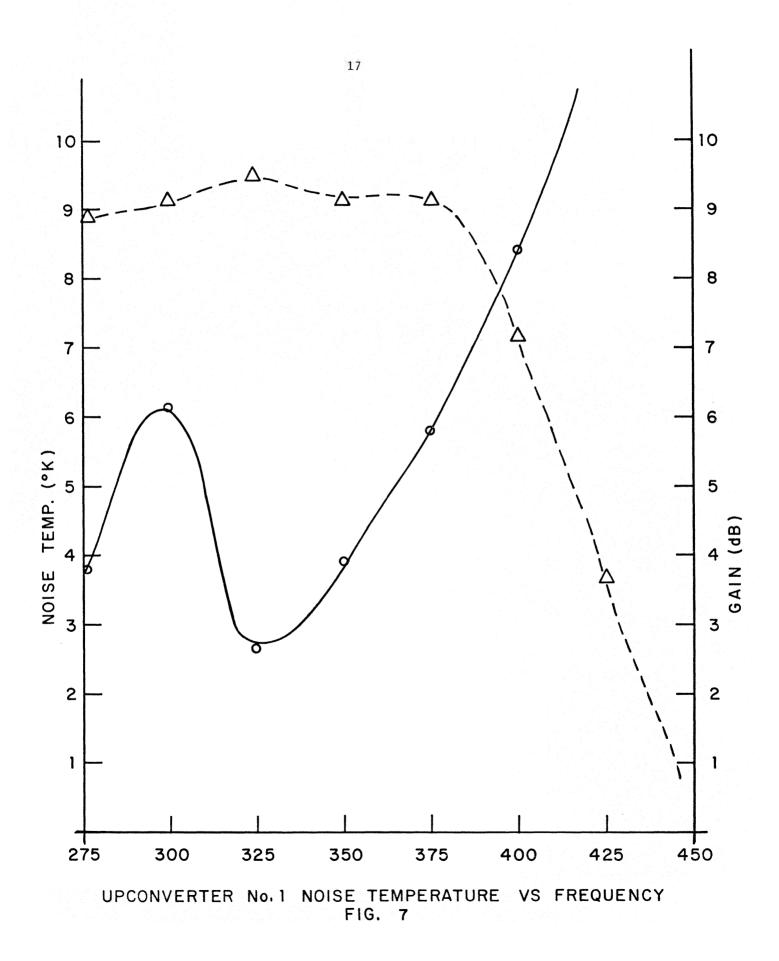
Conclusion

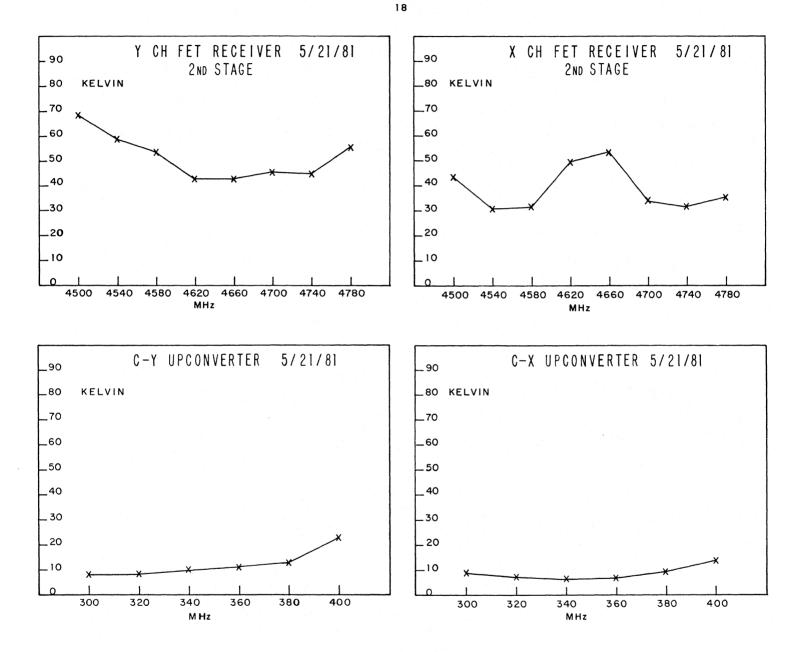
Upconverters are built for the traveling feed receiver at 300-400 MHz, 500-700 MHz, and 700-1000 MHz. The higher frequency upconverters have a little less gain as shown in the computer analysis. Therefore, the system temperature is higher but the application of the upconverters for radio astronomy is still the most desirable device in comparison to other existing amplifiers in regard to bandwidth and noise performance.

We have encountered some mechanical problems where the substrate coefficient of thermal expansion is much greater than the mounting case, but this was remedied by screwing down the substrate with additional screws. The mechanical rigidity of the coils was very poor with copper wires when they are cooled to cryogenic temperatures. We went to 0.008 diameter phosphor bronze wires to remedy the problem. There were very large sheer streeses on the varactor diode package that caused many varactor failures, but all we did was to enlarge the mounting holes through the substrate to allow for movements of the substrate with respect to the mounting slab. See Figure 10.

Conclusion (continued):


The last batch of upconverters had been in cool-down cycles for more than a dozen times and seem to be doing very well under such conditions. One of the 500-700 MHz upconverters seems to have lost a great deal of gain, as shown in Figure 9 where the noise performance is very poor. This is an earlier mechanical model which will be modified for greater mechanical stability.


Specifications/Vendors


On the following pages are specification sheets for all of the materials that go into the upconverters and also a list of vendors for these materials.

Bibliography

- J. M. Manley and H. E. Rowe, "Some General Properties of Nonlinear Elements, Part I: General Energy Relationships", <u>IRE Proc.</u>, July 1956, pp. 904-913.
- [2] J. M. Manley and H. E. Rowe, "Some General Properties of Nonlinear Elements, Part II: Small Signal Theory, IRE Proc., May 1958, pp. 850-860.
- [3] Getsinger and Matthaei, "Some Aspects of the Design of Wide-Band Up-Converters and Nondegenerate Parametric Amplifiers, <u>IEEE MTT</u>, January 1964, pp. 77-87.
- [4] G. L. Matthaei, "Design Theory of Upconverters for Use as Vectronically-Tunable Filters", IEEE MTT, September 1961, pp. 425-435.
- [5] G. L. Matthaei, "A Study of the Optimum Design of Wide-Band Parametric Amplifiers and Up-Converters, IEEE MTT, January 1961, pp. 23-38.
- [6] P. Bura, "MIC Ku-Band Up-Converters", IEEE MTT, March 1973, pp. 136-137.
- [7] L. A. Blackwell and K. L. Kotzebue, <u>Semiconductor Diode Parametric</u> Amplifiers, Prentice-Hall: Englewood Cliffs, NJ, 1961.

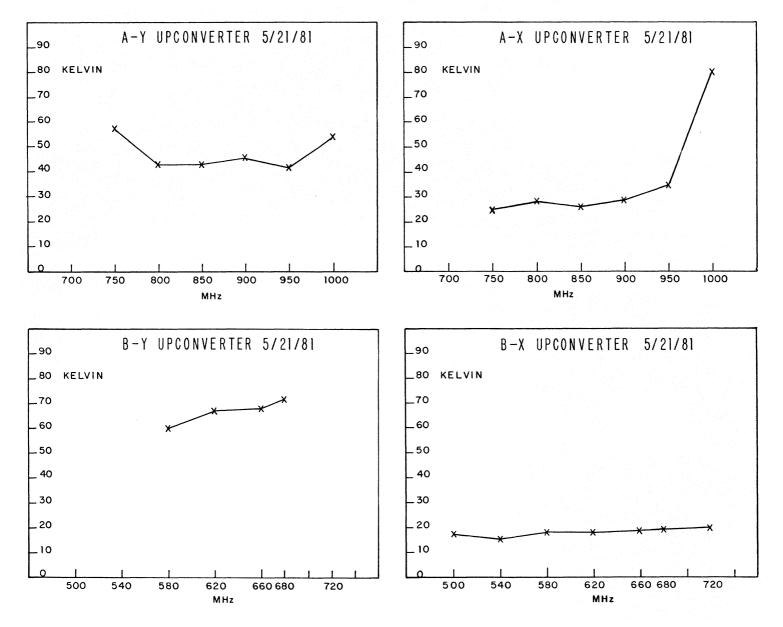


FIG. 9

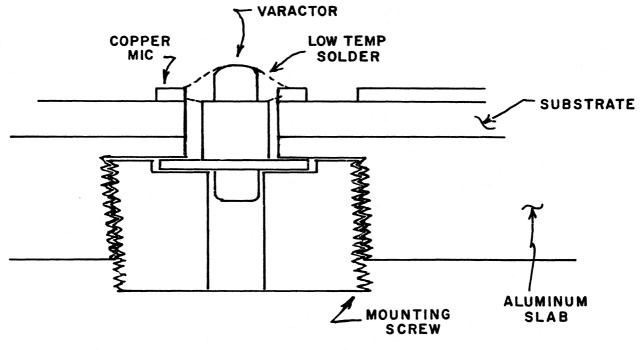


FIG. 10

Acknowledgement

Thanks to Jim Coe and Marion Pospieszalski for their suggestions and encouragement. Also, thanks to Ron Monk and Brown Cassell for graphic support, Tony Miano for drafting and Carolyn Dunkle for typing.

Spec	ifi	icat	ions
------	-----	------	------

Manufacturer	Materials
Sigmund Cohn Corporation	0.008 diameter phosphor bronze wire, cold drawn with enamel.
Omni Spectra	Part No. 2502-0000-00, Model No. 251
ЗМ	Epsilam-10 microwave substrate, 2 oz. copper clad both sides, 9" x 9" x 0.050" T'k
Dielectric Labs, Inc.	M17AH121JPS Chip capacitors, 120 pF M11AH330JPS Chip capacitors, 33 pF
Alpha Industries	GaAs varactor diodes #DVE 4556-71 $V_b = 6 V \text{ min, } C_j \delta = 0.9-1.0 \text{ pF,}$ $f_{C6} = 250 \text{ GHz, } 4^{\circ}\text{K screened.}$
Indium Corporation of America	Indalloy #104 silver bearing solder.

List of Vendors

Alpha Industries 20 Sylvan Road Woburn, MA 01801 617-935-5150

Dielectric Labs, Inc. 69 Albany Street Cazenovia, NY 13035 315-655-8710

Indium Corp. of America P. O. Box 269 Utica, NY 13503 315-797-1630 Omni Spectra 140 Fourth Avenue Waltham, MA 02254 617-890-4750

Sigmund Cohn Corporation 121 S. Columbus Avenue Mt. Vernon, NY 10553 914-664-5300

3M
3M Center
St. Paul, MN 55101
612-733-1110

THICKNESSES

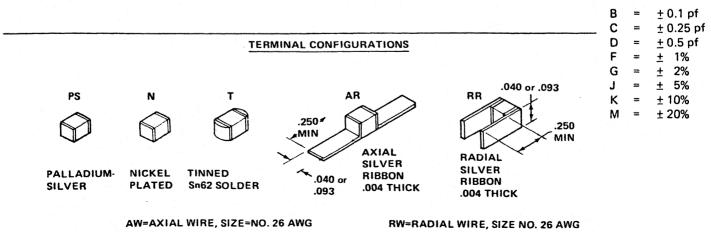
W

.050" X

.050" CUBE -----.035 MAX MID _____ .020 MAX THIN _

DLI CAPACITORS

WORKING VOLTAGES (WVDC) IN THICK-NESSES AVAILABLE


L

SIZE $11 = .050'' \times$

WORKING VOLTAGES
(WVDC) IN THICK-
NESSES AVAILABLE

CAP (rf) PART NO. TOLERANCE CUBE WVDC MID WVDC THIN WVDC CAP WVDC PART NO. TOLERANCE CUBE WVDC MID WVDC THIN WVDC 0.1 11AH0R1 B 50 5			· · · · · · · · · · · · · · · · · · ·	·····								
0.2 11AH0R2 B 1 1AH6R8 B, C, D, G, J 0.3 11AH0R3 B 7.5 11AH7R5 B, C, D, G, J 0.4 11AH0R4 B 7.5 11AH7R5 B, C, D, G, J 0.5 11AH0R5 B, C 0, G, J 8.2 11AH7R5 B, C, D, G, J 0.5 11AH0R6 B, C 0, G, J 8.2 11AH7R5 B, C, D, G, J 0.6 11AH0R6 B, C 10 11AH7R5 B, C, D, G, J 9.1 0.6 11AH0R6 B, C 10 11AH187 B, C, D, G, J 9.1 0.7 11AH0R7 B, C 11 11AH180 F, G, J, K 11 1.1 11AH180 B, C 11 11AH180 F, G, J, K 11 1.1 11AH181 B, C 11 11AH180 F, G, J, K 12 11AH181 B, C 13 11AH180 F, G, J, K 14 1.1 11AH181 B, C 11 11AH180 F, G, J, K 14 13 11AH180 F, G, J, K 14 13 11AH1		PART NO.	TOLERANCE	WVDC	WVDC	WVDC		PART NO.	TOLERANCE	WVDC	wvdc	WVDC
0.2 11AH0R2 B 0.3 11AH0R3 B 0.4 11AH0R3 B 0.5 11AH0R4 B 0.5 11AH0R5 B, C 0.5 11AH0R6 B, C, D, G, J 0.5 11AH0R6 B, C 0.6 11AH0R6 B, C 0.7 11AH0R6 B, C 0.7 11AH0R7 B, C 0.8 11AH0R6 B, C 0.7 11AH0R6 B, C 0.8 11AH0R7 B, C 10 11AH181 B, C, D, G, J 11 11AH0R7 B, C 11 11AH0R7 B, C 11 11AH0R7 B, C 11 11AH181 B, C 12 11AH181 B, C 13 11AH182 F, G, J, K 14 11AH181 B, C 15 11AH182 B, C 14 11AH181 B, C 15 11AH182 B, C 16 11AH184 B, C	0.1	11AHOR1	В	50	150		6.2	1144602	PCDCI	50	100	
0.3 11AH0R3 B 0.4 11AH0R4 B 0.5 11AH7R5 B, C, D, G, J 0.5 11AH0R5 B, C 0.5 11AH0R5 B, C, D, G, J 0.5 11AH0R5 B, C 0.6 11AH0R5 B, C 0.6 11AH0R6 B, C 0.7 11AH0R7 B, C 0.8 11AH0R8 B, C 0.9 11AH0R8 B, C 1.0 11AH0R8 B, C 1.1 11AH0R7 B, C 1.1 11AH0R8 B, C 1.1 11AH170 F, G, J, K 1.1 11AH170 F, G, J, K 1.2 11AH170 B, C 1.3 11AH171 B, C 1.4 11AH171 B, C 1.3 11AH173 B, C 1.4 11AH173 B, C 1.5 11AH176 B, C 1.6 11AH178 B, C 1.7 11AH178 B, C 1.8 11AH178 B, C<						3.00				1		
0.4 11AH0R4 B 0.5 11AH0R5 B, C 0.6 11AH0R6 B, C 0.6 11AH0R6 B, C 0.7 11AH0R6 B, C 0.8 11AH0R7 B, C 0.7 11AH0R6 B, C 0.8 11AH0R6 B, C 10 11AH187 B, C, D, G, J 0.7 11AH0R6 B, C 11 11AH170 F, G, J, K 0.9 11AH0R9 B, C 11 11AH170 F, G, J, K 12 11AH170 F, G, J, K 13 11AH170 F, G, J, K 14 11AH170 B, C 13 11AH170 F, G, J, K 14 11AH171 B, C 15 11AH170 F, G, J, K 14 11AH171 B, C 15 11AH178 B, C 15 11AH178 B, C 16 11AH170 F, G, J, K 17 11AH178 B, C 20 11AH270				l f			1 · · · · · · · · · · · · · · · · · · ·	and the second		t t		
0.5 11AH0R5 B, C 9.1 11AH9R1 B, C, D, G, J 0.6 11AH0R6 B, C 10 11AH9R1 B, C, D, G, J 0.7 11AH0R7 B, C 10 11AH100 F, G, J, K 0.8 11AH0R9 B, C 11 11AH120 F, G, J, K 0.9 11AH0R9 B, C 13 11AH120 F, G, J, K 1.0 11AH1R1 B, C 13 11AH130 F, G, J, K 1.1 11AH171 B, C 13 11AH130 F, G, J, K 1.2 11AH172 B, C 16 11AH200 F, G, J, K 1.2 11AH173 B, C 18 11AH200 F, G, J, K 1.3 11AH174 B, C 20 11AH200 F, G, J, K 1.5 11AH178 B, C 22 11AH200 F, G, J, K 1.5 11AH178 B, C 30 11AH200 F, G, J, K 1.6 11AH178 B, C 33 11AH300 F, G, J, K 2.0 11AH270 B, C, D 36												
0.6 11AH0R6 B, C 10 11AH100 F, G, J, K 0.7 11AH0R7 B, C 11 11AH100 F, G, J, K 0.8 11AH0R8 B, C 11 11AH110 F, G, J, K 0.9 11AH0R9 B, C 12 11AH120 F, G, J, K 1.0 11AH1R0 B, C 13 11AH130 F, G, J, K 1.0 11AH1R1 B, C 15 11AH130 F, G, J, K 1.1 11AH171 B, C 15 11AH180 F, G, J, K 1.2 11AH172 B, C 13 11AH130 F, G, J, K 1.3 11AH173 B, C 14 11AH180 F, G, J, K 1.4 11AH174 B, C 14 11AH200 F, G, J, K 1.4 11AH178 B, C 22 11AH200 F, G, J, K 1.5 11AH178 B, C 23 11AH300 F, G, J, K 1.6 11AH178 B, C 23 11AH300 F, G, J, K 2.1 11AH278 B, C, D 39 11AH300			1	2 - 1 - C								
0.7 11AH0R7 B, C 0.8 11AH0R8 B, C 0.9 11AH0R9 B, C 1.0 11AH1R0 B, C 1.1 11AH1R0 B, C 1.2 11AH1R0 B, C 1.3 11AH1R1 B, C 1.4 11AH1R1 B, C 1.5 11AH1R6 B, C 1.5 11AH1R6 B, C 1.6 11AH1R6 B, C 1.7 11AH1R6 B, C 2.0 11AH200 F, G, J, K 1.8 11AH1R6 B, C 2.0 11AH200 F, G, J, K 3.0 11AH200 F, G, J, K 1.8 11AH1R8 B, C 33 2.0 11AH200 B, C, J, K 2.1 11AH270 B, C, D 3.0 11AH270 F, G, J, K 2.1 1												运用的: 1995年
0.8 11AH088 B, C 0.9 11AH089 B, C 10 11AH170 F, G, J, K 11 11AH170 F, G, J, K 12 11AH170 F, G, J, K 13 11AH170 F, G, J, K 14 11AH170 F, G, J, K 15 11AH170 F, G, J, K 16 11AH170 F, G, J, K 17 11AH170 F, G, J, K 18 11AH180 F, G, J, K 13 11AH180 F, G, J, K 14 11AH171 B, C 15 11AH180 F, G, J, K 16 11AH200 F, G, J, K 17 11AH178 B, C 20 11AH200 F, G, J, K 17 11AH178 B, C 20 11AH200 F, G, J, K 18 11AH178 B, C 20 11AH200 B, C, J, K 21 11AH270 B, C, J, K 22 11AH270 B, C, J, K 30 11AH300 F, G, J, K												
0.9 11AH0R9 B, C 1.0 11AH1R0 B, C 1.1 11AH1R1 B, C 1.2 11AH1R1 B, C 1.1 11AH1R1 B, C 1.2 11AH1R1 B, C 1.3 11AH1R3 B, C 1.3 11AH1R3 B, C 1.4 11AH1R4 B, C 1.5 11AH1R0 F, G, J, K 1.4 11AH1R3 B, C 1.5 11AH1R4 B, C 20 11AH1R5 F, G, J, K 21 11AH1R4 B, C 22 11AH1R5 F, G, J, K 1.6 11AH1R6 B, C 21 11AH1R7 B, C 33 11AH300 F, G, J, K 1.6 11AH1R7 B, C 30 11AH300 F, G, J, K 31 11AH180 F, G, J, K 2.0 11AH1R7 B, C 33 11AH300 F, G, J, K 2.1 11AH270 B, C, D 34 11AH300				11 (11) 								
1.0 11AH1R0 B, C 1.1 11AH1R1 B, C 1.2 11AH1R2 B, C 1.3 11AH1R2 B, C 1.3 11AH1R3 B, C 1.3 11AH1R4 B, C 1.4 11AH1R4 B, C 1.5 11AH180 F, G, J, K 1.4 11AH1R4 B, C 1.5 11AH180 F, G, J, K 1.4 11AH1R4 B, C 1.5 11AH180 F, G, J, K 1.6 11AH180 F, G, J, K 1.6 11AH180 F, G, J, K 1.6 11AH186 B, C 1.7 11AH186 B, C 1.7 11AH187 B, C 2.0 11AH200 F, G, J, K 1.7 11AH188 B, C 2.0 11AH188 B, C 2.1 11AH200 F, G, J, K 2.1 11AH270 F, G, J, K 2.1 11AH270 F, G, J, K 2.1 11AH270 F, G, J, K 2.1							1					
1.1 11AH1R1 B,C 1.2 11AH1R2 B,C 1.3 11AH1R3 B,C 1.3 11AH1R4 B,C 1.4 11AH1R5 B,C 1.4 11AH1R4 B,C 1.5 11AH1R5 B,C 1.6 11AH180 F,G,J,K 1.7 11AH1R5 B,C 1.6 11AH200 F,G,J,K 1.7 11AH1R6 B,C 20 11AH300 F,G,J,K 1.7 11AH1R7 B,C 30 11AH300 F,G,J,K 1.8 11AH1R9 B,C 30 11AH300 F,G,J,K 1.9 11AH2R0 B,C 2.0 11AH2R0 B,C 2.1 11AH2R1 B,C 2.2 11AH2R1 B,C,D 3.3 11AH3R0 B,C,D <td></td>												
1.2 11AH1R2 B, C 1.3 11AH1R3 B, C 1.4 11AH1R4 B, C 1.5 11AH1R5 B, C 1.6 11AH1R6 B, C 1.6 11AH1R6 B, C 1.6 11AH1R6 B, C 1.7 11AH1R6 B, C 1.8 11AH1R0 F, G, J, K 1.6 11AH1R6 B, C 1.7 11AH1R7 B, C 1.8 11AH1R9 B, C 20 11AH300 F, G, J, K 1.8 11AH1R7 B, C 2.0 11AH2R0 B, C 2.0 11AH2R0 B, C 2.0 11AH2R0 B, C 2.1 11AH2R1 B, C 2.2 11AH2R1 B, C, D 3.1 11AH383 F, G, J, K 2.2 11AH2R1 B, C, D 3.3 11AH383 B, C, D 3.4 11AH380 F, G, J, K 3.5 11AH383 B, C, D 3.6 11AH383		1				の思い						
1.3 11AH1R3 B, C 1.4 11AH1R4 B, C 1.5 11AH1R5 B, C 1.6 11AH1R6 B, C 1.7 11AH1R6 B, C 1.7 11AH1R6 B, C 1.7 11AH1R6 B, C 1.7 11AH1R7 B, C 1.8 11AH1R8 B, C 1.9 11AH1R9 B, C 2.0 11AH200 F, G, J, K 1.8 11AH1R7 B, C 2.0 11AH200 F, G, J, K 1.8 11AH1R8 B, C 2.0 11AH200 F, G, J, K 3.0 11AH300 F, G, J, K 1.9 11AH1R9 B, C 2.0 11AH2R0 B, C 2.1 11AH2R1 B, C 2.2 11AH2R2 B, C, D 3.0 11AH2R7 B, C, D 3.1 11AH2R4 B, C, D 3.3 11AH380 B, C, D 3.4 11AH380 B, C, D 3.5 11AH386												
1.4 11AH1R4 B, C 1.5 11AH1R5 B, C 1.6 11AH1R6 B, C 1.6 11AH1R6 B, C 1.7 11AH1R7 B, C 1.8 11AH1R8 B, C 1.9 11AH1R9 B, C 20 11AH200 F, G, J, K 1.8 11AH1R7 B, C 30 11AH300 F, G, J, K 1.9 11AH1R9 B, C 20 11AH2R0 B, C 21 11AH2R1 B, C 22 11AH2R0 F, G, J, K 21 11AH2R1 B, C 22 11AH2R2 B, C, D 33 11AH300 F, G, J, K 24 11AH2R1 B, C 25 11AH2R2 B, C, D 33 11AH380 B, C, D 34 11AH470 F, G, J, K 25 11AH380 B, C, D 36 11AH380 B, C, D 36 11AH380 B, C, D 35 11AH380 <						385 B						
1.5 11AH1R5 B, C 1.6 11AH1R6 B, C 1.7 11AH1R6 B, C 1.8 11AH1R7 B, C 1.8 11AH1R8 B, C 1.9 11AH1R9 B, C 2.0 11AH2R0 B, C 3.0 11AH300 F, G, J, K 1.9 11AH2R0 B, C 2.0 11AH2R0 B, C 3.1 11AH2R0 B, C 2.2 11AH2R1 B, C, D 3.1 11AH2R4 B, C, D 3.2 11AH380 F, G, J, K 2.4 11AH2R1 B, C, D 3.0 11AH380 B, C, D 3.1 11AH380 B, C, D 3.3 11AH380 B, C, D 3.4 11AH380 B, C, D 3.5 11AH380 B, C, D 3.6 11AH380 F, G, J, K 3.6 11AH380 B, C, D 3.6 11AH380 B, C, D 3.6 11AH380 B, C, D 3.6 1												
1.6 11AH1R6 B, C 1.7 11AH1R7 B, C 1.8 11AH1R7 B, C 1.9 11AH1R9 B, C 2.0 11AH2R0 B, C 3.0 11AH300 F, G, J, K 2.0 11AH2R0 B, C 3.1 11AH300 F, G, J, K 2.0 11AH2R0 B, C 3.1 11AH300 F, G, J, K 2.1 11AH2R1 B, C 2.2 11AH2R2 B, C, D 3.1 11AH300 F, G, J, K 2.2 11AH2R1 B, C 3.3 11AH380 F, G, J, K 2.4 11AH2R4 B, C, D 5.6 11AH500 F, G, J, K 2.7 11AH2R7 B, C, D 3.3 11AH380 B, C, D 3.4 11AH383 B, C, D 3.5 11AH386 B, C, D 3.6 11AH386 B, C, D 3.9 11AH389 B, C, D 3.1 11AH483 B, C, D 91												
1.7 11AH1R7 B, C 1.8 11AH1R8 B, C 1.9 11AH1R9 B, C 2.0 11AH2R0 B, C 3.1 11AH330 F, G, J, K 3.2 11AH330 F, G, J, K 3.3 11AH330 F, G, J, K 3.4 11AH2R0 B, C 3.5 11AH300 F, G, J, K 3.6 11AH300 F, G, J, K 2.1 11AH2R1 B, C 2.2 11AH2R2 B, C, D 3.3 11AH370 F, G, J, K 2.4 11AH2R4 B, C, D 5.7 11AH510 F, G, J, K 3.0 11AH380 B, C, D 5.6 11AH560 F, G, J, K 3.0 11AH387 B, C, D 68 11AH620 F, G, J, K 75 11AH680 F, G, J, K 3.9 11AH389 B, C, D 8.2 11AH820 F, G, J, K 91 11AH820 F, G, J, K 92 11AH483 B, C, D												
1.8 11AH1R8 B, C 1.9 11AH1R9 B, C 2.0 11AH2R0 B, C 2.1 11AH2R1 B, C 2.1 11AH2R1 B, C 2.1 11AH2R1 B, C 2.2 11AH2R2 B, C, D 2.4 11AH2R4 B, C, D 2.7 11AH2R7 B, C, D 2.7 11AH2R7 B, C, D 3.0 11AH3R0 B, C, D 3.3 11AH3R0 B, C, D 3.3 11AH3R6 B, C, D 3.3 11AH3R9 B, C, D 3.3 11AH3R9 B, C, D 3.4 11AH3R9 B, C, D 3.5 11AH3R9 B, C, D 3.6 11AH3R6 B, C, D 3.9 11AH3R9 B, C, D 4.3 11AH4R3 B, C, D 91 11AH910 F, G, J, K 25 <												
2.0 11AH2R0 B, C 2.1 11AH2R1 B, C 2.2 11AH2R2 B, C, D 2.4 11AH2R4 B, C, D 2.7 11AH2R7 B, C, D 3.0 11AH3R0 B, C, D 3.0 11AH3R0 B, C, D 3.0 11AH3R0 B, C, D 3.0 11AH3R6 B, C, D 3.0 11AH3R8 B, C, D 3.0 11AH3R8 B, C, D 3.3 11AH3R8 B, C, D 3.4 11AH3R6 B, C, D 3.5 11AH3R6 B, C, D 3.6 11AH3R6 B, C, D 3.9 11AH3R9 B, C, D 4.3 11AH4R3 B, C, D 4.3 11AH4R7 B, C, D 4.3 11AH4R7 B, C, D 4.3 11AH4R7 B, C, D 91 11AH910 F, G, J, K 25 25												
2.0 11AH2R0 B, C 2.1 11AH2R1 B, C 2.2 11AH2R2 B, C, D 2.4 11AH2R4 B, C, D 2.7 11AH2R7 B, C, D 3.0 11AH3R0 B, C, D 3.0 11AH3R0 B, C, D 3.0 11AH3R0 B, C, D 3.0 11AH3R6 B, C, D 3.0 11AH3R8 B, C, D 3.0 11AH3R8 B, C, D 3.3 11AH3R8 B, C, D 3.4 11AH3R6 B, C, D 3.5 11AH3R6 B, C, D 3.6 11AH3R6 B, C, D 3.9 11AH3R9 B, C, D 4.3 11AH4R3 B, C, D 4.3 11AH4R7 B, C, D 4.3 11AH4R7 B, C, D 4.3 11AH4R7 B, C, D 91 11AH910 F, G, J, K 25 25												
2.1 11AH2R1 B, C 2.2 11AH2R2 B, C, D 2.4 11AH2R4 B, C, D 2.7 11AH2R7 B, C, D 3.0 11AH3R0 B, C, D 3.3 11AH3R3 B, C, D 3.4 11AH3R6 B, C, D 3.5 11AH3R6 B, C, D 3.6 11AH3R6 B, C, D 3.9 11AH3R9 B, C, D 4.3 11AH4R3 B, C, D 91 11AH3R0 F, G, J, K 2.6 11AH3R7 B, C, D 3.6 11AH3R6 B, C, D 3.9 11AH3R7 B, C, D 4.3 11AH4R7 B, C, D 91 11AH910 F, G, J, K 25 25												2
2.2 11AH2R2 B, C, D 2.4 11AH2R4 B, C, D 2.7 11AH2R7 B, C, D 3.0 11AH3R0 B, C, D 3.3 11AH3R3 B, C, D 3.6 11AH3R6 B, C, D 3.9 11AH3R9 B, C, D 4.3 11AH4R3 B, C, D 4.7 11AH4R7 B, C, D 56 11AH560 F, G, J, K 62 11AH620 F, G, J, K 50 56 11AH620 75 11AH750 F, G, J, K 25 25												
2.4 11AH2R4 B, C, D 2.7 11AH2R7 B, C, D 3.0 11AH3R0 B, C, D 3.3 11AH3R3 B, C, D 3.6 11AH3R6 B, C, D 3.9 11AH3R9 B, C, D 4.3 11AH4R3 B, C, D 91 11AH910 F, G, J, K 25 25						開発						
2.7 11AH2R7 B, C, D 3.0 11AH3R0 B, C, D 3.3 11AH3R3 B, C, D 3.6 11AH3R6 B, C, D 3.9 11AH3R9 B, C, D 4.3 11AH4R3 B, C, D 4.7 11AH4R7 B, C, D												
3.0 11AH3R0 B, C, D 3.3 11AH3R3 B, C, D 3.6 11AH3R6 B, C, D 3.9 11AH3R9 B, C, D 4.3 11AH4R3 B, C, D 4.7 11AH4R7 B, C, D						認定						
3.3 11AH3R3 B, C, D 3.6 11AH3R6 B, C, D 3.9 11AH3R9 B, C, D 4.3 11AH4R3 B, C, D 4.7 11AH4R7 B, C, D										2000 - B		
3.6 11AH3R6 B, C, D 3.9 11AH3R9 B, C, D 4.3 11AH4R3 B, C, D 4.7 11AH4R7 B, C, D											50	
3.9 11AH3R9 B, C, D 82 11AH820 F, G, J, K 25 4.3 11AH4R3 B, C, D 91 11AH910 F, G, J, K 25 4.7 11AH4R7 B, C, D 100 11AH101 F, G, J, K 25											25	
4.3 11AH4R3 B, C, D 91 11AH910 F, G, J, K 25 4.7 11AH4R7 B, C, D 100 11AH101 F, G, J, K 25											25	
4.7 11AH4R7 B, C, D 100 11AH101 F, G, J, K 25												
5.1 11AH5R1 B, C, D 110 11AH111 F, G, J, K 25 5.6 11AH5R6 B, C, D 50 50 120 11AH121 F, G, J, K 50 25				1							25	
5.6 11AH5R6 B, C, D 50 50 120 11AH121 F, G, J. K 50 25				T		製 農					25	
	5.6		B, C, D	50	50			11AH121	F, G, J, K	50	25	

DIELECTRIC LABORATORIES, INC.

CONSULT FACTORY FOR OTHER AVAILABLE TERMINATION STYLES

LASER MARKING AVAILABLE

TOLERANCES

ES AVAILABLE

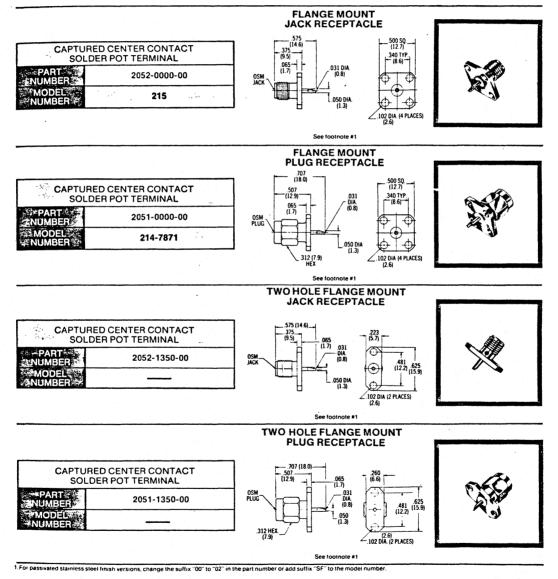
INDIUM CORPORATION OF AMERICA

Guide to Research Solder Kits

This chart identifies the Indalloy® solders in each Research Kit, and indi-This chart identities the indelogy solder's in each Hesearch Nit, and ind-cates the basic design characteristics of each solder. In all cases, Kit alloys come in wire form (approx. 4 of .047 diameter). But all are available in preforms, ribbon, foils, ingots, shot, rods, peliets, powders and spheres, as well. All high indium alloys are highly resistant to corrosion in al'aaline media. Kit #1-Indalloy Research Solder Kit Kit #2-Microelectronics Research Solder Kit

Kit #3— Special Joining Research Solder Kit Kit #4—General Purpose Research Solder Kit Kit #5—Non-metallic Bonding Kit

ndailey ^a No.	- Composition	Liquidus °C/°F	Solidus °C/"F	Plastic Range	Density lbs./cu.in.	Electrical Conductivity % of Copper	Thermal Conductivity Watts/CM C at 85 C	Thermal Coeff. of Expansion Micro In/ C at 20 C	Tensile Strength P.S.I.	Bond Holding Strength	Kit No. 1 2 3 4
136	49Bi 21In 18Pb 12Sn	58/136	58/136	Eutectic	0.3252	2.43		12.8	6300		
8	44In 42Sn 14Cd	93/200	93/200	Eutectic	0.2693		0.36	24			
1E	52in 48Sn	118/244	118/244	Eutectic	0.2635	11.7	0.34	20	1720	1630	
1	50In 50Sn	125/257	118/244	7°C/13°F	0.2635	11.7	0.34	20	1720	1630	
13	70in 15Sn 9.6Pb 5.4Cd	125/257 (MP)			0.2754		0 .39	27		2000	
290	97in 3Ag	143/290	143/290	Eutectic	0.2664	23.0	0.73	22	800		
181	51.2Sn 30.6Pb 18.2Cd	145/293	145/293	Eutectic	0.3050		0.35	24.4			
2	80in 15Pb 5Ag	149/300	142/290	7°C/10°F	0.2834	13.0	0.43	10	2550	2150	
4	100In	157/313	157/313	Eutectic	0.2640	24.0	0.78	29	575	890	e e
9	70Sn 18Pb 12In	162/324 (MP)			0.2812	12.2	0.45	24	5320	4190	
204	70in 30Pb	174/345	160/320	14°C/26°F	0.2956	8.8	0.38	28	3450		
104	62.5Sn 36.1Pb 1.4Ag	179/354	179/354	Eutectic	0.3036	11.6	0.31	25.2	7000		
5	37.5Sn 37.5Pb 25In	181/358	134/274	47°C/84°F	0.3040	7.8	0.23	23	5260	4300	
106	63Sn 37Pb	183/361	183/361	Eutectic	0.3032	11.5	1	25	7700		
205	60in 40Pb	185/365	174/345	15°C/20°F	0.3077	7.0	0.29	27	4150		
7	50In 50Pb	209/408	180/356	29°C/52°F	0.3198	6.0	0.22	27	4670	2680	
121	96.5Sn 3.5Ag	221/430	221/430	Eutectic	0.2657	16.0	0.33	30.2	2860		
206	60Pb 40In	225/437	195/383	30°C/54°F	0.3355	5.2	0.19	26	5000		
3	90in 10Ag	237/459	141/285	96℃/174°F	0.2722	22.1	0.67	15	. 1650	1600	
133	95Sn 5Sb	240/464	232/450	8℃/14℉	0.2617	11.9	0.28	31.1	5900		
10	75Pb 25in	264/508	250/482	14°C/26°F	0.3599	4.6	0.18	26	5450	3520	
150	81Pb 19In	280/536	270/518	10°C/18°F	0.3707	4.5	0.17	27	5550	•	
6	92.86Pb 4.76In 2.38Ag	300/572 (MP)			0.3982	5.5	0.25	25	4560	2830	
164	92.5Pb 5In 2.5Ag	300/572 (MP)			0.3978	5.5	0.25	25	4560	2830	
165	97.5Pb 1.5Ag 1Sn	309/588	309/588	Eutectic	0.4072	6.0	0.23	30.4	4420		
12	90Pb 5In 5Ag	310/590	290/554	20°C/36°F	0.3971	5.6	0.25	27	5730	3180	
171	95Pb 5Sn	314/597	311/592	3°C/5°F	0.3980	8.8	0.23	29.8	3400		13
11	95Pb 5In	314/598	293/558	21°C/40°F	0.3980	5.1	0.21	29	4330	3220	


OMNI SPECTRA

MINIATURE COAXIAL CONNECTOR PANEL AND BULKHEAD MOUNT

OSM Panel and Bulkhead Mount Connectors are designed to meet requirements for coaxial transitions to components, cavities, waveguides and strip transmission lines. Certain types make use of a captured center contact, while others are supplied with a separate, removable center contact to facilitate assembly. Some types may be supplied with a choice of center contact on special order; with or without capturing.

PANEL AND BULKHEAD MOUNT . SOLDER POT TERMINAL

SIGMUND COHN CORPORATION

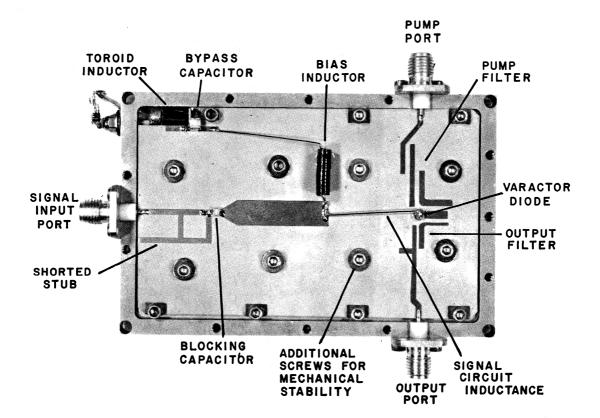
Bronze Wire

PURE BASE METALS

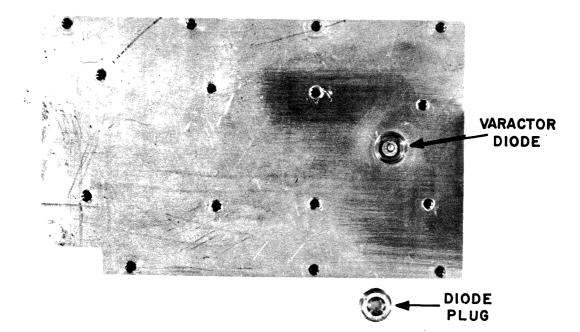
	REF.	PURITY % or COMPOSITION	RESIST (Ω/cmi Hard		TEMP. OF RESI (0-10 Hard	STANCE	STRE	SILE NGTH (1000) Annid.	ELO GATI (Perce Hard	ON	MELTING POINT (Solidus) °C	DENSITY (g/cm²)		ORMS ILAB W	
Iron		99.9+%	61	54	.0062	.0065	180	34	2	40	1536	7.9	_	-	~
205 Nickel		99%.	60	54	.0044	.0048	130	60	2	36	1440	8.9	1	2	5
270 Nickel		99.97%	40	38	.0064	.0067	95	48	2	36	1452	8.9	-	2	~
RT Nickel CP Ni	(E)	99.98%	39.4	37	.0064	.00676	100	48	2	36	1452	8.9	-	4	~
Tungsten	(F)	99.98+%	39	33	.0036	.0048	320	160	1.5	16	3410	19.3	-	-	-
Copper -		99.98%	9.44	9.24	.0041	.0043	76	32	1.5	46	1083	8.93	_	~	~

COPPER BASE ALLOYS

.


	.REF.	PURITY % or COMPOSITION	RESIS1 (Ω /cm Hard		TEMP. (OF RESIS (0-10 Hard	STANCE	STRE	SILE NGTH (1000) Annid.	ELO GATI (Perci Hard	ON	MELTING POINT (Solidus) °C	DENSITY (g/cm²)		ORM AILAI W	
Copper-Silver		Ag-15% Cu	13.8	12.2	.0028	.0031	96	64	2	18	780	10.2	-	-	~
Phosphor Bronze Grade A		Cu 95%-Sn 5%	66	65	.00072	.00074	130	60	2	58	950	8.86	-	-	~
Phosphor Bronze Grade C		Cu 92%-Sn 8%	89	84	.00058	.00063	150	70	2	60	880	8.8		-	~
Beryilium Cooper #10		Be 0.6%-Cu 96.9%-Co 2.5%	44	16	.001	.0028	113	64	2	20	1050	8.75		-	~
Beryilium Cooper #25		Be 2%-Cu 97.75-Co 0.25%	71	38	.00085	.0015	210	100	2	28	870	8.23	_	-	~
anta a secondaria de la compañía de Compañía de la compañía		ter a series de la s	- 	st et st	an terre										

EPSILAM-10 MICROWAVE SUBSTRATE


EPSILAM-10° TYPICAL PF	ROPERTIES	METHO
Effective Dielectric Constant (C Band Microstrip)		
25 mil 50 mil	10.2 ± .5 10.6 ± .5	ЗМ
Z Direction Dielectric Constant **(1 to 10 GHz)	10.0 ± 0.2	3M
Water Absorption (24 hr. H ₂ O)	0.7 - 1.0%	MIL-P 13949E
Copper Adhesion (Ibs/in.)	8 min. (ED Copper)	MIL-P 13949E
Etching Shrinkage With all copper and aluminum removed	4 - 5 mil/in.	
With 1 oz. copper ground plane	0.3 - 0.5 mil/in.	ЗМ
With aluminum ground plane	± 0.0	
Dissipation Factor -	.002	3M
Temperature Coefficient of Er (ppm/°C)	570 (-50° C to +170° C)	
Coefficient of Thermal Expansion (ppm/°C)	20 - 25 (est.)	D-696
Tensile Strength (psi)	1400	D-229
Specific Gravity	2.98 gm/Cm ³	D-792
Thermal Conductivity (cal/sec cm°C)	8.9 x 10-4	D-696
Elongation at Break	> 6% 35,000	
NASA Outgassing and Condensables	0.04% and 0.00%	
Shore Hardness	D-65	
Sonding Process	Direct-no interlayer	
Processing	Standard printed circuit methods	-
Solderability	At least 520° F—stands red hot hand soldering	-
Fabrication	Can be machined, drilled, sheared and punched— the limitation on bonding and forming is the elongation of the copper.	-
Substrate Color	Gray	-
Substrate Thickness	.010"025", .050", .075" and .100"	-
Sheet Size	9" x 9"	-
Attenuation per db/wavelength (λ) (50 ohm microstripline on 25 mil E-10)	= db/λ from 1-6 GHz .18	-
Unloaded Q	145	-
		arties continued on ba
lata for aluminum clad Epsilam-10° is based on the .063" aluminum thickness illication Values		nould be properly dist

EPSILAM-10° TY	PICAL PROPERTIES	TEST METHODS
Specific Heat	.2 cal/gm °C (determined from specific heats of ingredients)	- • •
Change in er with frequency (1-12 GHz)	negligible	-
Change in Dielectric Constant with Temp. (-50° C to +170° C)	≈1%	-
50 ohm line width on 50 mil ground plane 25 mil ground plane	40 mils 20 mils	-

3M

Shown here is the back side of the aluminum slab into which the varactor diode is screwed. The microstrip board would be mounted on the other side of this slab.

This is the complete assembly of a 500-700 MHz upconverter with the circuit board mounted on the aluminum slab and then in turn mounted in the upconverter case.