NATIONAL RADIO ASTRONOMY OBSERVATORY CHARLOTTESVILLE, VIRGINIA

ELECTRONICS DIVISION INTERNAL REPORT No. 213

INSTRUMENTATION INTERFACE FOR HP 9845A DESKTOP COMPUTER

GLENN WEINREB

May 1981

NUMBER OF COPIES: 150

TABLE OF CONTENTS

II. Han III. Son IV. Syr V. HP	groduction 3 cdware Operation 3 ctware Operation 10 achronization 15 16-Bit I/O Interface Card 17 1845A Variable Formats 21
	Appendices
Appendix	1 Logic Diagram A. Analog Output · · · · · · · · · · · · · · · · · · ·
	B. Counter Multiplexer · · · · · · · · · · · · · · · · · · ·
	C. Freq. Counters Gate Control and Multiplex
	Control over I/O Operations 28
Appendix	
	A. Burr-Brown DAC71 16-Bit Digital-to-Analog Converter 30
	B. Analog Devices 460L V/F Converter
	- 현실
	Figures
Figure 1	Interface Block Diagram 4
Figure 2	Interface Front-Panel 6
Figure 3	Interface Side-View
Figure 4	Architecture of Full Precision Variable
Figure 5	Architecture of Short Precision Variable
	Tables
	기계 전 경기 전
Table 1.	"TESTAB" Program • • • • • • • • • • • • • • • • • • •
Table 1.	Interface Lines
Table 3.	Select Codes · · · · · · · · · · · · · · · · · · ·
Table 4.	Short Precision Variable Internal Format

INSTRUMENTATION INTERFACE FOR HP9845A DESKTOP COMPUTER

I. Introduction

This report describes an HP9845A interface which provides two 6-digit resolution integrating (V/F and Counter) analog inputs, two high resolution analog outputs, and four TTL logic level outputs; a block diagram of the unit is shown in Figure 1. The purpose of the interface is to allow the computer to make noise temperature, gain and other measurements upon microwave amplifiers and mixers. To accomplish this the computer must control noise sources, microwave switches, movable shorts, voltage-controlled oscillators and measure output power (via a square-law detector or power meter). The next two sections describe hardware and software operation and should give the reader sufficient knowledge to use the interface. Additional sections treat subjects which are needed for repair or modification.

II. Hardware Operation

The interface is composed of 2 parts, the 16-bit HP interface card (HP98032A) and the interface module. The interface card plugs directly into the backplane of the HP9845. This card is an input/output port to the HP9845 and connects to the interface module via a 4-foot cable and 50-pin connector. The interface module has been given the title, "I/O 2" due to the fact that its address has been designated the number 2.

Fig. 1. Interface Block Diagram

This module is intended to be plugged into a standard VLA Bin. A power supply furnishes I/O 2 with +5V, -15V, +15V via a cable and 34-pin connector. A photograph of the front panel of I/O 2 is shown in Figure 2 and internal layout is shown in Figure 3.

The front-panel components of I/O 2 are as follows:

Analog Inputs - The two analog inputs, designated "A" and "B," allow voltages to be read by the computer ranging from 0V to 10V with ± 1 mV accuracy. These inputs have 1000 meg ohm input impedance and have overload protection of ± 30V for infinite durations and ± 150V for short duration. These inputs feed 1 MHz voltage-to-frequency (V/F) converters. The outputs of these converters are counted by 6-digit, BCD counters. This makes it possible to take the average voltage of a signal over a period of time selected with the CYCLE and BLANK digi-switch to be described.

Analog and Digital Outputs - The two analog outputs provide voltage ranging from OV to 9.999V with an accuracy of + 1 mV. These outputs have 100 ohm output impedance and are protected against short circuits. The digital outputs are TTL levels (0 - 3.5V) and can sink a 30 mA source when low (OV) and drive 40 uA when high. LED's on the front panel indicate the state of these outputs; a logic "1" (3.5V) is represented by an illuminated LED.

Cycle/Blank - A 4-digit block of thumbwheel switches control the duration of each measurement CYCLE and the fraction of each measurement cycle, denoted as BLANK, which is not integrated by the voltage/frequency converters. The left-most three (3) digits represent the CYCLE time. The right-most

Fig. 2. Interface Front-Panel

Fig. 3. Interface Side-View

digit represents BLANK time as a fraction of the cycle time. The CYCLE time ranges from 0.01 to 9.99 seconds. The BLANK time setting ranges from .1 to .9 and determines the duration of BLANK time as a fraction of the CYCLE time. A BLANK setting of .1 means 1/10th of the CYCLE time is allowed for settling of analog input signals before valid data is present. The difference between the BLANK time and CYCLE time is the COUNT time during which V/F converters are counted.

Two TTL logic signals, COUNT and BLANK, are provided through front panel BNC jacks. COUNT is high during COUNT time; BLANK is high during BLANK time.

Front Panel LED's - The 3 LED's located at the top of the front panel have the following description:

1) Color:

Red

Label:

"COUNT TIME"

Location:

Left upper panel

Characteristics: This LED indicates whether I/O 2 is in a BLANK

mode or COUNT mode (illuminated).

Significance:

This LED indicates that power is applied to

I/O 2 (will blink) and timing circuits are

operating properly.

2) Color:

Green

Label:

None

Location:

Center upper panel

Characteristics: This LED illuminates for .5 seconds after a

variable is transferred (input or output).

Significance: This LED indicates whether the program is

actually inputting or outputting data.

3) Color: Red

Label: "BLANK TIME" (erroneous); should be "MISSED DATA"

Location: Most right upper panel

Characteristics: This LED illuminates for .5 seconds if the

computer does not output during a CYCLE. This

LED should flicker when a program isn't running.

Significance: This LED helps adjusting the CYCLE/BLANK switches

according to the length of the program I/O loop

(elaborated in Software section).

9-Pin Connector - Located at the bottom of the front panel with the following pin designation:

I/O 2 Module: Front Panel 9-Pin Connector

Pin	Description
A	Digital Output A (LSB)
В	Digital Output B
С	Analog Input A +
D	Analog Input A -
E	Digital Output D (MSB)
F	Analog Input B -
H	Analog Input B +
J	Digital Output C
K	Digital Ground

III. Software Operation

All analog input/outputs on I/O 2 are controlled by software from the HP9845. There are many statements available for manipulating I/O 2, yet only the following statements are required:

RESET 2

ENTER 2 WHS NOFORMAT; Var 1, Var 2
OUTPUT 2 WHS NOFORMAT; Var 1, Var 2

RESET 2 - The RESET statement/command resets the I/O 2 multiplexers. If the multiplexers lose synchronization, the HP9845 will misread and miswrite data. RESET 2 is necessary at the beginning of all I/O programs; it can be executed from the keyboard.

Short Precision Variables - The OUTPUT and ENTER statements are followed by Short Precision variables which have 6-digit mantissa and an exponent ranging from -99 to 99. A variable can be declared to be short precision by the use of a SHORT statement (This is done once and usually near the beginning of the program).

ENTER - The ENTER statement can input either one or two variables. These variables are equal to the V/F converter counts plus 800,000. The 800,000 is necessary in order to cancel a "dummy bit" needed in transferring the variables from I/O 2 to the HP9845. The result (after subtracting 800,000) is proportional to the input voltage with the proportionality constant dependent upon COUNT time, the V/F converter outputs 1 MHz for a 10 volt input.

I/O 2 alternates between A and B inputs. One cannot input from Port A twice (successively) without inputting from Port B. After the RESET

statement is executed Port A is available for input. The following example shows two methods of inputting data from the two input ports. Example 2 is more efficient and uses less time.

Example #1

10 SHORT A, B ! Declares variables SHORT precision

20 RESET 2 ! Now Port "A" is available for input

30 ENTER 2 WHS NOFORMAT; A ! Port "A" input is put into Variable A

40 ENTER 2 WHS NOFORMAT; B ! Port "B" input is put into Variable B

Note: Port "A" is now available for

input

50 A = A - 800000! A is now a voltage derived from the input BNC.

60 B = B - 800000

Example #2

10 SHORT A, B ! See above.

20 RESET 2 ! See above.

30 ENTER 2 WHS NOFORMAT; A, B ! Variable A & B receive inputs from

Ports "A" & "B" respectively

40 A = A - 800000

50 B = B - 800000! See above.

OUTPUT - In nature, the output statement is very similar to the ENTER statement. The output statement controls both the analog outputs and the 4 digital outputs. These voltages and digital states are coded into SHORT precision variables placed at the end of the OUTPUT statement. Outputs to Port "A" or "B" alternate as described for inputs.

A variable written to either analog output Port "A" or "B" specifies a voltage between 0 and 9.999V in the units of millivolts (5000 represents 5V). One <u>must</u> specify an integer. (An output of 123.5 does not represent 123.5 mV.) One must add 800,000 to all written variables in order to set a dummy bit required in transferring data. The following example program will produce a saw-tooth wave on both analog output ports. Port "A" will be inverted in relation to the Port "B" output.

10 RESET 2

! One must set count time to 0.00

- 20 SHORT A, B
- 30 For X = 0 to 9999 Step 200 ! 2 Hz saw tooth wave
- $40 \quad Y = 9999 X$
- 50 A = Y + 800000
- B = X + 800000
- 70 OUTPUT 2 WHS NOFORMAT; A, B
- 80 Next X
- 90 GO TO 30
- 100 END

<u>Digital Output Control</u> - The control of the digital outputs is coded into the variable which is written to <u>Analog Port</u> "B". Encoding is done by adding certain numbers to this variable (in addition to 800,000) to represent certain digital outputs. In order to make digital output "A" go high, add 10,000 to the variable which is written to <u>Analog Port</u> "B". The following table shows what number must be added to set a certain bit high:

Number added to Short Precision variable which is written to Analog output Port "B".	Digital output bit set high
10,000	A
20,000	В
40,000	С
100,000	D

The following are examples of several output variables and the effects they produce:

		Statu	s of		
	I	Digital	L Ports	3	Output
Variable, B	A	В	C	D	Voltage, B
809999	Ō	0	0	0	9.999V
800001	0	0	0	0	.0010
815555	1	0	0	0	5.555V
835555	1	1	0	0	5.555V
934321	1	1	0	1	4.321V
979999	1	1	1	1	9.999₹

The following example program makes all digital outputs square-wave. Digital outputs A and C are 180° out of phase with digital outputs B and D:

- 10 RESET 2
- 20 SHORT A, B1, B2
- 30 B1 = 850000
- 40 B2 = 920000
- 50 OUTPUT 2 WHS NOFORMAT; A, B1

- 60 WAIT 250
- 70 OUTPUT 2 WHS NOFORMAT; A, B2
- 80 WAIT 250
- 90 GO TO 50

Special Output Considerations

- An output voltage of 10,000 is considered to be Ø, not 10V.
 Only the first 4 digits apply.
- 2) One cannot place a number (instead of a variable) at the end of an OUTPUT statement, i.e.,

OUTPUT 805432

is forbidden. The reason for this restriction is that numbers are not written in SHORT precision.

3) One cannot place an expression at the end of an OUTPUT statement, i.e.,

OUTPUT 2 WHS NOFORMAT; (A + 800000), (B + 800000) is forbidden. The HP 9845 will interpret the preceding example as ASCII characters requesting to be transferred.

4) Always output integers. One cannot output numbers such as 800100.5 and 800000.753.

IV. Synchronization

The COUNT/BLANK signals control the timing between the HP9845 software and I/O 2. The following rules govern this synchronization between I/O 2 and the HP9845:

- 1) The computer can only output during BLANK time. When the computer executes an OUTPUT statement during COUNT time, I/O 2 will cause the computer to WAIT until BLANK time occurs. When BLANK time begins, the transfer of data will occur.
- 2) The computer cannot <u>output</u> more than 2 variables during a BLANK period. If the computer attempts to OUTPUT a third variable, it will be put into a WAIT state until a new BLANK begins (as in Rule #1).
- 3) The computer cannot <u>input</u> more than 2 variables during a CYCLE (BLANK time + COUNT time). If it attempts to input a third variable, it will be put into a WAIT state until a new CYCLE begins.
- 4) The right-most red LED on the front panel will illuminate for .5 seconds if the computer fails to output during a BLANK period. The illumination of this LED indicates an error in a fully synchronized system.

The following program illustrates both OUTPUT and ENTER commands and synchronization. It is a test program which measures the error in an output-input loop. Analog output ports "A" and "B" are connected to analog input ports "A" and "B" respectively. The program prints out the average error on both ports every 100 readings:

.

```
10 ( G.Weinreb
                  1/9/81
                            "TESTAB"
20 ! THIS PROGRAM WILL DETERMINE THE AVERAGE ERROR FROM OUTPUTTING TO THE INPUTS
    100 TIMES. THE ERROR SHOULD BE LESS THAN 3.000 mV.
100 Adjust=.1
110 SHORT Ai, Bi, Ao, Bo
120 RESET 2
130 PRINT "PLEASE SET CYCLE TIME TO 0.20 SECONDS AND BLANK TO .5."
146 PRINT "CONNECT THE 'A' ANALOG OUTPUT TO THE 'A' ANALOG IMPUT."
143 PRINT "CONNECT THE 181 ANALOG OUTPUT TO THE 181 ANALOG INPUT."
146 PRINT
150 PRINT "ARE YOU READY?
                             (TYPE 'Y' , THEN HIT 'CONT')"
160 INPUT A$
170 PRINT "THE PROGRAM IS NOW RUNNING. IN 20 SECONDS YOU WILL RECEIVE DATA."
180 PRINT
200 FOR X=0 TO 9999 STEP 99
                               ! LAST OUTPUT OF 9999 mV. HAS NO CORRESPO
HDING INPUT.
210 Ao=Bo=X+800000
    OUTPUT 2 WHS NOFORMAT; Ao. Bo
220
    ENTER 2 WHS NOFORMAT;Ai,Bi
230
240
      IF X=0 THEN 300
                                      : IF THE FIRST OUTPUT HAS JUST BEEN ENICE
ATCD THEN WE MUST WAIT A CYCLE BEFORE VALID DATA CAN BE INPUTTED.
      Ai=(Ai-800000)*Adjust
                                     ! THE INPUT IS ADJUSTED TO "mV."
       Bi=(Bi-800000)*Adjust
260
270
       Ao=Bo=Ao-99-800000
                                     ! THE CURRENT OUTPUT IS ADJUSTED TO CORRE
SPOND TO THE LATEST INPUT.
280 Aerror=Herror+ABS(Ho-Ai)
                                   ! THE ERROR IS CALCULATED AND ADDED TO AN
ERROR ACCUMULATING VARIABLE.
    . ∈ Bernor≃Berror+ABS(Bo-Bi)
290
300 NEXT X
310
    Aerror≂Aerror/100
                                      ! THE AVG. ERROR IS FIGURED.
    Perror≕Berror/100
330 PRINT "AVG. 'A' ERROR ="; Aerror; "mV AVG. 'B' ERROR ="; Berror; "mV"
340 Aerror=Berror=0
356 GOTO 200
                                      ! THE PROGRAM DUES IT AGAIN UNTIL THE
'STOP' KEY IS HIT.
1000 END
```

TABLE 1. "TESTAB" PROGRAM

Special Considerations

- 1) The HP9845 can go into a WAIT state for a maximum of ~ 9.8 seconds, assuming there is nothing wrong with the system.
- 2) If one tries to either OUTPUT or ENTER while I/O 2 is not properly set-up (power on, cables not attached, etc.), the HP9845 will go into a WAIT state until these problems are fixed. After several minutes of waiting, an error 163 will appear.
- 3) Everytime one changes the CYCLE/BLANK setting switches, the new CYCLE/BLANK signals are delayed several seconds.

V. HP 16-bit I/O Interface Card

The Hewlett Packard 16-bit input/output card (Model No. 98032A) plugs directly into the main frame of the HP9845. This card makes it possible to input and output 16-bit words in parallel fashion. The card comes equipped with 16 data input lines and 16 data output lines (open collector outputs). All data used in conjunction with the input and the output lines is in negative true logic. In other words, 0 volts represents a logic 1 and 4 volts represents a logic 0.

There are many control lines associated with the interface card. Most of these lines can be complemented by inserting jumpers on the P.C. board of the interface card. There is a line referred to as the PRESET line which pulses high when the "RESET" command is executed from the computer. Other interface lines not used with I/O 2 include two control input lines (STIO and STI1), two control output lines (CTLO and CTL1), the I/O line (direction of transfer), the EIR line (External Interupt Request) and the PSTS line (Peripheral status).

When inputting or outputting a 16-bit word, the peripheral and the interface card must execute a procedure called a <u>handshake</u>. There are two handshake lines (PFLG and PCTL) which govern all transfers for input and output operations. The following description of handshake logic assumes that jumper 3 is installed, in the interface card used with I/O 2 (Jumper 3 complements the logic sense of the PCTL line). The PCTL is an output of the interface card and the PFLG is an input to the interface card. The following explains how a handshake is performed:

When the computer wishes to execute an input or output transfer (one 16-bit word), it will begin the handshake by checking if the peripheral is busy (PFLG will be high if the peripheral is busy). If the PFLG is low, it will proceed by driving the PCTL high. The peripheral will then respond by setting the PFLG high (Signaling to the computer that it is ready for data). The PFLG will automatically drive the PCTL low. The peripheral will keep the PFLG high until it is ready for new data or until it wishes to end the transfer. If one did not require a handshake, he could tie these two lines together (the PCTL would drive the PFLG producing a handshake).

All interface card lines enter the interface module via a 50-pin connector. From the connector (in the module) the lines are connected to the input/output pins on a wirewrap card. The following table shows all interface lines with their associated connector pins and input/output pins (on the wirewrap card):

Interface Line	Connector Pin	Wirewrap Card I/O Pin
Data Input O	A	6
DI ₁	B	8
\mathtt{DI}_2	\mathbf{c}	10
\mathtt{DI}_{3}^{2}	D	12
DI4	Oliver Edilibrium	14
DI5		16
DI ₆	H erry Carlot	18
DI7		20
DI8	K L	22
DI9	L M	24 26
DI ₁₀ DI ₁₁	N N	28
DI ₁₂	P	30
DI ₁₃	R	32
DI ₁₄	S	34
DI ₁₅	Ī	36
STI _O	u	40
STI ₁	v	42
GND	W	GND
GND	X	GND
GND	Y	GND
GND	Z	GND
1/0	a	43
PRESET	b	45
PCTL	c	47
PFLG	đ	51
PSTS		53
EIR	f	55
GND	.	GND
CTL _O CTL ₁	n n	60 62
	p	
Data Output O		66
DO ₁		68
DO ₂		70
DO ₃ DO ₄	in di in d u be. Tanàna	72 74
		74 76
DO ₅ DO ₆	w x	78
DO ₇	ÿ	80
DO8	J Z	82
D09	ĀĀ	84
DO ₁₀	ВВ	86
DO ₁₁	cc	88
DO_{12}	DD	90
DO ₁₃	EE	92
DO ₁₄	FF	94
DO ₁₅	нн	96

TABLE 2. INTERFACE LINES

The following is a list of the jumpers which have been installed in the interface card associated with $I/O\ 2$:

Jumper	Function When Installed
3	Complements logic sense of PCTL
7	Allows calculator to actuate DMA
A	Clocks the high input byte at the time the calculator reads the register
В	Selects word input mode
C	Clocks the low input byte at the time the calculator reads the register
F	Selects word input mode

Mounted on the interface card there is a switch which selects which address the card is located at on the HP9845 HP-1B bus. The address, called the "select code" can be between 0 and 16. The interface card used with I/O 2 is set for Select Code 2. All software controlling this interface card must specify its select code. The following contains a table of the select codes which are occupied:

TABLE 3. SELECT CODES

Select Code	Device
0	keyboard, printer
2	1/0 2
13	graphics
14	tape drive
15	tape drive
16	CRT

VI. HP9845 Variable Formats

INTEGER

The integer precision variable requires one 16-bit word of memory and can denote an <u>integer</u> between -32768 and 32767. The variable is stored in binary. Data bus line No. 0 pertains to the LSB of the binary word. The numbers 0 to 32767 are stored using standard binary; negative integers are stored in complement form as shown in the following examples:

INTEGER	BIT PATTERN								
+32767 ₁₀	0111 1111 1111 1111								
+ 5 ₁₀	0000 0000 0000 0101								
+ 1 ₁₀	0000 0000 0000 0001								
0	0000 0000 0000 0000								
- 1 ₁₀	1111 1111 1111 1111								
- 5 ₁₀	1111 1111 1111 1011								
-32768 ₁₀	1000 0000 0000 0000								

FULL PRECISION

The full precision variable can accommodate up to 12 digits and the exponent is between -512 and 511. This method requires four 16-bit words. The 12 digits are stored in binary-coded-decimal (BCD) and the exponent is stored in binary. Each digit requires 4 bits and the exponent requires 10 bits. Another bit pertains to the sign of the number (+/-). The following figure illustrates the architecture of the full precision variable:

16-Bit Word

Fig. 4. Architecture of Full Precision Variable

(Word #1 is the first word transferred)

SHORT PRECISION

A short precision variable can accomodate up to 6 digits and the exponent can denote a number between -64 and 63. The short precision variable requires two 16-bit words of memory to store its contents. Like the full precision variable, the digits are stored in BCD (4 bits per digit) and the exponent is stored in binary using 7 bits. The last bit pertains to the sign of the number (logic "0" = positive/logic "1" = negative). The following figure illustrates how a short-precision variable is set up:

Fig. 5. Architecture of a Short Precision Variable

Between Digit 1 and Digit 2 there is an imaginary fixed decimal. Independent of the number of digits in a short precision variable, the most significant digit will always be placed in the space referred to as "Digit 1". This means that Digit 1 could denote the 1's place or the 100,000's place depending on the exponent. The rest of the digits will fall into their place respectively. This may be referred to as a stacking procedure. All the digits of a variable (in the mantissa) are stacked against Digit 1. The following table shows some examples of how a short precision variable is stored:

Imaginary
Fixed Decimal

Number	Digit 1	2	3	4	5	6	7 Bits Exponent	Sign Bit
10	¹ 10	0	0	0	0	0	1 ₁₀	0
100	¹ 10	0	0	0	0	0	² 10	0
156.7	1 ₁₀	⁵ 10	6 ₁₀	⁷ 10	0	0	² 10	0
1567	1 ₁₀	⁵ 10	6 ₁₀	7 ₁₀	0	0	³ 10	0
-1567	110	⁵ 10	610	710	0	0	310	1
.1	¹ 10	0	0	0	0	0	-1 ₁₀	0
.123456	¹ 10	² 10	3 ₁₀	410	⁵ 10	6 ₁₀	-1 ₁₀	0
.000123	110	² 10	³ 10	0	0	0	⁻⁴ 10	0

All digits are stacked in this direction.

TABLE 4. SHORT PRECISION VARIABLE INTERNAL FORMAT

It is possible to input a number from the interface in a manner producing an illegal format. The following illustrates an example of this:

Fixed Decimal

1		t i	i.	1	1 2 2 2 2 2			Sign
Number	Digit 1	2	3	4	5	6	Exponent	Bit
1234	010	010	¹ 10	² 10	3 ₁₀	⁴ 10	5	1

Illegal Format for Short Precision Variable

Note that Digits 1 and 2 are both zero. This is in violation of the stacking procedure: the most significant digit (1₁₀) is not in the space referred to as "Digit 1". Suppose this inputted into short precision variable "A". When a "Print A" statement is executed, the computer will not catch the illegal format and print out "1234"; however, a "PRINT (A+1)" statement would print an erroneous value.

Appendix 2. Manufacturers Data

Appendix 2.A. Consists of pages 1-4 of an eleven-page report. The complete report can be obtained from Burr-Brown Research Corporation, P. O. Box 11400, Tucson, Arizona 85734.

DAC71 DAC72

High Resolution 16-BIT DIGITAL-TO-ANALOG CONVERTER

FEATURES

- 16-BIT, 4-DIGIT RESOLUTION
- ±0.003% MAXIMUM NONLINEARITY
- LOW DRIFT ±5ppm/°C (DAC72)
- AVAILABLE IN TWO TEMPERATURE RANGES: 0°C to +70°C -25°C to +85°C
- CURRENT AND VOLTAGE MODELS
- LOW COST

DESCRIPTION

The DAC71/72 are high quality 16-bit hybrid IC D/A converters available in 24-pin DIP compatible ceramic and metal packages.

DAC71/72C with internal reference and optional output amplifier offers a maximum linearity error of $\pm 0.003\%$ of FSR at room temperature and a maximum gain drift of $\pm 15 \text{ppm/}^{\circ}\text{C}$ over a temperature range of 0°C to +70°C. The DAC72 offers a maximum linearity error of $\pm 0.003\%$ of FSR at room temperature and a gain drift of $\pm 5 \text{ppm/}^{\circ}\text{C}$ over a temperature range of -25°C to +85°C.

Three basic models accept complementary 16-bit binary or complementary 4-digit BCD TTL-compatible input codes.

Packaged within the DAC71/72 are fast-settling switches and stable laser-trimmed thin-film resistors that let you select output voltages 0 to 10V (CSB and CCD) or $\pm 10V$ (COB) and output currents of ± 1 mA or 0 to -2mA. Input power is ± 15 VDC and ± 5 VDC.

International Airport Industrial Park - P.O. Box 11400 - Tucson, Arizona 85734 - Tel. (602) 746-1111 - Twx: 910-952-1111 - Cable: BBRCORP - Telex: 66-6491

SPECIFICATIONS

	wise noted.						1
MODEL	MIN	DAC71/72C	MAX	MIN	DAC72	MAX	UNITS
INPUT				L	1		<u>. L </u>
DIGITAL INPUT				· · · · · · · · · · · · · · · · · · ·			
200					4		Digits
Resolution, CCD CSB, COB		4 16			16		Bits
Logic Levels (TTL-Compatible)(1)					1		
Logical "I" (at +40µA)	+2.4		+5.5	+2.4		+5.5	VDC
Logical "0" (at -1.0mA)	0		+0.4	0		+0.4	VDC
TRANSFER CHARACTERISTICS					,	·	-
ACCURACY Linearity Error at 25°C, CCD			±0.005			±0.005	% of FSR ⁽²⁾
COB, CSB			±0.003			±0.003	% of FSR
Gain Error ¹¹ , Voltage		±0.01	±0.05		±0.01	±0.05	%
Current		±0.05	±0.25		±0.05	±0.25	%
Offset Error ¹³ , Voltage, Unipolar		±0.1	±1		±0.1	±1 ±2	mV mV
Voltage, Bipolar Current, Unipolar	gan a kanana		±2 ±1			±1	μA
Current, Unipolar			±5		1	±5	μΑ
Monotonicity Temp. Range (14-bits)	0		+50	0		+70	"C
DRIFT(Over specified temp. range)				1	<u></u>		
Total Bipolar Drift (includes gain,			<u> </u>		Tana a		T
offset, and linearity drift)(4), Voltage		±7	±15		±5	±8	ppm of FSR "C
Current Total Error over Temp. Range ⁽³⁾	Talebase T	±15	±50		±10	±40	ppm of FSR "C
Voltage, Unipolar		W	±0.083			±0.045	% of FSR
Bipolar			±0.071			±0.05	% of FSR
Current, Unipolar			±0.23			±0.24	% of FSR
Bipolar			±0.23			±0.24	% of FSR
Gain, Voltage		AVIII A	±15		1 4 7 2	±5	ppm, "C
Current			±45			±35	ppm "C
Offset						10	ppm of FSR, "C
Voltage, Unipolar		±1	±2 ±10		±i	±2 ±5	ppm of FSR, "C
Bipolar Current, Unipolar			±1		17	±1	ppm of FSR "C
Bipolar			±40	t a granda		±35	ppm of FSR "C
Differential Linearity over Temperature			±2			±1	ppm of FSR/"C
Linearity Error over Temperature			±2		1 1 1 1 1 1	±I	ppm of FSR "C
SETTLING TIME				_			
Voltage Models (to ±0.003% of FSR)		5	10		5	10	μsec
Output: 20V Step ILSB Step ⁽⁶⁾	D. 1	3	10 5		3	5	μsec
Slew Rate	sy la transfer	20			20		V _, μsec
Current Models (to ±0.003% of FSR)					Day y		
Output: 2mA step 10Ω to 100Ω Load			1		la estado de la composição	1	μsec
IkΩ Load			3		500	3	μsec
Switching Transient		500		<u> </u>	500		mV
OUTPUT ANALOG OUTPUT							
Voltage Models		T		r	T		Τ
Ranges - CSB, CCD		0 to +10			0 to +10	No.	v
СОВ		±10			±10		v
Output Current	±5	2.05		±5			mA
Output Impedance (DC)		0.05			0.05 definite to Comr		n
Short Circuit Duration Current Models		ndefinite to Com	non	l "	crimic to Comr	IIOII	
Ranges - CSB, CCD		0 to -2			0 to -2	· San	mA
COB		1 ±1 1			±1		mA
Output Impedance - Unipolar		15			15		kΩ
Bipolar		4.4			4.4		kΩ
Compliance			±2.5			±2.5	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
INTERNAL REFERENCE VOLTAGE	6.0	6.3	6.6	6.0	6.3	6.6	V
Maximum External Current(1)			±200			±200	μΑ
Temp. Coeff. of Drift	The state of the s		±10	1	1	±5	ppm "C

MODEL		DAC71 72C				DAC72		
사진 모양 시민사 사람들은 그렇게 됐다.	MIN	TYP	MAX	MIN	TYP	MAX	UNITS	
POWER SUPPLY SENSITIVITY Unipolar Offset ±15VDC +15VDC Bipolar Offset ±15VDC +5VDC Gain ±15VDC	N T	±0.0001 ±0.0001 ±0.0004 ±0.0001 ±0.001			±0.0001 ±0.0001 ±0.0004 ±0.0001		% of FSR/% Vs % of FSR/% Vs % of FSR/% Vs % of FSR/% Vs	
+5VDC POWER SUPPLY REQUIREMENTS DAC71/72 Supply Drain, ±15VDC (no load)	±14.5, +4.75	±0.0005 ±15, +5 ±25 +20	±15.5, +5.25 ±35 ±30	±14.5, +4.75	±0.0005 ±15, +5 ±25 ±20	±15.5, +5.25 ±35 ±30	% of FSR/% Vs VDC mA mA	
+5VDC (logic supply) TEMPERATURE RANGE Specification Operating (double above Drift Specs)	0 -25	.20	+70 +85	-25 -55		+85 +100	°C °C	

Storage NOTES:

1. Adding external CMOS hex buffers CD4009A will provide 15VDC CMOS input compatibility.

-55

- 2. FSR means Full Scale Range and is 20V for ±10V range, 10V for ±5V range, etc.
- 3. Adjustable to zero with external trim potentiometer.
- 4. See "Computing Total Accuracy over Temperature".
- 5. With gain and offset errors adjusted to zero at 25°C.
- 6. LSB is for 14-bit resolution.
- 7. Maximum with no degradation of specifications.

The information in this publication has been carefully, checked and is believed to be reliable, however, no responsibility is assumed for possible inaccuracies or omissions. Prices and specifications are subject to change without notice. No patent rights are granted to any of the circuits described herein.

+110

-55

+100

°C

	Pin	
I Models	No.	V Models
(MSB) Bit 1	1	Bit I (MSB)
Bit 2	2	Bit 2
Bit 3	3	Bit 3
Bit 4	4	Bit 4
Bit 5	5	Bit 5
Bit 6	6	Bit 6
Bit 7	7	Bit 7
Bit 8	8	Bit 8
Bit 9	9	Bit 9
Bit 10	10	Bit 10
Bit 11	11	Bit 11
Bit 12	12	Bit 12
Bit 13	13	Bit 13
Bit 14	14	Bit 14
Bit 15	15	Bit 15
(LSB) Bit 16	16	Bit 16 (LSB)
R _F	17	Vout
+5VDC	18	+5VDC
-15VDC	19	-15VDC
COMMON	20	COMMON
lout	21	SUMMING JUNCTION
GAIN ADJUST	22	GAIN ADJUST
+I5VDC	23	+15VDC
6.3V REF. OUT	24	6.3V REF. OUT

• $R_F = 5k\Omega$ (CSB), $10k\Omega$ (COB), $8k\Omega$ (CCD).

DISCUSSION OF SPECIFICATIONS

DIGITAL INPUT CODES

The DAC71/72 accepts complementary digital input codes in either binary (CSB, COB) or decimal (CCD) format. The COB model may be connected by the user for either complementary offset binary (COB) or complementary two's complement (CTC) codes (see Table I).

TABLE I. Digital Input Codes.

	DIGI	TAL INPUT COD	ES	
		CSB	СОВ	стс•
CSB, COB MODELS	MSB LSB All bits ON 0000000 Mid Scale 0111111 All bits OFF 1111111 1000000	Compl. Straight Binary +Full Scale +1/2 Full Scale Zero Mid Scale -1LSB	Compl. Offset Binary +Full Scale Zero -Full Scale -ILSB	Compl. Two's Complement -ILSB -Full Scale , Zero +Full Scale
MODELS		CCD (Complementary Coded Decimal) 4 Digits		*Invert the MSB of the COB code with an external
a C C C	F.S. bits ON 01100110 All bits OFF 11111111	+Full Sc Zero	ale	inverter to obtain CTC code.

ACCURACY

LINEARITY

This specification describes one of the truest measures of

D/A converter accuracy. As defined it means that the analog output will not vary by more than ±0.003% max (CSB, COB) or ±0.005% max (CCD) from a straight line drawn through the end points (all bits ON and all bits OFF) at +25°C.

DIFFERENTIAL LINEARITY

Differential linearity error of a D/A converter is the deviation from an ideal 1LSB voltage change from one adjacent output state to the next. A differential linearity error specification of $\pm 1/2$ LSB means that the output voltage step sizes can be anywhere from 1/2LSB to 3/2LSB when the input changes from one adjacent input stage to the next.

MONOTONICITY

Monotonicity over 0°C to +50°C (DAC71/72C) and 0°C to +70°C (DAC72) is guaranteed in the DAC71/72. This insures that the analog output will increase or remain the same for increasing 14-bit input digital codes.

DRIFT

Gain Drift is a measure of the change in the full scale range output over temperature expressed in parts per million per °C (see Figure 1). Gain Drift is established by: 1) testing the end point differences for each DAC71/72 model at +25°C and the appropriate specification temperature extremes; 2) calculating the gain error with respect to the +25°C value; and 3) dividing by the

High Accuracy, 100kHz and 1MHz Voltage to Frequency Converters

MODELS 458 and 460

FEATURES

High Stability: 5ppm/°C max, Model 458L

15ppm/°C max, Model 460L

Low Nonlinearity: 100ppm max, Model 458

150ppm max, Model 460

Versatility: Differential Input Stage

Voltage and Current Inputs Floating Inputs: ±10V CMV

Wide Dynamic Range: 6 Decades, Model 460 TTL/DTL or CMOS/HNIL Compatible Output

APPLICATIONS

Fast Analog-to-Digital Converter
High Resolution Optical Data Link
Ratiometric Measurements
2-Wire High Noise Immunity Digital Transmission
Long Term Precision Integrator

GENERAL DESCRIPTION

Models 458 and 460 are high performance, differential input, voltage to frequency modular converters designed for analog to digital applications requiring accuracy and fast data conversion. Model 458 offers a 100kHz full scale frequency, guaranteed nonlinearity of ±0.01% maximum over five decades (1Hz to 100kHz) of operation and guaranteed low maximum gain drift in three model selections; model 458L: 5ppm/°C max; model 458K: 10ppm/°C max; and model 458J: 20ppm/°C max. Model 460 offers a 1MHz full scale frequency, guaranteed maximum nonlinearity of ±0.015% over six decades (1Hz to 1MHz) of operation and guaranteed low maximum gain drift in three selections; model 460L: 15ppm/°C max; model 460K: 25ppm/°C max; and model 460J: 50ppm/°C max. Model 460L is the industries' first 1MHz V/F converter to offer 15ppm/°C maximum gain drift.

The differential input stage of models 458 and 460 provide the versatility of either direct interface to off-ground 0 to +11V input signals with common mode voltages (CMV) to ±10V, as well as ground referenced positive, 0 to +11V or negative, 0 to -11V signals. Both models also accept positive current signals: 0 to +0.5mA, model 458; 0 to +1mA, model 460 for current to frequency (I/F) applications.

The rated performance of both models 458 and 460 is achieved without the need for external components or adjustments. Optional adjustments are available for trimming full scale frequency and the input offset voltage.

WHERE TO USE MODELS 458 AND 460

The combination of low gain drift, low nonlinearity and the versatility of a differential input with both high speed (100kHz/1MHz) models, offer excellent solutions to a wide variety of demanding applications; in high speed remote data acquisition systems — two wire data transmission over long

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

wires; in 5½ digit DVM's – featuring high resolution A/D conversion, monotonic performance, no missing codes and high noise rejection; in strain gage bridge weighing applications – accurate ratiometric measurements over wide dynamic range.

DESIGN APPROACH - PRECISION CHARGE BALANCE Models 458 and 460 incorporate a superior charge balance design that result in high linearity and temperature stability - see Figure 1. Both models accept unipolar, single-ended voltage or current input signals directly. By offsetting the input using the current terminal, models 458 and 460 will accept bipolar input voltages up to ±5V.

Figure 1. Block Diagram - Models 458, 460

P.O. Box 280; Norwood, Massachusetts 02062 U.S.A. Telex: 924491 Cables: ANALOG NORWOODMASS

SPECIFICATIONS (typical @ +25°C and V_S = ±15VDC unless otherwise noted)

Current Input	K L	1	
Voltage Input Current Input ANALOG INPUT Configuration Voltage Signal Range e_IN Terminal (e_IN = 0) Opifferential (e_IN = 0) Opifferential (e_IN = e_REF) Overrange Current Signal Range (i_IN) Common Mode Voltage Common Mode Voltage Common Mode Rejection Impedance, e_IN Terminal e_REF Terminal i_IN Terminal Max Safe Input ACCURACY Warm Up Time Nonlinearity, e_IN = +0.1mV to +11V c_IN = -0.1mV to -11V Full Scale Error¹ Gain vs. Temperature (0 to +70°C) vs. Supply Voltage vs. Time Input Offset Voltage² vs. Temperature (0 to +70°C) vs. Supply Voltage vs. Time RESPONSE Settling Time, ±0.01% +10V Step Overload Recovery Time FREQUENCY OUTPUT³	DOUT = (2 x 10 ⁵ Hz/mA) i _{IN} Differential to +10V dc min to -10V dc min to +10V dc min 10% min to +0.5mA min 10V OdB OkΩ OkΩ OkΩ VS Seconds to 0.01% 0.01% of Full Scale, max 0.01% of Full Scale 0.01% to +2%, max 20ppm/°C max ±10ppm/°C max ±5ppm/°C max 15ppm/% 10ppm/day	f _{OUT} = (10° Hz/mA) i _{IN} Differential 0 to +10V dc min 0 to -10V dc min 0 to +10V dc min 10% min 0 to +1mA min ±10V 40dB 10kΩ 20kΩ 0Ω ±V _S 2 Minutes to 0.02% ±0.015% of Full Scale, max ±0.015% of Full Scale +0.1% to +2%, max ±50ppm/°C max ±25ppm/°C max ±15ppm/°C max ±25ppm/%	
Current Input ANALOG INPUT Configuration Voltage Signal Range elin Terminal (elin = 0) Differential (elin = 0) Overrange Current Signal Range (ilin) Common Mode Voltage Common Mode Rejection Impedance, elin Terminal eref Terminal in Terminal Max Safe Input ACCURACY Warm Up Time Nonlinearity, elin = +0.1mV to +11V cin = -0.1mV to -11V Full Scale Error (in = -0.1mV to -11V sus. Supply Voltage vs. Time linput Offset Voltage (in = -0.1mV to -11V vs. Supply Voltage vs. Time 2: 1: 1: 1: 1: 1: 1: 1: 1: 1:	DOUT = (2 x 10 ⁵ Hz/mA) i _{IN} Differential to +10V dc min to -10V dc min to +10V dc min 10% min to +0.5mA min 10V OdB OkΩ OkΩ OkΩ VS Seconds to 0.01% 0.01% of Full Scale, max 0.01% of Full Scale 0.01% to +2%, max 20ppm/°C max ±10ppm/°C max ±5ppm/°C max 15ppm/% 10ppm/day	f _{OUT} = (10° Hz/mA) i _{IN} Differential 0 to +10V dc min 0 to -10V dc min 0 to +10V dc min 10% min 0 to +1mA min ±10V 40dB 10kΩ 20kΩ 0Ω ±V _S 2 Minutes to 0.02% ±0.015% of Full Scale, max ±0.015% of Full Scale +0.1% to +2%, max ±50ppm/°C max ±25ppm/°C max ±15ppm/°C max ±25ppm/%	
Current Input	DOUT = (2 x 10 ⁵ Hz/mA) i _{IN} Differential to +10V dc min to -10V dc min to +10V dc min 10% min to +0.5mA min 10V OdB OkΩ OkΩ OkΩ VS Seconds to 0.01% 0.01% of Full Scale, max 0.01% of Full Scale 0.01% to +2%, max 20ppm/°C max ±10ppm/°C max ±5ppm/°C max 15ppm/% 10ppm/day	f _{OUT} = (10° Hz/mA) i _{IN} Differential 0 to +10V dc min 0 to -10V dc min 0 to +10V dc min 10% min 0 to +1mA min ±10V 40dB 10kΩ 20kΩ 0Ω ±V _S 2 Minutes to 0.02% ±0.015% of Full Scale, max ±0.015% of Full Scale +0.1% to +2%, max ±50ppm/°C max ±25ppm/°C max ±15ppm/°C max ±25ppm/%	
Configuration Voltage Signal Range c _{IN} Terminal (c _{REF} = 0) 0 c _{REF} Terminal (c _{IN} = 0) 0 Differential (c _{IN} - c _{REF}) 0 Overrange + 0 Current Signal Range (i _{IN}) 0 Common Mode Voltage ± 0 Common Mode Rejection 4 Impedance, c _{IN} Terminal 2 c _{REF} Terminal 4 i _{IN} Terminal 0 Max Safe Input ± 0 ACCURACY Warm Up Time Nonlinearity, c _{IN} = +0.1mV to +11V c _{IN} = -0.1mV to -11V full Scale Error 1 Gain vs. Temperature (0 to +70°C) vs. Supply Voltage vs. Time 1 Input Offset Voltage 2 vs. Temperature (0 to +70°C) 2 vs. Supply Voltage 2 vs. Time 2 response 2 Settling Time, ±0.01% +10V Step 3 Overload Recovery Time 10	to +10V dc min to -10V dc min to +10V dc min 10% min to +0.5mA min 10V 0dB 0kΩ 0kΩ 0kΩ 0kΩ 0kΩ 0.01% 0 f Full Scale, max 0.01% of Full Scale 0.1% to +2%, max 20ppm/°C max ±10ppm/°C max ±5ppm/°C max 15ppm/% 10ppm/day	0 to +10V dc min 0 to -10V dc min 0 to +10V dc min +10% min 0 to +1mA min ±10V 40dB 10kΩ 20kΩ 20kΩ 20c ±V _S 2 Minutes to 0.02% ±0.015% of Full Scale, max ±0.015% of Full Scale +0.1% to +2%, max ±50ppm/°C max ±15ppm/°C max ±25ppm/%	
Configuration Voltage Signal Range e _{IN} Terminal (e _{REF} = 0) 0 c _{REF} Terminal (e _{IN} = 0) 0 Differential (e _{IN} - e _{REF}) 0 Overrange + 0 Current Signal Range (i _{IN}) 0 Common Mode Voltage ± 0 Common Mode Rejection 4 Impedance, e _{IN} Terminal 2 e _{REF} Terminal 1 i _{IN} Terminal 1 Max Safe Input ± 0 ACCURACY Warm Up Time Nonlinearity, e _{IN} = +0.1mV to +11V to +11V to +11V e _{IN} = -0.1mV to -11V to +11V e _{IN} = -0.1mV to -11V to +11V e _{IN} = -0.1mV to +10V to +10 to	to +10V dc min to -10V dc min to +10V dc min 10% min to +0.5mA min 10V 0dB 0kΩ 0kΩ 0kΩ 0kΩ 0kΩ 0.01% 0 f Full Scale, max 0.01% of Full Scale 0.1% to +2%, max 20ppm/°C max ±10ppm/°C max ±5ppm/°C max 15ppm/% 10ppm/day	0 to +10V dc min 0 to -10V dc min 0 to +10V dc min +10% min 0 to +1mA min ±10V 40dB 10kΩ 20kΩ 20kΩ 20c ±V _S 2 Minutes to 0.02% ±0.015% of Full Scale, max ±0.015% of Full Scale +0.1% to +2%, max ±50ppm/°C max ±15ppm/°C max ±25ppm/%	
Voltage Signal Range c _{IN} Terminal (c _{REF} = 0) 0 c _{REF} Terminal (c _{IN} = 0) 0 Differential (c _{IN} = 0) 0 Overrange + 0 Current Signal Range (i _{IN}) 0 Common Mode Voltage Common Mode Rejection 4 Impedance, c _{IN} Terminal 2 c _{REF} Terminal 4 i _{IN} Terminal 0 Max Safe Input 2 ACCURACY Warm Up Time 5 Nonlinearity, c _{IN} = +0.1mV to +11V c _{IN} = -0.1mV to -11V Full Scale Error 1 Gain vs. Temperature (0 to +70°C) 2 vs. Supply Voltage 2 vs. Time 2 Input Offset Voltage 2 vs. Temperature (0 to +70°C) 2 vs. Supply Voltage 2 vs. Time 2 RESPONSE 5 Settling Time, ±0.01% +10V Step 3 Overload Recovery Time 10 Overload Recovery Time 11 Overload R	to -10V dc min to +10V dc min 10% min to +0.5mA min 10V 0dB 0kΩ 0kΩ 0kΩ 0VS Seconds to 0.01% 0.01% of Full Scale, max 0.01% of Full Scale on the second of	0 to -10V dc min 0 to +10V dc min +10% min 0 to +1mA min ±10V 40dB 10kΩ 20kΩ 0Ω ±V _S 2 Minutes to 0.02% ±0.015% of Full Scale, max ±0.015% of Full Scale +0.1% to +2%, max ±50ppm/°C max ±25ppm/°C max ±15ppm/°C max ±25ppm/%	
e _{IN} Terminal (e _{REF} = 0) 0 c _{REF} Terminal (e _{IN} = 0) 0 Differential (e _{IN} - c _{REF}) 0 Overrange + Current Signal Range (i _{IN}) 0 Common Mode Voltage ± Common Mode Rejection Impedance, c _{IN} Terminal 2 e _{REF} Terminal 4 i _{IN} Terminal 5 Max Safe Input ± ACCURACY Warm Up Time 5 Nonlinearity, e _{IN} = +0.1mV to +11V c _{IN} = -0.1mV to -11V Full Scale Error 4 Gain vs. Temperature (0 to +70°C) vs. Supply Voltage vs. Time time Input Offset Voltage 2 vs. Temperature (0 to +70°C) 2 vs. Supply Voltage composite time time vs. Time time time time RESPONSE Settling Time, ±0.01% +10V Step 3 Overload Recovery Time 10 Overload Rec	to -10V dc min to +10V dc min 10% min to +0.5mA min 10V 0dB 0kΩ 0kΩ 0kΩ 0VS Seconds to 0.01% 0.01% of Full Scale, max 0.01% of Full Scale on the second of	0 to -10V dc min 0 to +10V dc min +10% min 0 to +1mA min ±10V 40dB 10kΩ 20kΩ 0Ω ±V _S 2 Minutes to 0.02% ±0.015% of Full Scale, max ±0.015% of Full Scale +0.1% to +2%, max ±50ppm/°C max ±25ppm/°C max ±15ppm/°C max ±25ppm/%	
e _{REF} Terminal (e _{IN} = 0) Differential (e _{IN} - c _{REF}) Overrange Current Signal Range (i _{IN}) Common Mode Voltage Common Mode Rejection Impedance, c _{IN} Terminal e _{REF} Terminal i _{IN} Terminal Max Safe Input ACCURACY Warm Up Time Nonlinearity, e _{IN} = +0.1mV to +11V c _{IN} = -0.1mV to -11V Full Scale Error ¹ Gain vs. Temperature (0 to +70°C) vs. Supply Voltage vs. Time Input Offset Voltage ² vs. Temperature (0 to +70°C) vs. Supply Voltage vs. Time 1: RESPONSE Settling Time, ±0.01% +10V Step Overload Recovery Time FREQUENCY OUTPUT ³	to +10V dc min 10% min to +0.5mA min 10V 0dB 0kΩ 0kΩ 0kΩ Ω V _S Seconds to 0.01% 0.01% of Full Scale, max 0.01% of Full Scale 0.1% to +2%, max 20ppm/°C max ±10ppm/°C max ±5ppm/°C max 15ppm/% 10ppm/day	0 to +10V dc min +10% min 0 to +1mA min ±10V 40dB 10kΩ 20kΩ 0Ω ±V _S 2 Minutes to 0.02% ±0.015% of Full Scale, max ±0.015% of Full Scale +0.1% to +2%, max ±50ppm/°C max ±15ppm/°C max ±25ppm/%	
Differential (e _{IN} - e _{REF}) Overrange Current Signal Range (i _{IN}) Common Mode Voltage Common Mode Rejection Impedance, e _{IN} Terminal e _{REF} Terminal i _{IN} Terminal Max Safe Input ACCURACY Warm Up Time Nonlinearity, e _{IN} = +0.1mV to +11V c _{IN} = -0.1mV to -11V Full Scale Error ¹ Gain vs. Temperature (0 to +70°C) vs. Supply Voltage vs. Time Input Offset Voltage ² vs. Temperature (0 to +70°C) vs. Supply Voltage vs. Time 1: RESPONSE Settling Time, ±0.01% +10V Step Overload Recovery Time FREQUENCY OUTPUT ³	10% min to +0.5mA min 10V 0dB 0dΩ 0kΩ 0kΩ Ω V _S Seconds to 0.01% 0.01% of Full Scale, max 0.01% of Full Scale 0.1% to +2%, max 20ppm/°C max ±10ppm/°C max ±5ppm/°C max 15ppm/% 10ppm/day	+10% min 0 to +1mA min ±10V 40dB 10kΩ 20kΩ 0Ω ±V _S 2 Minutes to 0.02% ±0.015% of Full Scale, max ±0.015% of Full Scale +0.1% to +2%, max ±50ppm/°C max ±15ppm/°C max ±25ppm/%	
Overrange Current Signal Range (i _{IN}) Common Mode Voltage Common Mode Rejection Impedance, c _{IN} Terminal c _{REF} Terminal i _{IN} Terminal Max Safe Input ACCURACY Warm Up Time Nonlinearity, c _{IN} = +0.1mV to +11V c _{IN} = -0.1mV to -11V Full Scale Error + (0 to +70°C) vs. Supply Voltage vs. Time Input Offset Voltage ² vs. Temperature (0 to +70°C) vs. Supply Voltage vs. Time 1: RESPONSE Settling Time, ±0.01% +10V Step Overload Recovery Time FREQUENCY OUTPUT ³	to +0.5mA min 10V 0dB 0kΩ 0kΩ 0kΩ 0kΩ V _S Seconds to 0.01% 0.01% of Full Scale, max 0.01% of Full Scale 0.1% to +2%, max 20ppm/°C max ±10ppm/°C max ±5ppm/°C max 15ppm/% 10ppm/day	0 to +1mA min ±10V 40dB 10kΩ 20kΩ 0Ω ±V _S 2 Minutes to 0.02% ±0.015% of Full Scale, max ±0.015% of Full Scale +0.1% to +2%, max ±50ppm/°C max ±15ppm/°C max ±25ppm/%	
Common Mode Voltage	10V 0dB 0kΩ 0kΩ Ω Ω Ω VS Seconds to 0.01% 0.01% 0.01% of Full Scale, max 0.01% of Full Scale 0.1% to +2%, max 20ppm/°C max ±10ppm/°C max ±5ppm/°C max 15ppm/% 10ppm/day	±10V 40dB 10kΩ 20kΩ 0Ω ±V _S 2 Minutes to 0.02% ±0.015% of Full Scale, max ±0.015% of Full Scale +0.1% to +2%, max ±50ppm/°C max ±25ppm/°C max ±15ppm/°C max ±25ppm/%	
Common Mode Rejection 4	0dB 0kΩ 0kΩ 0kΩ Ω V _S Seconds to 0.01% 0.01% of Full Scale, max 0.01% of Full Scale 0.1% to +2%, max 20ppm/°C max ±10ppm/°C max ±5ppm/°C max 15ppm/%	40dB 10kΩ 20kΩ 0Ω ±V _S 2 Minutes to 0.02% ±0.015% of Full Scale, max ±0.015% of Full Scale +0.1% to +2%, max ±50ppm/°C max ±25ppm/°C max ±15ppm/°C max ±25ppm/%	
Impedance, e _{IN} Terminal 2 e _{REF} Terminal 4 i _{IN} Terminal 0 Max Safe Input ± ACCURACY Warm Up Time 5 Nonlinearity, e _{IN} = +0.1mV to +11V ± e _{IN} = -0.1mV to -11V ± Gain vs. Temperature (0 to +70°C) ± vs. Supply Voltage ± vs. Time ± Input Offset Voltage ² vs. Temperature (0 to +70°C) ± vs. Time ± transport ± vs. Time ± transport ±	0kΩ 0kΩ Ω V _S Seconds to 0.01% 0.01% of Full Scale, max 0.01% of Full Scale 0.1% to +2%, max 20ppm/°C max ±10ppm/°C max ±5ppm/°C max 15ppm/%	10kΩ 20kΩ 0Ω ±V _S 2 Minutes to 0.02% ±0.015% of Full Scale, max ±0.015% of Full Scale +0.1% to +2%, max ±50ppm/°C max ±15ppm/°C max ±25ppm/%	
Care	OkΩ V _S Seconds to 0.01% 0.01% of Full Scale, max 0.01% of Full Scale 0.1% to +2%, max 20ppm/°C max ±10ppm/°C max ±5ppm/°C max 15ppm/%	20kΩ 0Ω ±V _S 2 Minutes to 0.02% ±0.015% of Full Scale, max ±0.015% of Full Scale +0.1% to +2%, max ±50ppm/°C max ±25ppm/°C max ±15ppm/°C max ±25ppm/%	
Name	Ω V _S Seconds to 0.01% 0.01% of Full Scale, max 0.01% of Full Scale 0.01% to +2%, max 20ppm/°C max ±10ppm/°C max ±5ppm/°C max 15ppm/%	0Ω ±V _S 2 Minutes to 0.02% ±0.015% of Full Scale, max ±0.015% of Full Scale +0.1% to +2%, max ±50ppm/°C max ±25ppm/°C max ±15ppm/°C max ±25ppm/%	
Max Safe Input	V _S Seconds to 0.01% 0.01% of Full Scale, max 0.01% of Full Scale 0.1% to +2%, max 20ppm/°C max ±10ppm/°C max ±5ppm/°C max 15ppm/% 10ppm/day	±V _S 2 Minutes to 0.02% ±0.015% of Full Scale, max ±0.015% of Full Scale +0.1% to +2%, max ±50ppm/°C max ±25ppm/°C max ±15ppm/°C max ±25ppm/%	
ACCURACY Warm Up Time	Seconds to 0.01% 0.01% of Full Scale, max 0.01% of Full Scale 0.1% to +2%, max 20ppm/°C max ±10ppm/°C max ±5ppm/°C max 15ppm/% 10ppm/day	2 Minutes to 0.02% ±0.015% of Full Scale, max ±0.015% of Full Scale +0.1% to +2%, max ±50ppm/°C max ±25ppm/°C max ±15ppm/°C max ±25ppm/%	
Warm Up Time	0.01% of Full Scale, max 0.01% of Full Scale 0.1% to +2%, max 20ppm/°C max ±10ppm/°C max ±5ppm/°C max 15ppm/%	±0.015% of Full Scale, max ±0.015% of Full Scale +0.1% to +2%, max ±50ppm/°C max ±25ppm/°C max ±15ppm/°C max ±25ppm/%	
Nonlinearity, e _{IN} = +0.1mV to +11V e _{IN} = -0.1mV to -11V Full Scale Error ¹ Gain vs. Temperature (0 to +70°C) vs. Supply Voltage vs. Time lnput Offset Voltage ² vs. Temperature (0 to +70°C) vs. Supply Voltage vs. Time ± response Settling Time, ±0.01% +10V Step Overload Recovery Time 10 2 2 2 2 3 3 4 4 4 4 4 4 4 4 4 4 4	0.01% of Full Scale, max 0.01% of Full Scale 0.1% to +2%, max 20ppm/°C max ±10ppm/°C max ±5ppm/°C max 15ppm/%	±0.015% of Full Scale, max ±0.015% of Full Scale +0.1% to +2%, max ±50ppm/°C max ±25ppm/°C max ±15ppm/°C max ±25ppm/%	
CiN = -0.1mV to -11V	0.01% of Full Scale 0.1% to +2%, max 20ppm/°C max ±10ppm/°C max ±5ppm/°C max 15ppm/% 10ppm/day	±0.015% of Full Scale +0.1% to +2%, max ±50ppm/°C max ±25ppm/°C max ±15ppm/°C max ±25ppm/%	
Full Scale Error	0.1% to +2%, max 20ppm/°C max ±10ppm/°C max ±5ppm/°C max 15ppm/% 10ppm/day	+0.1% to +2%, max ±50ppm/°C max ±25ppm/°C max ±15ppm/°C max ±25ppm/%	
Gain vs. Temperature (0 to +70°C) vs. Supply Voltage vs. Time lnput Offset Voltage ² vs. Temperature (0 to +70°C) vs. Supply Voltage vs. Time t: RESPONSE Settling Time, ±0.01% +10V Step Overload Recovery Time 10 FREQUENCY OUTPUT ³	20ppm/°C max ±10ppm/°C max ±5ppm/°C max 15ppm/% 10ppm/day	±50ppm/°C max ±25ppm/°C max ±15ppm/°C max ±25ppm/%	
vs. Supply Voltage vs. Time lnput Offset Voltage ² vs. Temperature (0 to +70°C) vs. Supply Voltage vs. Time t: RESPONSE Settling Time, ±0.01% +10V Step Overload Recovery Time FREQUENCY OUTPUT ³	15ppm/% 10ppm/day	±25ppm/%	
vs. Time ± Input Offset Voltage ² ± vs. Temperature (0 to +70°C) ± vs. Supply Voltage ± vs. Time ± RESPONSE Settling Time, ±0.01% +10V Step Overload Recovery Time 10 FREQUENCY OUTPUT ³	10ppm/day		
Input Offset Voltage		±10ppm/day	
vs. Temperature (0 to +70°C) vs. Supply Voltage vs. Time EESPONSE Settling Time, ±0.01% +10V Step Overload Recovery Time TEREQUENCY OUTPUT ³	10mV may		
vs. Supply Voltage ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±		±10mV max	
vs. Time ±: RESPONSE Settling Time, ±0.01% +10V Step 3 Overload Recovery Time 10 FREQUENCY OUTPUT ³	30μV/°C max	±30μV/°C max	
RESPONSE Settling Time, ±0.01% +10V Step Overload Recovery Time FREQUENCY OUTPUT ³	10μV/%	±10µV/%	
Settling Time, ±0.01% +10V Step Overload Recovery Time FREQUENCY OUTPUT ³	20ppm/day	±10ppm/day	
Overload Recovery Time 10 FREQUENCY OUTPUT ³			
FREQUENCY OUTPUT ³	Output Pulses Plus 2µs	2 Output Pulses Plus 2µs	
	0ms	1ms	
		네 경기 : 1. 기계 위기 가능하다. 이 그 그렇게 되었다. 그	
Waveform T	TL/DTL Compatible Pulses	TTL/DTL Compatible Pulses	
Pulse Width 5/	us managa di kasaran saling balan balan di kasaran	500ns	
Rise and Fall Time 30	00ns/50ns	60ns/50ns	
	ositive	Positive	
	2.4V min	+2.4V min	
, , , , , , , , , , , , , , , , , , , ,	0.4V max	+0.4V max	
	00pF max	200pF max	
	0 TTL Loads min	10 TTL Loads min	
	kΩ (High State)	670Ω (High State)	
POWER SUPPLY	<u>, 111,</u> 42, 18, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19		
	15V dc	±15V dc	
	(13 to 18)V dc	±(13 to 18)V dc	
	+25, -8)mA	(+25, -8)mA	
TEMPERATURE RANGE		★ 가는 가면 맞게 되었다. 그는 그 전에 대한적으로 보다.	
	to +70°C	0 to +70°C	
	25°C to +85°C	-25°C to +85°C	
Storage -:	55°C to +125°C	-55°C to +125°C	
MECHANICAL			
	" x 2" x 0.4"	2" x 2" x 0.4"	
	5 Grams	45 Grams	
	C1016	AC1016	

Specifications subject to change without notice.

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

Appendix 2.B.

¹ Adjustable to zero using 500Ω potentiometer.
² Adjustable to zero using 50kΩ potentiometer.
³ Protected for continuous short-circuits to ground and momentary (less than 1 sec) shorts to the +V_S supply. Output is not protected for shorts to the -V_S supply.
⁴ Recommended power supply, ADI model 904, ±15V @ 50mA output.

Applying the Voltage to Frequency Converter,

VOLTAGE TO FREQUENCY OPERATION

Models 458 and 460 provide accurate conversion of analog signals into a train of constant width and constant amplitude pulses at a rate directly proportional to the analog signal amplitude. The output continuously tracks the input signal, responding directly to changes in the input signal; external clock synchronization is not required. The output pulse train is TTL/DTL compatible, permitting direct interface to digital processing circuits. Adding a resistor from the output terminal, pin 7, to the +15V supply $(1.2k\Omega \mod 458; 820\Omega \mod 460)$, shifts the output swing from 0 to +5V to 0 to +12V, providing a 4V noise immunity for driving high noise immunity logic (HNIL) and CMOS logic.

BASIC V/F HOOK-UP AND OPTIONAL TRIMS

Models 458 and 460 can be applied directly to achieve rated performance without external trim potentiometers or other components. Figures 2, 3 and 4 below illustrate the basic wiring connections for either V/F converter model. Using the basic hookup without trims, full scale ($e_{IN} = 10V$) accuracy is +0.1% to +2% and the input offset voltage is $\pm 10\text{mV}$ max. The full scale and input offset voltage errors can be eliminated by using the FINE TRIM PROCEDURE.

FINE TRIM PROCEDURE

Connect the optional trims as shown in Figure 2, 3 or 4 and allow a five minute warm-up after initial power turn-on.

V/F INTERCONNECTIONS

Figure 2. Positive Input Signal

Figure 3. Negative Input Signal

Figure 4. Floating Input Signal

EXTERNAL CONNECTIONS FOR VOLTAGE TO FREQUENCY OPERATION, WITH OPTIONAL INPUT OFFSET VOLTAGE AND FULL SCALE FREQUENCY ADJUSTMENTS

 R_S = FULL SCALE ADJUSTMENT; $SO\Omega\Omega$ (Use low T.C. Cermet, $< SOppm/^{\circ}C$ or equivalent) R_O = INPUT OFFSET ADJUSTMENT; $SOk\Omega$ (Use low T.C. Cermet, $< SOppm/^{\circ}C$ or equivalent CAUTION: DO NOT SHORT OUTPUT TERMINAL TO -15V

Using a precision, stable voltage source, set the input voltage, e_S, to 10mV. Adjust the OFFSET trim, R_O, for an output pulse interval of 0.1 sec (model 458) or 0.01 sec (model 460). Set the input voltage to +10.000V and adjust the FULL SCALE trim for an output pulse frequency of 100kHz (model 458), or 1MHz (model 460). The V/F converter may now be used without further adjustment.

DIFFERENTIAL INPUT

The e_{IN} and e_{REF} input terminals represent a true differential input capable of accepting a signal from a strain gage bridge, a balanced line, or a signal source sitting at a common mode voltage. The differential input eliminates the need for a differential amplifier to handle these signals.

To apply the 458 or 460 voltage inputs differentially, the e_{IN} pin must always be positive with respect to the e_{REF} pin as shown in Figure 4. The differential signal source may be completely floating with common mode voltages up to $\pm 10V$ max. For differential inputs the output frequency is:

$$F_{OUT} = \left[\underbrace{(e_1 - e_2)}_{INPUT} + \left(\underbrace{\frac{e_1 + e_2}{2}}_{CMR}\right) \times \left(\frac{1}{CMR}\right)\right] K_g$$

$$CMR ERROR$$
SIGNAL

 $K_g = 10^4 \text{Hz/V}; \text{ model } 458$ $10^5 \text{Hz/V}; \text{ model } 460$

OFFSETTING INPUT FOR BIPOLAR INPUTS

The input summing terminal, $\pm i_{\rm IN}$, may be used to improve dynamic response as well as scale the output frequency to directly convert bipolar input voltages. An offset current is fed through an external resistor from a stable voltage reference. As shown in Figure 5, input voltages of $\pm 5 \text{V}$ min can be converted directly.

Figure 5. Offsetting Input to Accept ±5V Bipolar Inputs

The output may also be scaled up so that low amplitude signals, such as 1V will give full scale output frequency; 100kHz model 458 or 1MHz model 460. By scaling the output frequency for low level signals, the step response will significantly improve. As shown in Figure 6 for model 458, the step response for a 1 volt input decreases from 200µs before input scaling, to 20µs with scaling.

Figure 6. Offsetting Input to Achieve Improved Dynamic Response for Small Signal Inputs

PERFORMANCE SPECIFICATIONS

Nonlinearity: Nonlinearity error is specified as a % of 10V full scale input and is guaranteed over the 0.1mV to 11V operating signal range; ±0.01% max, models 458J/K/L, ±0.015% max, models 460J/K/L. Typical nonlinearity performance is illustrated in Figure 7.

Figure 7. Nonlinearity Error Versus Input Voltage

Gain Temperature Stability: Gain drift is specified in ppm of output signal and is guaranteed for each model over the 0 to +70°C temperature range; 5ppm/°C (458L), 10ppm/°C (458K), 20ppm/°C (458J), 15ppm/°C (460L), 25ppm/°C (460K) and 50ppm/°C (460J) max.

LONG TERM PRECISION INTEGRATOR

In critical measurement applications, such as pollution monitoring where it is required to integrate for periods greater than 1 hour with overall accuracy of 0.05%, the V/F converter offers a superior low cost approach when compared to the traditional operational integrator circuit. As shown in Figure 8, the analog signal is applied to a precision input amplifier, model 52K and then to the V/F input. The V/F output is connected to a large capacity counter and display, operating as a totalizer. The total pulse count is equal to the time integral of the analog input signal. Since the output displayed is an accumulated pulse count, there is no integrator drift error. A feature of this approach is the infinite hold capability without errors due to time drift, since the counter may be held at any time without affecting the output reading.

Figure 8. Models 458/460 as Long Term Integrator with Arbitrary Display Calibration. Frequency Division Ratio can Otherwise be Chosen to Provide Direct Readout in any Desired Units

RATIOMETRIC MEASUREMENTS

The circuit shown in Figure 9 illustrates a simple and inexpensive way of using two 100kHz V/F converters to achieve ratiometric measurements with less than 0.1% error over a dynamic range of 10,000 to 1. One converter is used as the input V/F to a digital counter and display, while a second converter, with a digital divide-by-N circuit is used as the time base for the counter. The counting time is one half the

output period of the divide-by-N circuit, resulting in an output count of 2NV₁/V_{REF}.

Figure 9. High Resolution, Wide-Range Ratiometer Using Model 458 V/F Converter

PRECISION HIGH CMV ANALOG ISOLATOR

By combining the V/F converter with a floating power supply and optical isolator as shown in Figure 10, accurate low level measurements in the presence of high common mode voltages may be achieved. Only the CMV rating of the optical isolator and the breakdown rating of the power supply limit the CMV rating. Using this approach for isolating transducers, ground loop problems are eliminated. Cost and complexity are minimized since only a single optical isolator is required to couple the serial pulse output from the V/F to the digital readout.

Figure 10. Optical Isolation Using LED Photo Isolator to Provide Up to 1500VDC CMV Isolation

APPLICATION IN DATA ACQUISITION SYSTEMS

High Noise Immunity Data Transmission: A method of accurately transmitting analog data through high noise environments is illustrated in Figure 11. This approach utilizes the self clocking output of models 458 and 460 and eliminates the need for costly additional twisted pair for external synchronization. Model 610 amplifies the low level differential transducer signal up to the 10V full scale V/F input level. A differential line driver is used to drive a twisted pair cable. The differential line driver and receiver offer high noise immunity to common mode noise signals.

Figure 11. Application of Model 458 V/F Converter in a High Performance, High Noise Rejection Two-Wire Data Transmission System