NATIONAL RADIO ASTRONOMY OBSERVATORY CHARLOTTESVILLE, VIRGINIA

ELECTRONICS DIVISION INTERNAL REPORT No. 212

ADIOS — ANALOG-DIGITAL INPUT OUTPUT SYSTEM FOR APPLE COMPUTER

G. WEINREB AND S. WEINREB

April 1981

NUMBER OF COPIES: 150

ADIOS - ANALOG-DIGITAL INPUT OUTPUT SYSTEM FOR APPLE COMPUTER

TABLE FOR CONTENTS

Page

I.	Introduction .	٠		•	٠	•		•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	٠	•	٠	3	
II.	Synchronization	L	•	٠	•	n, ° <mark>n</mark>			•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	9	
III.	Analog Input .	•	•	•	•	•	•	•			•	•	•		•	•	•	•	•		•	•	•	•	•	•	•	•	11	
IV.	Analog Output	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	14	
٧.	Digital Input	•	•	•	•	•	•	•	•	•		•		•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	14	
VI.	Digital Output				•	•	•	÷.	•		•	•	•	•	•	े. •	•	•	•	•	•		•	- 	•	•		•	16	
	Calibration .																													

APPENDICES

Appendix 1	1	Initialization Program - ADIOS INITB	0
Appendix 2	2	Test Program - ADIOS TEST	2
Appendix 3	3	AMD9513 Utilization	5
Appendix 4	4	Logic Diagrams	
		A. Digital IC Location Guide	0
		B. ADIOS Control and Analog Input	1
		C. Digital Input and Output and Analog Output	2
Appendix !	5	Manufacturers Data	13
		A. TTL IC Pin Layouts	4
		B. Teledyne Philbrick 4735 V/F Converter	17
		C. Analog Devices AD522 Instrumentation Amp 4	0
		D. Datel-Intersil DAC-HP16BGC	+4
		E. Harris HI-506A Multiplexer	¥7
		F. Sprague UHP-507 Relay Driver	•9
		G. Teledyne Solid-State Relays	
		H. Advanced Micro Devices AM9513	
		I. Analog Devices 460K V/F Converter	6

FIGURES

Figure	1	ADIOS Block Diagram	4
Figure	2	ADIOS Module and Apple Card (Photograph)	5
Figure	3	Complete Apple/ADIOS System (Photograph)	6
Figure	4	Analog Component Location	8
Figure	5	ADIOS-INITB Assembly Listing	1
Figure	6	AM9513 Configuration	7
Figure	7	ADIOS-Apple Synchronization	8
Figure	8	Timing Diagram of AM9513 Counting Operation 2	9

TABLES

	·															•
Table	Ι	Apple/ADIOS Addresses	٠	•	•	•	•	•	•	•	•	٠	•	•	•	8
		Front-Panel Connector Pin Assignments														
Table	III	D/A Converter Code		•	•	•	•	•	•	•	•	•	•	•	•	15
Table	IV	ADIOS-INITB Initialization Addresses	•	•	•	•	•	•	•	•	•	•	•	•	•	20

ADIOS - Analog-Digital Input Output System for Apple Computer

G. Weinreb and S. Weinreb

I. INTRODUCTION

ADIOS is a general purpose analog and digital input and output system for use with the Apple II Plus computer; a block diagram of the system is shown in Figure 1 and photographs of the ADIOS hardware and a complete Apple laboratory computer system are shown in Figures 2 and 3.

The system provides two .01% accuracy analog inputs denoted as AIN and BIN, two 16-bit accuracy analog outputs denoted as COUT and DOUT, six 1-bit TTL logic level digital inputs, and a 16-bit digital output which can be routed through an 8-bit bus driver, a 4-bit relay driver, or two solid-state relays. Three of the digital output bits can be used to control an 8-channel multiplexer on the BIN analog input. The hardware and software aspects of these functions are discussed together for each analog and digital input and output in subsequent sections of this report.

The A/D conversion is a slow integration method rather than a fast sampling type of conversion; the intention is to achieve high precision by averaging of noisy inputs. The integration is performed by counting of voltage-to-frequency (V/F) pulses for a duration denoted as COUNT time which is software controllable. After each integration the V/F pulses are not counted for a duration denoted as BLANK time which is also software controllable. In normal operation the ADIOS output analog and digital variables change near the beginning of BLANK time and transients caused by the change of these variables should decay before the

- 3 -

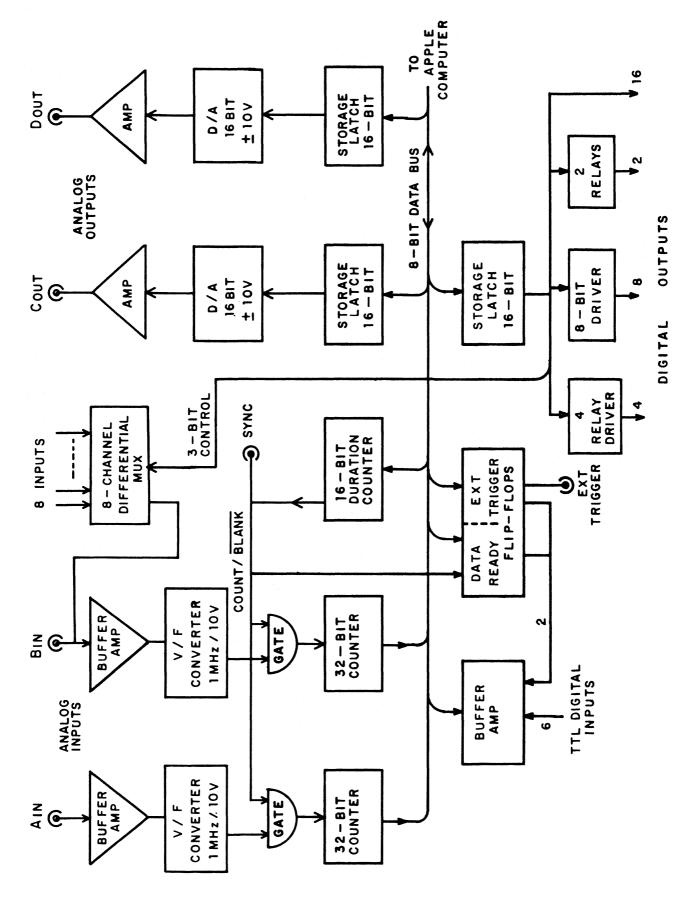


Fig. 1. ADIOS Block Diagram

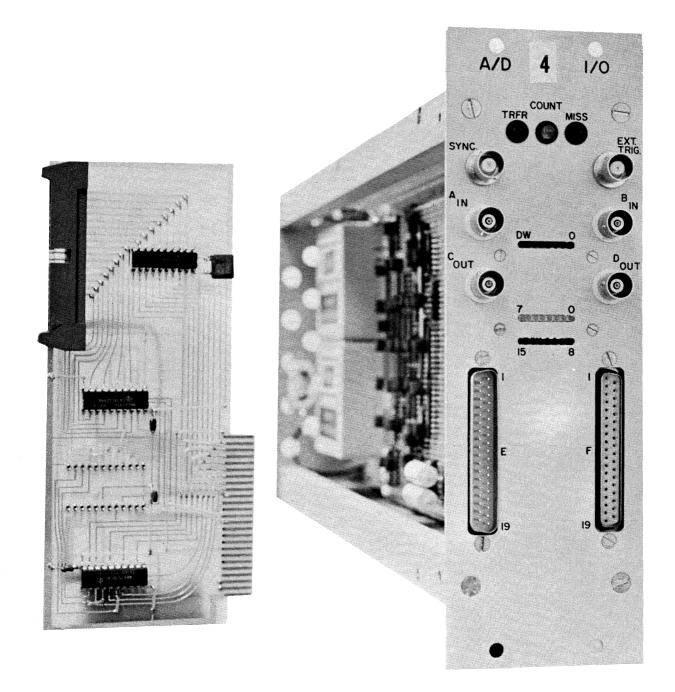


Fig. 2. ADIOS components - Apple I/O card and main module. The I/O card contains signal isolation drivers and a socket for a ROM containing future utility programs. Within the module are power supplies, V/F converters, counters, D/A converters, digital output drivers, and control logic.



Fig. 3. Apple system on laboratory cart with ADIOS module on bottom shelf. A typical measurement of noise and gain of a microwave amplifier is displayed on the screen.

next COUNT time starts. The lower limits for COUNT and BLANK times are software dependent; practical limits are of the order of 100 milliseconds for a BASIC program. The maximum duration is approximately 65 seconds.

Before ADIOS can be used it must be initialized by a subroutine such as the machine language program, ADIOS INITB, described in Appendix 1. The initialization subroutine sets the values of COUNT and BLANK and also directs a programmable integrated circuit, the AM9513, which performs all counting, to the desired mode of operation. The subroutine is loaded from disk and executed with the following calling program:

NEXT INITILIZES A/D INTERFACE AND SETS UP INTEGRATION CYCLE 310 REM GOSUB 7000: REM POKE COPY OF ADIOS-INITB 320 330 BLOADED 85 = \$55 BYTES IN 7986 = \$1F32 REM 340 COUNT = 400:BLANK = 80350 CS = 10 / COUNT 360 COUNT = COUNT / 10:BLANK = BLANK / 10 370 CH% = COUNT / 256:BL% = BLANK / 256 380 REM NEXT LOADS COUNT AND BLANK TIMES INTO ADIOS POKE 7988, COUNT - 256 * CHX: POKE 7989, CHX 390 POKE 7990, BLANK - 256 * BLX: POKE 7991, BLX 400 410 CALL 8018: REM STARTS ADIOS

To change COUNT or BLANK, change line 340 and then execute lines 340 thru 410; to restart after removal of ADIOS power, execute CALL 8018.

All of the Apple address locations associated with ADIOS are summarized in Table I. It is assumed in this Table that ADIOS is plugged into peripheral slot 3 of the Apple; if slot N is used, substitute N+8 for the third character of the hex address (=B for N=3) or add 16(N-3) to the decimal address. These addresses may be accessed by machine language programs (i.e., ADIOS INITB) or by BASIC programs using PEEK and POKE. Analog and digital output are accomplished by POKE'ing bytes into the appropriate registers; the details for doing this are discussed in IV and VI of this report. Digital input is also accomplished in a straightforward manner by PEEK'ing at address 49335. Analog input is slightly more

- 7. -

4325 REM NEXT PROGRAM LINES READ ANALOG INPUT COUNTERS

• (See III for details)

•

4400 RETURN: REM COMPUTER MAY NOW DO OTHER TASKS BUT MUST RETURN TO 4250 BY END OF COUNT TIME

Five indicator LED's on the ADIOS front panel indicate the status of initialization and synchronization. The large, green COUNT/BLANK LED is on during COUNT time after ADIOS has been initialized. Four other indicators, TRANSFER, MISS, DEAD, and WAIT, will function only if the program contains the following lines involving the CALL and MISSED DATA bits which are internal AMD9513 flip-flops accessible through the AMD9513 data register:

4205 REM NEXT 4 LINES SET UP CALL BIT TO OPERATE STATUS INDICATORS 4210 POKE 49342,20: REM ADDRESSES 9513 HD4 4220 ZZ = PEEK (49334): REM DUMMY PEEK TO ADVANCE 9513 DATA POINTER 4230 POKE 49334,174: REM SETS CALL BIT HIGH 4240 IF PEEK (49335) < 128 THEN 4500: REM IF DATA READY BIT IS ZERO PREVIOUS DATA WAS MISSED (Followed by WAIT statement and I/O lines previously described) ٠ • 4370 POKE 49342,19: REM ADDRESS 9513 HD4 4380 ZZ = PEEK (49334): REM DUMMY PEEK TO ADVANCE 9513 DATA POINTER 4390 POKE 49334,168: REM CLEAR CALL BIT 4500 REM TURN ON MISSED DATA LIGHT 4510 POKE 49342,18: REM ADDRESS 9513 HD1 4520 ZZ = PEEK (49334): REM DUMMY PEEK TO ADVANCE 9513 DATA POINTER 4530 POKE 49334,172: REM CLOCKS MISSED-DATA ONE-SHOT 4540 POKE 49342,18: REM ADDRESS 9513 HD1 4550 ZZ = PEEK (49334): REM DUMMY PEEK TO ADVANCE 9513 DATA POINTER 4560 POKE 49334,168: REM CLEARS MISSED-DATA CLOCK POKE 49335,0: REM SET DATA READY BIT 4570 GOTO 4250 4580

Lines 4210, 4220, 4510, 4520, 4540, and 4550 are obscure code necessary because of a quirk of the Apple POKE statement and also the 9513 addressing system. The Apple POKE command causes a PEEK followed by a POKE to be executed; the PEEK causes the 9513 to advance its data pointer register. Thus a lower 9513 register must first be addressed to POKE into the desired address.

With the inclusion of the above lines TRANSFER lights for 0.5 seconds after each data transfer, MISSED DATA lights for 0.5 seconds if an integration is not read by the Apple, and WAIT is on while the Apple is waiting for the DATA READY bit.

III. ANALOG INPUT

A block diagram of the analog input system was given in Figure 1; detailed schematics and data sheets are included at the end of this report.

Inputs AIN and BIN are through front-panel BNC jacks or connector pins E30-33 as described in Table II. Inputs to BIN may also be through an 8-channel differential multiplexer with pins E1-16 as described in Table II. The multiplexer is addressed by bits 5(LSB), 6, and 7(MSB) of the digital output byte, address 49333. Input resistance is 1000 megohms differential and common mode for inputs in the range \pm 14 volts. Common mode rejection is > 75 db for common mode voltage within \pm 10 volts. The inputs are protected against overvoltage.

The full scale range of the analog inputs are controlled by two internal switches (see location drawing) for each input as follows:

SWITCH	SWITCH	V/F LOWER LIMIT	V/F UPPER LIMIT
<u>S1 or S3</u>	<u>S2 or S4</u>	O HZ	<u> </u>
OPEN	CLOSED	ov	+ 10.000 V
CLOSED	OPEN	- 10.000 V	+ 10.000 V

(The switch lever should be pushed towards the red dot for positive-only operation.) Thus each mode requires a different scaling in the program to convert counts to volts. The zero drift for the bipolar modes is typically 0.6 mV/°C and is much greater than the 0.01 mV/°C typical zero stability of the 0 to +10V range.

- 11 -

E is Male - Cinch DC-37P

F is Female - Cinch DC-37S

PIN	FUNCTION	PIN	FUNCTION	
E1	вон	F1	DO0)	
E2	BOL	F2	DO1	
E3	він	F3	DO2	
E4	BlL	F4	DO3	
E5	в2н	F5	DO4	
E6	B2L	F6	D05	
E7	взн	F7	D06	
E8	B3L ANALOG INPUTS TO MUX	F8	DO7 DIGITAL OUTPUTS	
E9	в4н	F9	D08	
E10	B4L	F10	D09	
E11	в5н	F11	D010	
E12	B5L	F12	D011	
E13	в6н	F13	D012	
E14	B6L	F14	D013	
E15	B7H	F15	D014	
E16	B7L	F16	D015	
E17	AIN GAIN PROGRAMMING	F17	DO12 RELAY -	
E18	AIN GAIN PROGRAMMING	F18	DO12 RELAY +	
E19	MUX ENABLE	F19	+5 VOLTS	
E20	BIN GAIN PROGRAMMING	F20	DIO DIGITAL INPUT	
E21		F21	DOO	
E22	+15 VOLTS	F22	DO1	
E23	GROUND	F23	DO2	
E24	-15 VOLTS	F24	DO3	
E25	DI1)	F25	DO4 DRIVER OUTPUTS	
E26	DI2	F26	D05	
E27	DI3 DIGITAL INPUTS	F27	D06	
E28	DI4	F28	D07	
E29	DI5	F29	DRIVER ENABLE	
E30	AIN H	F30	RELAY B+	
E31	AIN L	F31	DO8	
E32	BIN H	F32	DO9	
E33	BIN L	F33	DO10 RELAY DRIVER	
E34	соит н	F34	DO11	
E35	COUT L	F35	GROUND	
E36	DOUT H	F36	DO11 RELAY -	
E37	DOUT L	F37	DO11 RELAY +	

The full scale sensitivity of the analog inputs can also be increased by adding resistors between pins E17 and E18 for AIN and E20 and E21 for BIN. This increases the gain of the AD522 input amplifier by a factor of 1 + 200K/R where R is the value of the added resistor. In later versions of ADIOS, the internal bipolar/unipolar switches and also switches to give 1 volt full scale will be added to the front panel.

The 1 MHz V/F converter outputs are counted by 32-bit counters within the AM9513. At the end of COUNT time the contents of these counters are automatically transferred into 16-bit HOLD registers within the AM9513. This assumes that the initialization program of Appendix 1 (appropriate for Free Run mode) is used. The AM9513 can also be programmed to allow transfer to the HOLD registers under software control. AIN is stored in HOLD 2 (LSW) and HOLD 3 (MSW); BIN is stored in HOLD 4 (LSW) and HOLD 5 (MSW). The HOLD registers are read out by POKE'ing appropriate addresses into the AM9513 command register at address 49342 (see Table I). One byte at a time is then read by PEEK(49334) commands. The leastsignificant byte is read first and the AM9513 data pointer automatically advances to the most significant byte for the next PEEK(49334). (However, it does not automatically advance to the most significant word; this must be done with another POKE to 49342.) BASIC program lines to perform these tasks are given below:

510	MK = 256: N	MM = 65536	: CS = 10	/COUNT: CZ	= 0: REM	THESE ARE	FOR 0
	TO +10V MOI	DE					
520	REM FOR -10	OV TO +10V	MODE USE	CS = 2*CS	AND $CZ =$	10000	

(After DATA READY WAIT and output POKES) 4330 POKE 49342,18: REM ADDRESS 9513 FOR LSW OF AIN 4335 REM FOR BIN USE POKE 49342,20 4340 AIN = PEEK (49334) + MK*PEEK (49334) 4350 POKE 49342,19: REM ADDRESS 9513 FOR MSW OF AIN 4355 REM FOR BIN USE POKE 49342,21 4360 AIN = AIN + MM*PEEK (49334) 4365 REM MSB OF MSW NOT NEED FOR COUNT TIME < 16.77 SECONDS 4368 MV = CS*AIN - CZ: REM MV IS AIN IN MILLIVOLTS

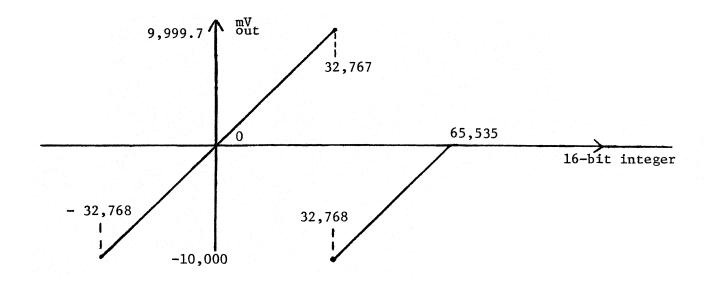
- 13 -

IV. ANALOG OUTPUT

The interface contains two Datel/Intersil DAC-HP16BGC D/A converters (see data sheet) which directly provide \pm 5 volt output with 16 bit resolution. These outputs are buffered and amplified X2 by an OP10-EY dual op-amp which has zero and gain trim adjustments. The two resulting \pm 10 volt outputs are designated COUT and DOUT and are available on front-panel BNC jacks and also on pins E34 (COUT H), E35 (COUT L), E36 (DOUT H), and E37 (DOUT L) of the 37-pin E front-panel connector. The outputs can sense ground at the desired load but 100 ohms is presented by the output return lead to chassis ground.

COUT and DOUT are each accessed by two bytes within the Apple address space. If the interface card is plugged into slot 3, the addresses are given in Table I. The output voltage vs bit configuration is given in Table III.

The analog outputs are controlled by the computer POKE'ing bytes into the appropriate registers of Table I; two bytes must be POKE'ed for each output. A BASIC subroutine which converts a BASIC floating point variable, MV, equal to the desired output of COUT in millivolts, to the required bytes, ML% and MH%, is illustrated below:


20000 REM D/A SERVICE ROUTINE
20010 IF MV > 9999.7 THEN MV = 9999.7
20020 IF MV < -10000. THEN MV = -10000
20040 MT% = 3.2768*MV
20050 MH% = MT%/256: ML% = MT% - 256*MH%
20060 POKE 49328,ML%: REM POKE 49330 FOR DOUT
20070 POKE 49329,MH%: REM POKE 49331 FOR DOUT
20080 RETURN

V. DIGITAL INPUT

The six digital input lines are available on pins F20 (LSB, DIO) and E25 (DI1) thru pin E29 (MSB, DI5) of the 37-pin front-panel connectors. Input is standard TTL

TABLE	III.	D/A	Converter	Bit	Configuration

Output	Hex		
Voltage, mV	LSB	MSB	Decimal
9,999.7	FF	7 F	32,767
5,000.0	00	40	16, 384
0.00	00	00	0
- 0.30	FF	FF	65,535 or -1
- 5,000.0	00	C0	49,152 or -16,384
- 9,999.7	01	80	32,769 or -32,767
- 10,000.0	00	80	32,768 or -32,768

logic levels; a "1" is > +2.0 volts (drawing < 40 μ A at 2.4V) and "0" is < 0.8 volts (supplying < 1.6 mA at 0.4 volts). The inputs may be inverted by installing a 74LS367A in position 8E in place of the 74LS368A. No storage flip-flops are provided; the computer senses the input lines at the time a PEEK (49335) is executed. This time can be controlled by waiting for the DATA READY bit thru WAIT 49335,128,128 as discussed in II. The state of the input lines is indicated by the 6 right-most white bar-LED's on the ADIOS front-panel; a lighted LED indicates a "1" input.

VI. DIGITAL OUTPUT

The 16-bit digital output word is stored in two bytes; each byte is in a 74273 octal flip-flip IC within ADIOS. One byte, bits DOO - DO7, is controlled by a POKE 49332,B command where B is the decimal value of the byte (B = 0 to 255); these bits are available on pins Fl - F8 of the F front-panel connector. The second byte, bits DO8 - DO15, is addressed at 49333, and is available on pins F9 - F16. The flip-flop outputs can sink 16 mA at 0.4V and drive 0.8 mA at 2.4V. All 16 bits are indicated by front-panel bar LED's; a lighted LED indicates a "1".

The flip-flop outputs are connected to three types of drivers within ADIOS. Bits DOO - DO7 drive an octal tri-state bus driver, the 74LS241 in location 7C (substitute 74LS240 to invert bits), with outputs on pins F21 - F28. The tristate driver is held disabled by a 4.7K resistor to +5V on its \overline{G} input; the driver may be enabled by connecting pin F29 to pin F35 (ground).

Bits DO8 - DO11 drive a quad relay driver, the UHP-507, which can switch 100 volts at 250 mA output pins are F31 - F34. The driver contains transient protection diodes which should be connected to the positive relay supply voltage thru pin F30. The negative relay supply voltage should be connected to pin F35 which is tied to chassis ground. Bits DOll and DOl2 drive two solid-state relays, Teledyne 643-1, which can switch 60 volts at 200 mA. The switch terminals are available on pins F36(-) and F37(+) for DOll, F17(-), and F18(+) for DOl2. The switch terminals may float up to 2500 volts with respect to ground but the voltage polarity across the open contacts must be as indicated. Other Teledyne relays which are pin-compatible and handle AC voltages are described in a data sheet in IX.

The BIN analog multiplexer is connected to bits DO13 - DO15. These bits may also be used as digital outputs (pins F14 - F16) but do not feed a driver.

VII. CALIBRATION

ADIOS contains 12 4-turn pots, located as shown in Figure 4, which adjust zero and gain for the two analog outputs (4 adjustments) and two analog inputs, each having two ranges (8 adjustments). It is most convenient to first calibrate the analog outputs using an accurate 4-digit DVM and then use these outputs as voltage standards for input calibration. A program such as ADIOS TEST, listed in Appendix 2, is useful as it allows the outputs to be set by keyboard entry and displays the input readings.

Output calibration is as follows:

- 1. Command output to 0; adjust COUT ZERO and DOUT ZERO for 0 ± 1 mV output.
- Command output to 9900 mV; adjust COUT GAIN and DOUT GAIN for 9900 + 2 mV output.
- 3. To check operation, command output to -9900 mV; outputs should be $-9900 \pm 3 \text{ mV}$.

The 0 to +10 volt input range should be calibrated next as these adjustments also affect the \pm 10 volt range adjustments (which do not affect 0 to \pm 10 calibration). The 4 internal DIP switches should be set in the red-dot position

- 17 -

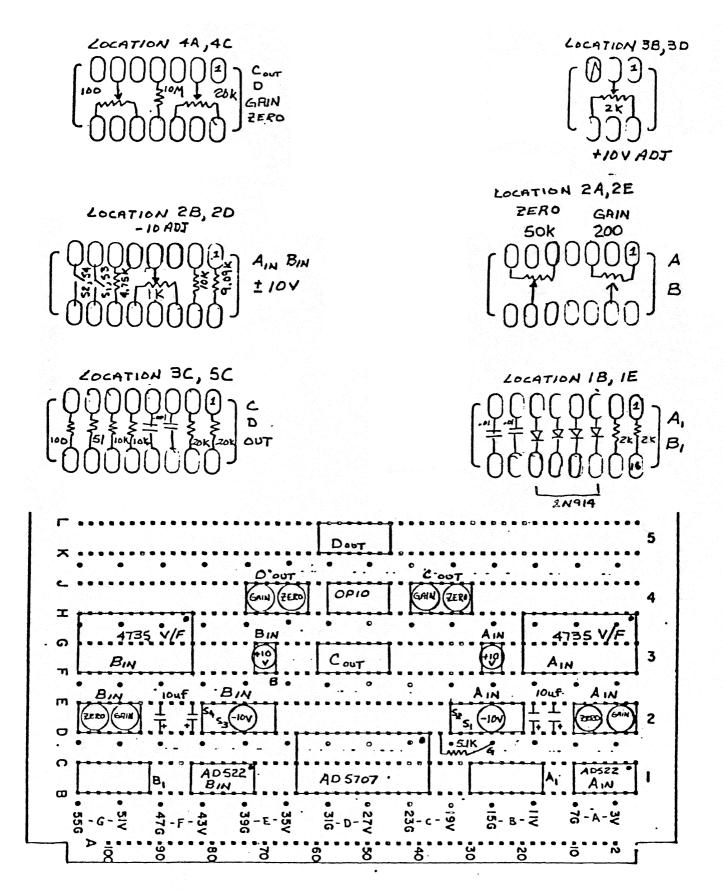


Fig. 4. Analog component and calibration adjustment location guide. A digital IC layout is given in Appendix 4.

(S2 and S4 open, S1 and S3 closed) and then proceed as follows:

- 4. Command output to 50 mV; adjust AIN and BIN ZERO for 50 \pm 1 output display.
- 5. Command output to 9900 mV; adjust AIN and BIN GAIN for a 9900 ± 2 display.
- 6. Repeat 4, above.

Next, the -10 volt to +10 volt range is calibrated; the internal DIP switches should be set away from the red-dot position. The ADIOS TEST program scales input counts assuming the 0 to +10 volt range; this is accounted for in the desired outputs described below:

- 7. Command output to -9900 mV and adjust the -10V pots for an output display of 50 \pm 1.
- 8. Command output to 9900 mV and adjust the +10V pots for a display of 9950 \pm 3.
- 9. Repeat 7, above.

After completion of calibration, operation can be checked by putting DIP switches in the red-dot position and running the RAMP mode of ADIOS TEST. Finally, the DIP switches should be set for the desired mode of operation; typically this will be with AIN in the 0 to +10 mode and BIN in the bipolar mode.

Appendix 1. Initialization Program - ADIOS INITB

ADIOS-INITE is a binary (machine language) program that initializes the AM9513. This is necessary in order for ADIOS to input analog signals and control synchronization. The program loads sixteen, 16-bit internal registers of the 9513 with certain values dictating the exact internal configuration of the AM9513. Two of the registers are loaded with values that control the duration of COUNT and BLANK. This initialization program also arms the counters to commence operation of the COUNT-BLANK cycle.

In order to use "ADIOS-INITB," one must first put it on a disk. This can be done by typing the object code (shown in Fig. 5) into memory with the SYSEM MONITOR and then issuing a "BSAVE ADIOS-INITB, A\$1F32, L\$55" command.

Once the program is in memory, one can modify the COUNT and BLANK initialization values. Table IV shows the addresses of ADIOS-INITB which contain these values that are loaded into the AM9513 upon execution ("CALL 8018"). Refer to the BASIC program listing, line 310, in Appendix II, for information on how to utilize ADIOS-INITB from a BASIC program.

Figure 5 contains an assembly listing of ADIOS-INITB. The actual binary program is enclosed in a box.

•	ADIOS-INIID	Inicialization	Addre
	Address	Contents*	
	7988	COUNT time	MSB
	7989	COUNT time	LSB
	7990	BLANK time	MSB
	7991	BLANK time	LSB

TABLE IV. ADIOS-INITB Initialization Addresses

*values are in units of 10 mS.

1		1999
Hex.	Machine	1010 * G.WEINREB 8/11/80 "ADIOS-INITB"
addr.	code	$1020 \times \text{INITIONIZE} 0011200 \text{HUIUS-INITB}$
addi.	listing	1020 * INITIALIZE 9513 ROUTINE; ASSEMBLER: "ASMDISK 4.0" 1030 * CARD IN SLOT 3
(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	TT2 0 T 16	1040 *
		1047 * OBJECT CODE IS 85=\$55 BYTES PLACED IN ADDRESS \$1F32 -
1 - Y - C	1.2	1050 *9513 1/0 ODDECCEC
C08E-		1060 COMM .EQ \$COBE COMAND REGISTER
C086-		1070 DATA .EQ \$C086 DATA REGISTERS
		1080 *
		1090 *DATA FOR 9513'S REGISTERS
		1100 *DOTO IN TOPLE IS IN IN FORMAT AUFOR LOD TO THE
1F32-	E6 0F	1100 *DATA IN TABLE IS IN IN FORMAT WHERE LSB IS FIRST 1110 CM1 .HS EGOF C TEST MODE
1F34-		
1F36-		1120 LD1.HS 64001 SECOND COUNTModifiable1130 HD1.HS 64001 SECOND BLANKModifiable
1F38-		1140 CM2 .HS 9042 <
1F3A-		
1F3C-		이는 것 같아요. 이는 것 같아요. 이는 것 같은 것 같은 것 같아요. 이는 것 같아요. 이는 것 <u>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</u>
1F3E-		1160 HD2 .HS 0000
		the internal and
1F40-		
1F42-		
1F44-		1200 CH4 .HS AD84 📿
1F46-		1210 LD4 .HS 0000
1F48-		1220 HD4 .HS 0000
1F4A-		1230 CM5 .HS A865 🤇
1F4C-		1240 LD5 .HS 0000
1F4E-	00 00	1250 HD5 .HS 0000
1F 👘		1260
1F50-	00 90	1280 MAMO .HS 0090 🤇 MASTER MODE REGISTER
		1290 *
		1300 *INIT. PROGRAM*
		1310 *
1F52-	A9 FF	1320 INIT LDA #\$FF
	8D BE CO	1330 STA COMM MASTER RESET
1F57-	A9 A1	1340 LDA #\$01
1F59-	8D BE CO	
		1350 STA COMM SET DATA POINTER 1360 *LDA REGISTERS*
1E5C-	A2 00	
		A manufacture of the second
1F61-	8D 86 C	
1F64-		
	A9 33	
1F67-		1410 LDA #\$33 CLR Z FLAG
1F69-		1420 CPX #30 FINISHED?
1500	F0 03	1430 BEQ DONE IF SO, END
1108-	4C 5E 60	
1000	00.17	1450 *SET MM REGISTER*
	A9 17	1460 DONE LDA #\$17
1F70-	8D BE CO	
1F73-	AD 50 60	11489 LDA MAMO
1F76-	8D 86 C	1490 STA DATA PUT IN MM REG.
1579-	lon -	1510 LDA MAMO+1
T1.1 (2.1)	HU 51 6	
1F7C-	AD 51 6 80 86 C	1520 STA DATA PLIT IN MM REG
1F70-	80 B6 C	
1F70-	80 B6 C	1530 *ARM COUNTERS*
1F7C-	8D 86 CI A9 7F	1530 *ARM COUNTERS* 1540 LDA #\$7F
1F7C- 1F7F- 1F81-	8D B6 CI A9 7F 8D BE CI	1530 *ARM COUNTERS* 1540 LDA #\$7F 1550 STA COMM ARM COUNTERS
1F7C-	8D B6 CI A9 7F 8D BE CI	1530 *ARM COUNTERS* 1540 LDA #\$7F

Fig. 5. ADIOS-INITB Assembly Listing

```
49 REM
          A010S TEST PROGRAM OF 3/23/81
50 GOTO 230: REM INITIALIZE
100 PRINT "THIS PROGRAM ALLOWS A FIXED NUMBER OR A 0 TO 9900MU RAMP
 TO BE OUTPUT FROM C AND D. THESE SHOULD BE CONNECTED TO A AND B INPUTS.
 THE FIXED NUMBER OR RAMP IS ALSO APPLIED TO THE TWO DIGITAL OUTPUT
 BYTES. ";
101 PRINT "DIGITAL INPUT BITS ARE ALSO READ AND DISPLAYED. COUNT=400
 AND BLANK =80; CHANGE IN 340 IF YOU WISH. PROGRAM SCALING ASSUMES
 ADIOS IS IN 0 TO +100
                       MODE (ALL DIP SWITCHES ON)"
104
    PRINT
     INPUT "RAMP(R) OR FIXED(F) INPUT? ";X$
110
112
     PRINT
120
     IF X$ = "R" GOTO 900
     IF X$ = "F" GOTO 200
125
130
    GOTO 110: REM
                      INVALID REPLY; TRY AGAIN
199
    REM FIXED OUTPUT ROUTINE
200 PRINT "FIXED OUTPUT. USE CONTROL C TO STOP; GOTO 200 TO CHANGE
 VALUE"
    INPUT "MILLIVOLTS? ";F
210
    GOSUB 4200
211
215 \text{ MV} = \text{AIN} * \text{CS:MY} = \text{BIN} * \text{CS}
216 \ D6\% = D1\% - 128
218 PRINT F;" ";MV;" ";MY;"
                                    ";DG%
220 GOTO 211: REM REPEAT
230 REM INITILIZATION ROUTINE
240 D = CHR (4)
     TEXT : HOME : PRINT
250
310
     REM NEXT INITILIZES A/D INTERFACE AND SETS UP INTEGRATION CYCLE
     GOSUB 7000: REM POKE COPY OF ADIOS-INITB
320
     REM BLOADED 85 = $55 BYTES IN 7986 = $1F32
330
340 COUNT = 400: BLANK = 80
350 CS = 10 / COUNT
360 COUNT = COUNT / 10:BLANK = BLANK / 10
370 CH% = COUNT / 256:BL% = BLANK / 256
380
     REM NEXT LOADS COUNT AND BLANK TIMES INTO ADIOS
390
     POKE 7988, COUNT - 256 * CHX: POKE 7989, CHX
     POKE 7990, BLANK - 256 * BLX: POKE 7991, BLX
400
     CALL 8018: REM STARTS ADIOS
410
     REM GOSUB 5300 TO TURN ON PRINTER
420
 430
     REM CALL 1013 TURNS OFF PRINTER
 450
     POKE 33,40: REM NORMAL TEXT WINDOW
     REM CONSTANTS FOR DATA TRANSFER
 500
 510 MC = 3.2768:MJ = 128:MK = 256:MM = 65536
 600
     GOTO 100
 899
     REM
 900 REM RAMP TEST
     PRINT "COUT AND DOUT WILL RAMP FROM 0 TO 9900MV IN A SELECTED
 910
  STEP SIZE. IF AIN AND BIN DISAGREE WITH COUT AND DOUT BY MORE THAN
 DMAX=10MV (CHANGE IN 1010) THEN: "
 911
      PRINT
      INPUT "ERROR MESSAGE IS NONE(0), BEEP(1), OR PRINTER LINE(2)? ";J
 913
 915
      PRINT
      INPUT "STEP SIZE IN MILLIVOLTS? ";ST
 920
 1005 NR = 0: REM NR IS NUMBER OF READS SINCE LAST ERROR
 1010 OMAX = 50
 1020 FOR F = 000 TO 9900 STEP ST
```

Appendix 2

```
1040 50508 4200
1060 MU = AIN * CS:MY = BIN * CS
1070 OGX = DIX - MUX: REM SUBTRACT DATA READY BIT
     PRINT F - ST;" ";MV;"
1080
                               ";MY;" ";DG%
1090
     IF F = 0 GOTO 1220
1100 D = ABS (F - ST - MV)
1110
     IF D > DMAX THEN CALL
                             - 211: GOSUB 1500
1150 E = ABS (F - ST - MY)
     IF E > DMAX THEN CALL - 211: GOSUB 1500
1160
1210 \text{ NR} = \text{NR} + 1
1220
      NEXT F
1230
      GOTO 1010: REM REPEAT RAMP
1500
      REM ERROR MESSAGE
1510 ON J GOTO 1587,1560
                           NO MESSAGE IF J=0
1520 NR = 0: RETURN : REM
      GOSUB 5300: REM TURN ON PRINTER
1560
      PRINT F - ST;" ";MV;" ";MY;" ";DG%;"
                                                 ";NR
1570
1580
      CALL 1013
      CALL - 1059: REM BEEP!
1587
1589 NR = 0
1590
     RETURN : REM
4200
                DATA TRANSFER ROUTINE WITH PARAMETERS M(1 FOR NOISE
     REM
 SOURCE ON , F(OUTPUT TO LO ) AND AIN (INPUT FROM RECEIVER)
4201 \text{ FC} = \text{F}; IF F < 0 THEN FC = F + 20000
4202 MT = FC * MC: REM OUTPUT F TO COUT
4203 MH% = MT / MK:ML% = MT - MK * MH%
4204 OH% = F / MK:OT% = F - MK * OH%: REM F MODULO 256 FOR DIGITAL
 OUTPUT
4205 REM NEXT 4 LINES TO SET UP 9513
      POKE 49342,20: REM ADDRESSES 9513 HD4
4210
4220 ZZ = PEEK (49334): REM ZZ IS DUMMY
      POKE 49334,172: REM CALL BIT SET HIGH
4230
      IF PEEK (49335) < 128 THEN 4500
4249
      WAIT 49335,128,128; REM WAIT UNTIL DATA READY BIT =0 AT BLANK
4250
 TIME START
 4260
       POKE 49335,128: REM
                            RESET DATA
                                          READY BIT
                             OUTPUT BITS DO0 TO DO7
 4270
       POKE 49332.0T%: REM
       POKE 49333.0T%: REM
                             OUTPUT BITS DO8 TO DO15
 4280
 4290 DI% = PEEK (49335): REM DIGITAL INPUT
 4300
       POKE 49328 MLX: REM
                              COUT LSBYTE
 4310
       POKE 49329, MHX: REM
                             COUT MSBYTE
 4313
       POKE 49330, MLX: REM
                            COUT LSBYTE
       POKE 49331 MHX: REM
                             COUT MSBYTE
 4315
       REM BLANK TIME MAY NOW END
POKE 49342,18: REM ADDRESS 9513
 4320
                                          TO OUTPUT LSHORD OF AIN
 4330
 4340 U1 = PEEK (49334):U2 = PEEK (49334)
      POKE 49342,19: REM ADDRESS 9513 TO OUTPUT MSWORD OF AIN
 4350
 4360 \ \text{V3} = \text{PEEK} (49334)
 4365 AIN = V1 + MK * V2 + MM * V3
 4366 POKE 49342,20: REM ADDRESS 9513 FOR BIN
 4368 Y1 = PEEK (49334):Y2 = PEEK (49334)
 4370 POKE 49342,21
 4372 Y3 = PEEK (49334)
 4376 BIN = Y1 + MK * Y2 + MM * Y3
 4378 POKE 49342,20: REM ADDRESS 9513
                                             HD4
 4380 ZZ = PEEK (49334): REM DUMMY PEEK
 4390 POKE 49334,168: REM CLEAR CALL BIT
 4400
      REMAN
 4500
       REM TURN ON MISSED DATA LIGHT
```

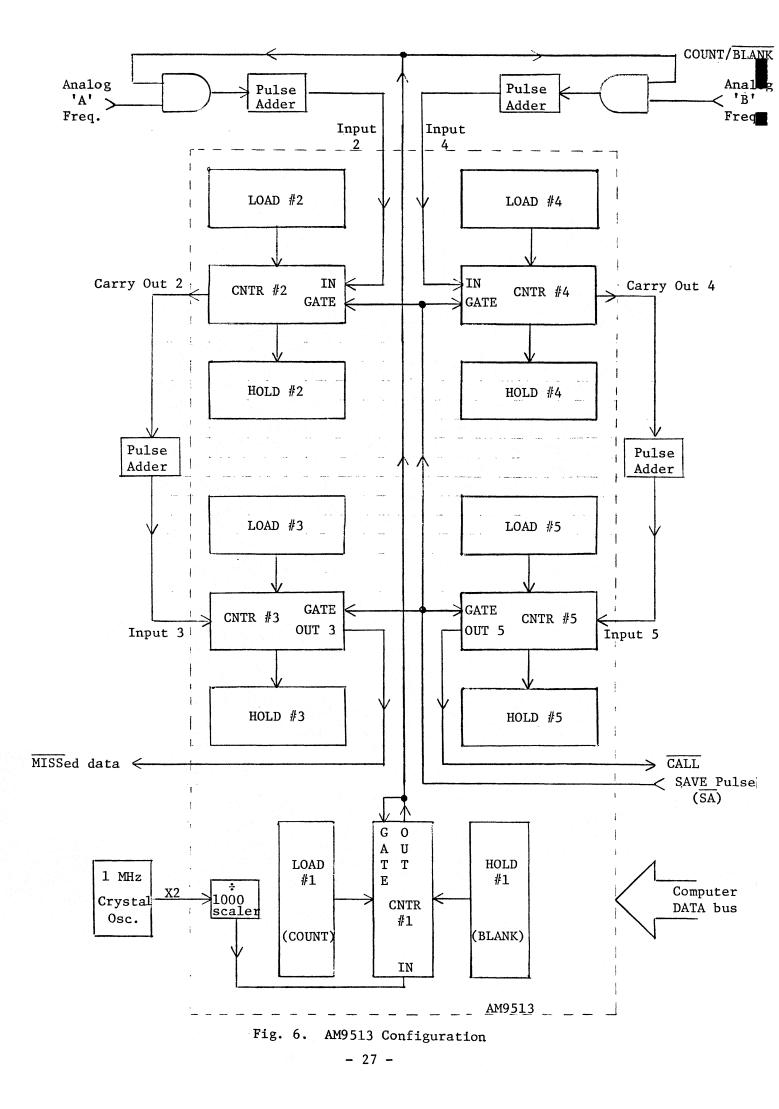
Appendix 2

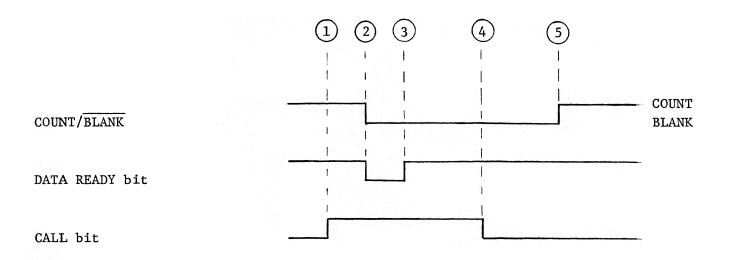
```
PRINT "MISSED DATA", COUNT, BLANK
4505
4510 POKE 49342,18; REM
                          ADDRESS HOLD1
4520 ZZ = PEEK (49334); REM DUMMY
     POKE 49334,172: REM CLOCKS MISSED DATA ONE-SHOT
4530
     POKE 49342,18
4540
4550 ZZ = PEEK (49334)
4560 POKE 49334,168: REM CLEARS MISSED DATA CLOCK
4570
      POKE 49335,0: REM CLEAR FLAG
4580
      GOTO 4250
5299
      REM
5300
      REM
               TURNS ON TRENDCOM 200 PRINTER
      REM :GOTO 5400: REM FOR APPLE PRINTER
5310
5315
      PR# 1: PRINT CHR$ (0): REM FIRST CHARACTER NOT PRINTED
5320
     POKE 1913,6: POKE 1785,72: REM MARGINS
      POKE 1657,80: REM LINE LENGTH
5330
5340
      RETURN
      REM TURN ON APPLE PRINTER
PRINT CHR$ (4); "PR#1"
5400
5410
5420 Q$ = CHR$ (17): REM PRINT Q$ TO DUMP GRAPHICS
5430 POKE - 12524,0: REM BLACK ON WHITE PLOT
5440 POKE - 12528,7: REM DARK PRINT
5450 POKE - 12527,8: REM LEFT MARGIN
5460 RETURN
5999
      REM
6000
      REM FORMATTED LIST
      POKE 33,33
6005
6010
      GOSUB 5300: REM TURN ON PRINTER
6060
      LIST
      PRINT : PRINT
6065
61.90
      CALL 1013
6195
      END : REM
6999
      REM
            NEXT READS ADIOS INITE AS DATA STATEMENTS
7000 FOR I = 7986 TO 8070: READ A: POKE I,A: NEXT : RETURN
7010 DATA 230,15,100,0,100,0,173,66,0,0,0,0,168,131,0,0,0,0,173,132,0,0,0
 .0.168.101.0.0.0.0.0.144.169.255.141.190.192.169.1.141.190.192.162.0.189.5
0,31,141,182,192,232,169,51,224,30,240,3,76,94,31,169,23,141,190,192,173,8
 0,31,141,182,192,173
 7020 DATA 81,31,141,182,192,169,127,141,190,192,96,2,205
```

- 24 -

Appendix III - AM9513 Utilization

This section describes the AM9513 utilization in the "Free Run" mode of synchronization as described in Section II. The 9513 is a fairly complex chip described in a 26-page data brochure available from Advanced Micro Devices (5 pages of this are included in Appendix 5.H). This brochure should be read in order to understand this Appendix. However, these steps are not necessary unless modifications must be made to ADIOS.


Figure 6 shows the AM9513 configuration as used in the ADIOS "Free Rum" mode; a timing diagram is shown in Figure 7. The first counter group is used to generate the COUNT/BLANK signal. The duration of COUNT is determined by the contents of the LOAD register where the duration of BLANK is determined by the HOLD register. When the counter is armed, it will be loaded with the contents of the LOAD or HOLD register (depending on the current state of OUT1) and begin counting down. When TC (0001) is reached, the output will begin to toggle and the counter will be reloaded with the other register and will commence to count down. This cycle will be repeated continuously until the counter is either reset or disarmed. The count-source of counter 1 is software selectable. However, in this manual, 100 HZ (F5) is used. This is derived from an external 1 MHz crystal oscillator which is divided down.


Counters 2, 3, 4, and 5 count the frequencies produced by the two V/F converters. Only counters 2 and 3 will be discussed since the operation of counters 4 and 5 is identical. Counters 2 and 3 are cascaded to provide 32 bits (4.295×10^9) of potential counting storage for the AIN frequency. With a 1 MHz V/F, one could take data for a maximum period of 71 minutes.

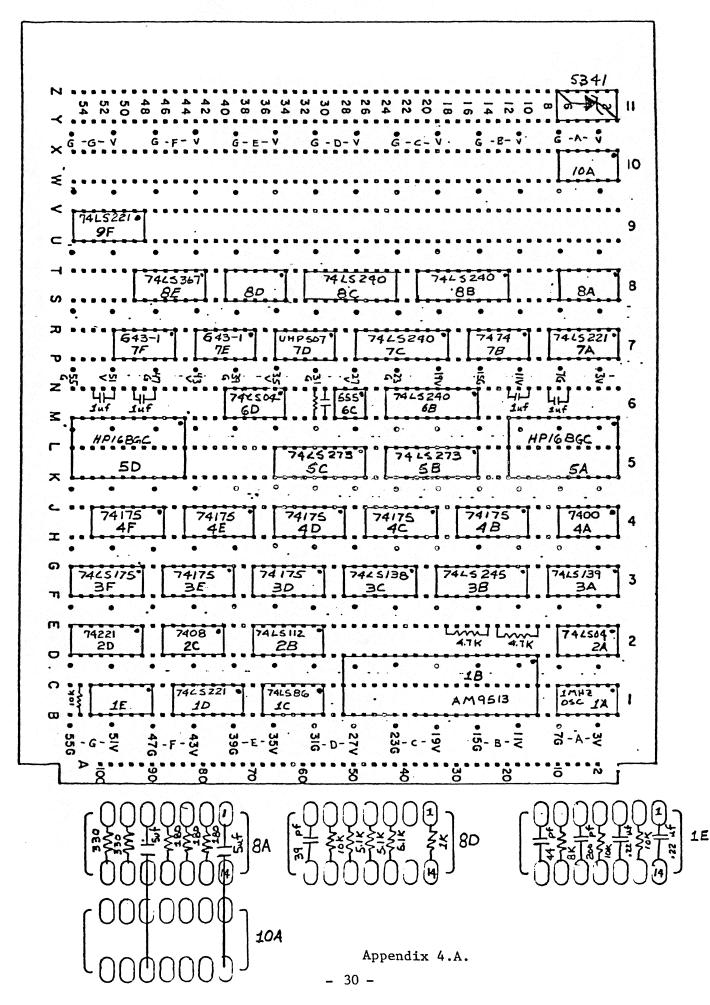
- 25 -

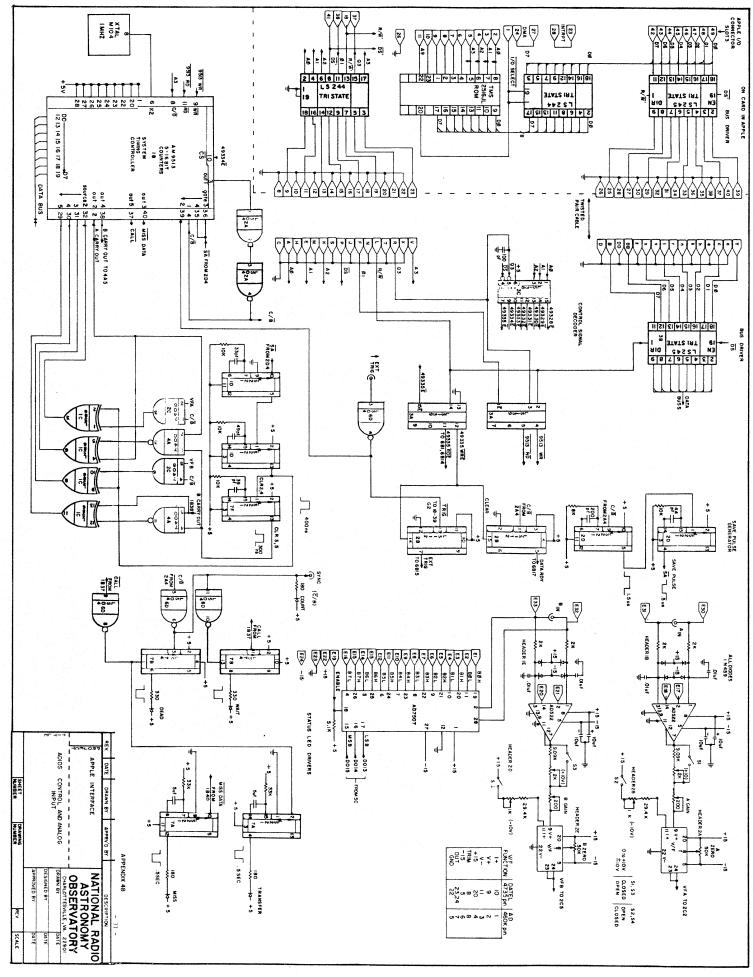
The frequency from the AIN V/F is inhibited by the C/ \overline{B} signal. The two counters use operation mode "Q" so that the gate ("SAVE") is used to place the counter contents into the HOLD register and the first pulse into the counter (from the input) is used to clear the counter by initiating a reload from the empty LOAD register. The "pulse adders" are used to provide this CLR (Clear) pulse. This all takes place within the 5 µs after COUNT time ends and is illustrated in Figure 8.

The computer can read the contents of the HOLD registers at anytime that is convenient until the next COUNT to BLANK transition occurs. OUT3 ($\overline{\text{MISS}}$ DATA) and OUT5 ($\overline{\text{CALL}}$) cna be in either the state of GND (CM bit 2 = 0) or HIGH IMPEDANCE (CM bit 2 = 1) and are controlled by the computer writing data into the AM9513 Command registers.

- (1) The computer sets the CALL bit and begins to wait until BLANK commences. If the DATA READY bit is low at this point, a cycle has been missed, (by the computer) and the MISSed Data line is pulsed. The WAIT LED is illuminated between the marks (1) and (2).
- (2) The 4 counters stop counting, are saved and cleared, all within 5 µs. The DATA READY bit is set in order to tell the computer that it can begin outputting new data.
- 3) The DATA READY bit is cleared under software control.
- 4) All data has been outputted. The CALL bit is cleared under software control. The TSFR LED is initiated to illuminate for .5 seconds. The computer can input data from the analog inputs between now and the next COUNT to BLANK transition.
- (5) All outputs should be settled. The counters commence counting. The COUNT LED illuminates.

Fig. 7. ADIOS-APPLE Synchronization


The counter's input is gated off.


2) A pulse is applied to the internal gate of Counters 2 and 3. This pulse, labeled "SAVE", causes the contents of the counters to be placed in the HOLD registers at mark (3).

- (4) A pulse is applied/added to the input of Counter 2. This first pulse of integration clears the counter. The pulse is not recorded.
- 5) A pulse is applied/added to the input of Counter 3. This clear pulse is inhibited by OUT2. If OUT2 is clocked by the CLR 2 pulse, Counter 3 will automatically be cleared.
 - NOTE: When a counter reaches FFFF, it will commit itself to outputting a terminal count pulse initiated by the next input clock pulse. Once committed, it cannot be disrupted by:
 - a) the internal gate signal ("SAVE")
 - b) the clearing of the counter
 - c) the saving of the counter's contents

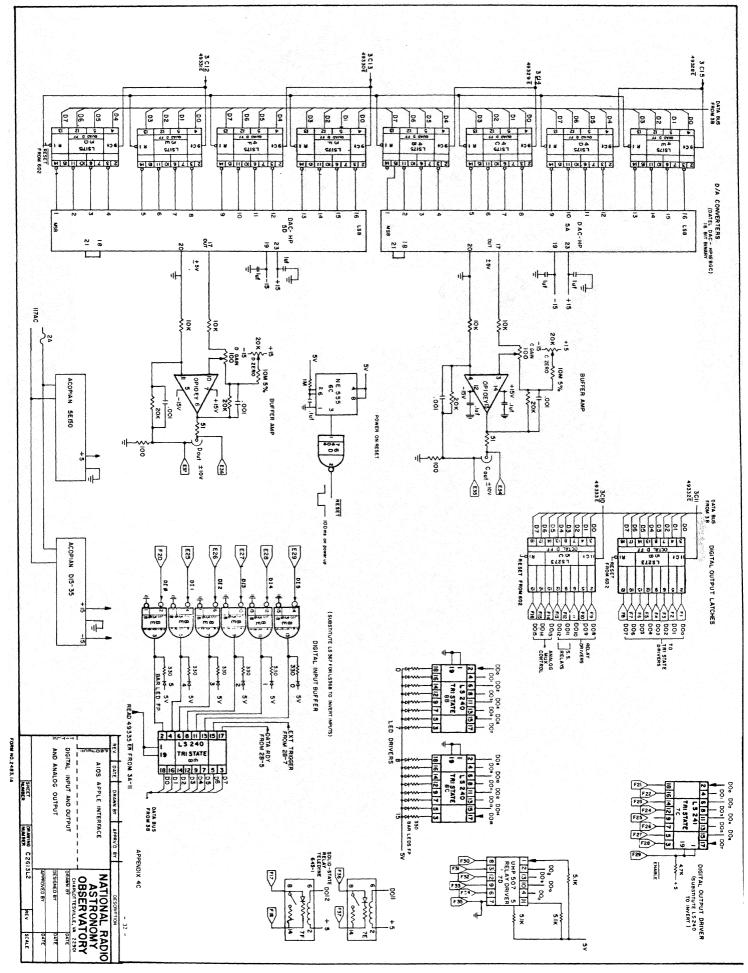
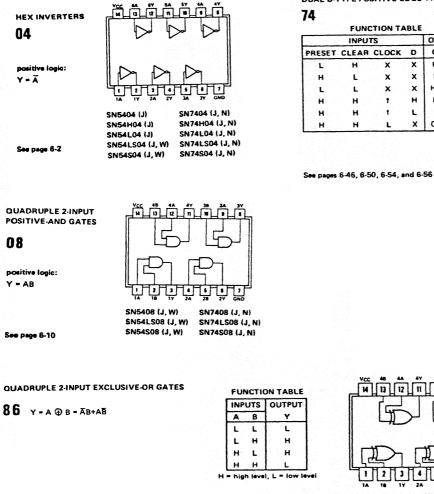
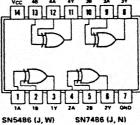

Due to this characteristic, OUT2 must inhibit CLR 3 for OUT2 becomes the "extra" pulse initiated by CLR 2 and not intended to be counted.

Fig. 8. Timing Diagram of AM9513 Counting Operation.

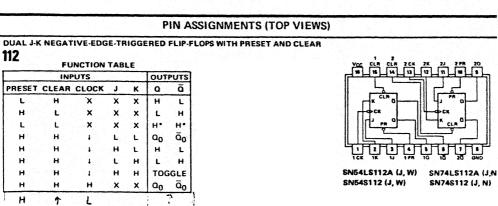
- 31 -




- 32 -

Appendix 5. Manufacturers Data

- Appendix 5.B. Consists of pages 1, 5, and 6 of a six-page report. The complete report can be obtained from Teledyne Philbrick, Allied Drive at Route 128, Dedham, Massachusetts 02026.
- Appendix 5.D. Consists of pages 1, 2, and 4 of a four-page report. The complete report can be obtained from Datel Intersil, 11 Cabot Boulevard, Mansfield, MA 02048.
- Appendix 5.H. Consists of pages 1-5 of a 26-page report. The complete report can be obtained from Advanced Micro Devices, Inc., 901 Thompson Place, P. O. Box 453, Sunnyvale, California 94086.


Appendix 5.1. Analog Devices 460K V/F converter used as a substitute for Teledyne 4735 due to unavailability.

SN54LS86 (J, W) SN54S86 (J. W)

See pages 6-56 and 6-58

112

Ł

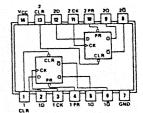
н

L

н

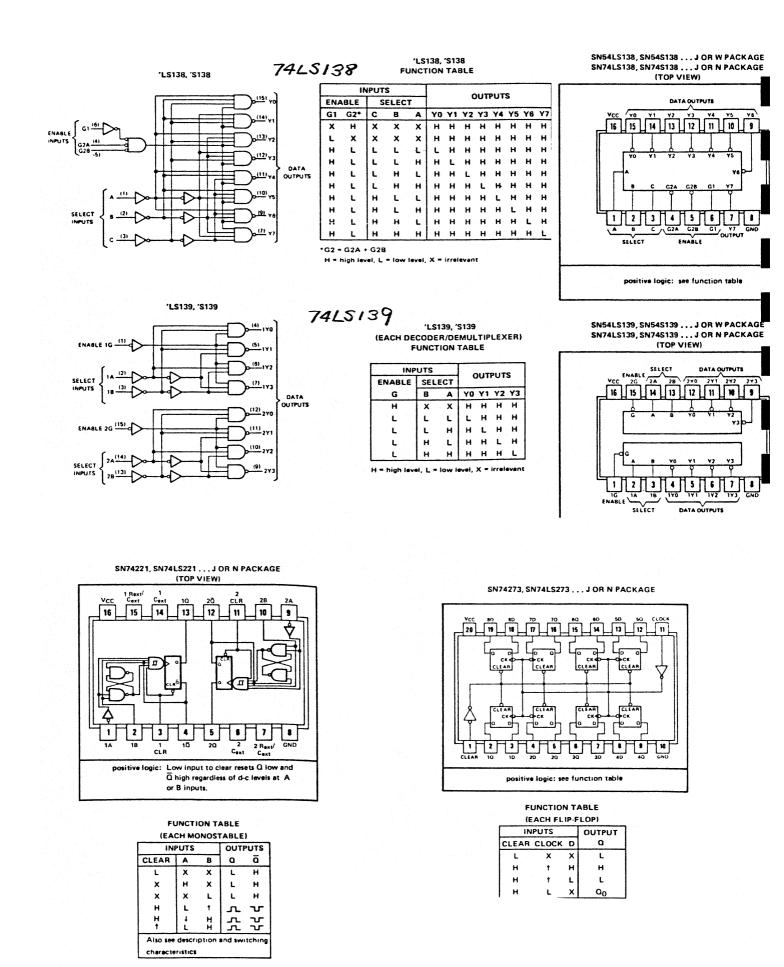
н

н

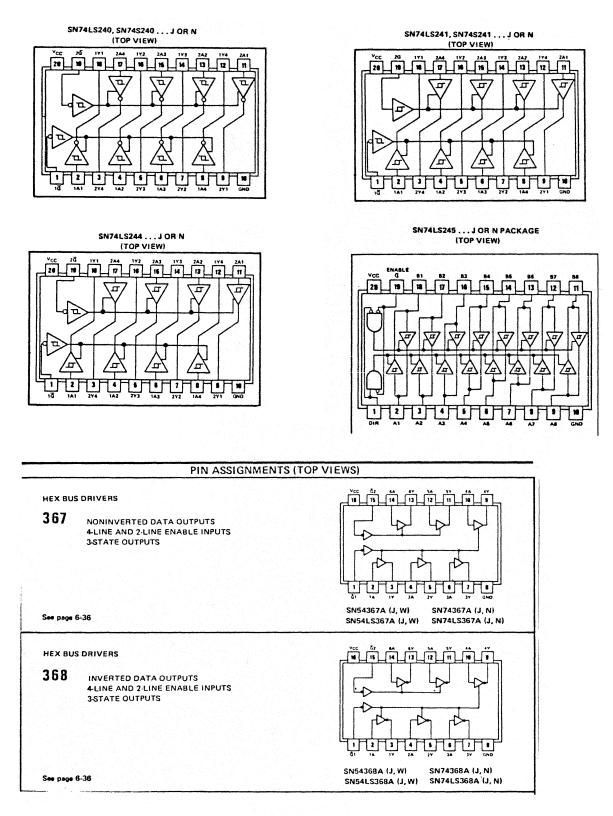

н

н

H


DUAL D-TYPE POSITIVE-EDGE-TRIGGERED FLIP-FLOPS WITH PRESET AND CLEAR

	FUNC	TION TA	BLE		
	INPU	rs		OUTP	UTS
PRESET	CLEAR	CLOCK	D	٩	ā
L	н	×	X	н	L
н	L	x	x	L	н
L	L	x	×	н•	н٠
н	н	t	н	HI	L
н	н	1.1	L	L. 1	н
н	н	L	x	00	ā ₀



SN5474 (J) SN7474 (J, N) SN74H74 (J. N) SN54H74 (J) SN74L74 (J, N) SN54L74 (J) SN54LS74A (J, W) SN74LS74A (J, N) SN54S74 (J, W) SN74S74 (J. N)

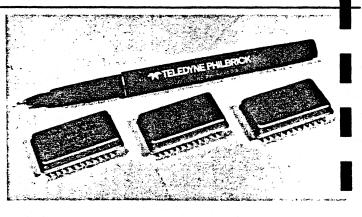
Appendix 5.A.

Appendix 5.A.

Appendix 5.A.

10 kHz 100 kHz 1MHz HIGH RELIABILITY 4731/4733/4735 FREQUENCY CONVERTERS

This series of low drift voltage-to-frequency converters provide an output-pulse-train repetition rate that is a precision linear function of the input voltage. These low drift, ultra linear, 10 kHz/100 kHz/1 MHz Full Scale V-to-F's have the ability to handle positive, negative, and differential input signals over a wide range of power supply voltages (± 9 V to ± 18 V). They operate over the wide temperature range of -55° C to $\pm 125^{\circ}$ C.


With 126 dB of dynamic range, 70 dB CMRR, and 100% overrange, these V-to-F's provide linear operation with input voltages from $\pm 10 \ \mu$ V to ± 20 V. The current pin (the summing point of an op amp) resolves currents as low as 1000 pA (4731/4733), which makes operation with full scale input voltages from less than 250 mV to greater than 100 volts possible.

The 4731/4733's 0.005% nonlinearity is the equivalent of 16 bits end point linearity, while differential nonlinearity and dynamic range approach 20 bits. With this combination of features and specifications, the 4731/4733/4735 stand alone as sixth generation devices, capable of operation from power supply voltages as low as ± 9 V.

	NOMINAL FREQUENCY/	NONLINEARITY 1% F.S.			FULL SCALE Temp. Coef. ±PPM/°C	
	MAX. OVERRANGE	Typical	Guaran	teed	Typical	Guaranteed
4731	10 kHz/21 kHz	.002	.005	() Hot	4	15
				Cold	7	25
4733	100 kHz/210 kHz	.002	.005	Hot	6	20
				Cold	10	30
4735	1 MHz/2.1 MHz	.005	.015		30	50

For maximum reliability and performance these V-to-Fs are offered with 100% screening similar to MIL-STD-883 Method 5008. Refer to Table 2 for details as to methods and test conditions.

MODEL	OPERATING TEMPERATURE RANGE	SCREENED to MIL-STD-883 METHOD 5008
4731 4733 4735	–55°C to +125°C	Internal Visual Stabilization Bake Constant Acceleration Seal, Fine and Gross Leak External Visual
4731-83 4733-83 4735-83	–55°C to +125°C	Internal Visual Stabilization Bake Constant Acceleration Seal, Fine and Gross Leak Burn-In Temperature Cycling External Visual

FEATURES

- 100% Screening Similar to MIL-STD-883, Method 5008
- Power Supply Range ±9 V to ±18 V
- Ultra Linear
- 100% Overrange
- 126 dB Dynamic Range
- 70 dB CMRR
- Low Full Scale Drift
- Low Zero Offset Voltage Drift
- TTL, CMOS, HNIL Compatible Output

APPLICATIONS

- No Drift Integrate/Hold
- High Common Mode Voltage Isolation
- 2-Wire Digital Transmission
- Analog-to-Digital Converters—20 Bit
- Optical Data Link

HOW TO USE THE 4731/4733/4735

When used as shown in Figure 1A & 1B, the factory trim med V-to-F operates as specified without additional com ponents. Pin 9 the $+V_{in}$ trim and pin 12 the $+V_{in}$ are both inputs for a positive input signal. Pin 12 can be used when accuracy to $\pm 0.1\%$ of F.S. is needed with no external components. Pin 9 is usually used when greater accuracy is required using an external trim, see Figure 2A.

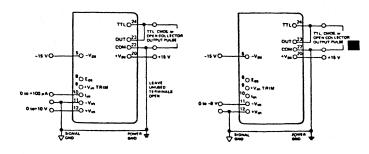
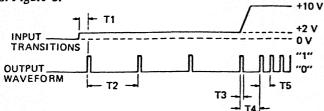


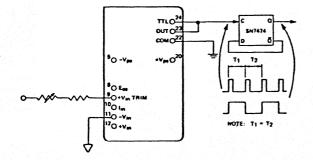
Figure 1A. Positive Input Signals Figure 1B. Negative Input Signals

- 37 -

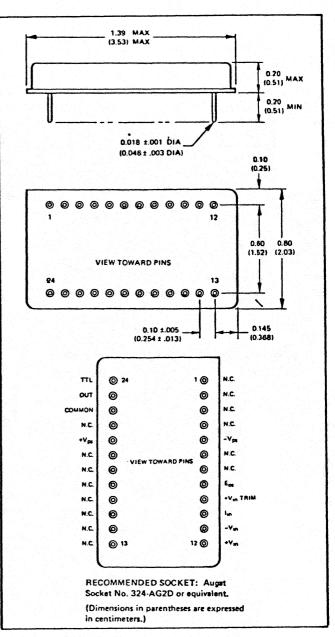

4731/4733/4735

Output Protection (+V_{cc}, Common, -V_{cc})

The V-to-F output (collector of Q2) may be shorted to ground indefinitely without damage, however, since Q2 is ON most of the time, a short to $+V_{CC}$ will cause certain catastrophic failure in about 5 seconds. A short to TTL (pin 24) and $-V_{CC}$ simultaneously will cause instant catastrophic failure.


Square Wave Output

The output of the 4731/4733/4735 is a train of pulses 20 μ sec/2 μ sec/2 μ sec (see Figure 7). A symmetrical (square wave) output for driving highly capacitive or noisy transmission lines is obtained with a D or JK flip flop as shown in Figure 8.



	Typical Time in Micro-Seconds					
	T1	T2	T3	T4	T5	
4731	0 to 500	500	20	≈200	100	
4733	0 to 50	50	2	≈30	10	
4735	0 to 5	5	0.2	≈3	1	

Figure 7. Typical Waveforms, Showing Timing Relationships

Figure 8. Square Wave Output Using D - Type Flip Flop

	SCREENING SIMILAR TO MIL-STD-883 N	IETHOD 5008
Test	Methods and Conditions	Purpose
*Internal Visual	Method 2017	Removes potentially defective units with respect to materials, construction, and workmanship.
*Stabilization Bake	Method 1008, Condition C 24 hours at 150 °C	Preconditioning treatment to stabilize circuit components prior to conducting further testing and trimming.
*Constant Acceleration	Method 2001, Condition A Y1 Axis, 5,000 g	Removes potential failures due to weak wire or chip bonding.
*Seal, Fine and Gross	Method 1014, Fine Leak Condition A & C Bomb time 1 hr. at 30 psi; Leak Rate < 5 X 10 ⁻⁷ cc/sec; Gross Leak, Condi- tion C1, no bubbles	Verifies Integrity of hermetic package
Burn In	Method 1015 Condition B 160 hours at 125°C	Reduces infant mortality rate
Temperature Cycling	Method 1010, Condition B 10 cycles from -55 °C ^{+0 °C} -5 °C to +125 °C +3 °C -5 °C to +125 °C -0 °C	Removes potential failures due to weak wire or chip bonding.
*External Visual	Method 2009	Removes defective units with respect to material construction, and workmanship.

*These tests are for both standard and "-83" models 4731, 4733 and 4735 Screening Program to MIL-STD-883

4731/4733/4735

SPECIFICATIONS @ +25 °C, ±Vcc, ±15 V (unless otherwise indicated)

	TYPICAL			GUARANTEED		
FULL SCALE (FS)						
Ideal Transfer Function				$f_{out} = \frac{(V_{in})(f_A)}{10 V} =$	(Iin)(fA)	
ideal fransier Punction				'out - 10 V	14. 0	
				f _A = 10 kHz (4731)		MHz (4735)
+Vin trim				9.9 V ±0.5% trimma		
+Vin				10.00 V ±.05 V	010 10.00 V	
+lin				100 µA ±25% (473)	1/4733)·1 mA +25	8 (4775)
Range (for specified nonlinearity) D				100 pr 123 8 (473)	1747 331, 1 MA 123	A (4735)
+Vin Terminal	+10 µV to +21 V			+100 µV to +12 V		
-Vin Terminal @ Vcc = ±18 V	-10 µV to (-Vcc	5.0 V)		-100 #V to (-Vcc +	7.0 VI	
+lin Terminal	+1 nA to +210 µA			+1 nA to 120 µA (±		
	10 nA to +2.1 mA			10 nA to 1.2 mA (4		
Differential ((+Vin) - (-Vin)) O	±12 V			±11 V, (±Vcc fault)		
Over Range Max., +Vin, (-Vin = 0)		= 21 kHz/210 kHz	/2.1 MHz		= 20 kHz/200 kHz	(4731/4733); +Vin = +15 V, fout = 1.5 MHz (4
Dynamic Range	126 dB			100 dB		
Common Mode Voltage Φ	(+Vcc -4 V), (-Ve	+5 V)		(+Vcc -5 V), (-Vcc	+7 V}	
CMRR, CMV = ±10 V	70 dB	~		60 dB		
		4705			47.75	
NONLINEARITY 1%FS	4731/4733	4735		4731/4733	4735	
+V _{in} (+100 μV to 12 V)	.002	.005		.005	.015	
+V _{in} (+100 μV to 12.0 V) ⊕ Φ	.002	.005		.005	.015	
$-V_{in}$ (-100 μ V to $-V_{cc}$ +7.0 V)	.01	.02		.02	.05	
+l _{in} (1 nA to 120 μA) (4731/4733)	.002			.005		
+l _{in} (1 nA to 120 μA) (4731/4733) @ Φ	.002			.005		
+I _{in} (10 nA to 1.2 mA) (4735)		.005			.015	
+l _{in} (10 nA to 1.2 mA) (4735) @ @		.005			.015	
+V _{in} (+100 μV to +12.0 V) Φ	.005	.01		.01 Hot; .03 Cold	.02	
+V _{in} (+100 μV to 20 V) (4731/4733) @ Φ	.02			.05		
+V _{in} (+100 μV to 15 V) (4735) @ Φ		.02			.05	and the second secon
INPUT						
Zero Offset Voltage, Initial Untrimmed	±1 mV			15 mV (trimmable t		
	T1					(4775)
Impedance @ +V _{in}	100 MΩ			100 kΩ±25% (4731) 10 MΩ	14733); 10 K111257	6 (4735)
Impedance @ -V _{in} Impedance @ +I _{in} (op amp summing point)	Virtual Ground			< 0.1 Ω		
an a						
STABILITY OF FULL SCALE FACTOR	4731	4733	4735	4731	4733	4735
	Hot Cold	Hot Cold		Hot Cold	Hot Cold	0
Temperature Coefficient (+Vin, -Vin) ±PPM/°C •	4 7	6 10	30	15 25	20 30	50
Temperature Coefficient (+1 _{in}) ±PPM/°C •	4 7	6 10	30			
Temperature Coefficient (+Vin, -Vin) ±PPM/°C ●	8 10	12 15	30	25 50	30 50	50
Power Supply Sensitivity ±PPM/% ΔVcc Φ	10	10	15	20	20	35
Drift: Per Day/Per Month ±PPM	10/30	10/30	10/30	المحمد المستعر والم		and the second se
Warm Up Time to .01%/.002% of F.S.	1 s/100 s	1 s/100 s	1 s/100 s		·	
						a a sen a ser a ser A
STABILITY OF ZERO OFFSET VOLTAGE #V/°C	4/31/4/33	4735		4731/4733	4735	
Temperature Coefficient µV/°C @	±6	±10		±20	±50	
Temperature Coefficient µV/°C ©	±20	:15		: 100 Hot; : 50 Cold	1 150	
Power Supply Sensitivity ±µV/%ΔVcc @	3	5		20	10	
Drift : Per Day/Per Month	20 µV/60 µV	20 µV/60 µV				
RESPONSE						
Settling Time to .01% for FS step input				1 to 2 pulses of new		
Overload Recovery (Vin = +100 V to Vin = +10)	0.14 ms (4731/47	33); 70 µs (4735)		0.5 ms (4731/4733	i); 0.2 ms (4735)	
or (I _{in} = 1 mA to I _{in} = 100 µA)			-			
OUTPUT WAVEFORM				TTL compatible pu		
				CMOS, HNIL (see F		
High (positive logic "1")				+2.4 V to +5 V (up		
Low (positive logic "0")				≤ 0.4 V @ -16 mA		
Pulse Width						is, 4735/0.1 μs to .3 μs)
Source Impedance (High)		a a se		3.5 kΩ±20% (4731	/4733); 680 Ω±209	% (4735)
POWER REQUIREMENT				±9 V to ±18 V		
	±7 V to ±18 V					
Voltage Range (±V _{CC})	±7 V to ±18 V			±2 V		
Voltage Range (±V _{CC}) Voltage Asymmetry (∆ between i+V _{CC} i&i−V _{CC} i		773) • 75 mA /472	5)		3) 45 mA (4735)	
Voltage Range (±V _{CC}) Voltage Asymmetry (∆ between I+V _{CC} I&I-V _{CC} I Current (±I _{CC}) ® V _{CC} ≠ ±15 V		733); ±35 mA (473	5)	±2 V ±25 mA (4731/473)	3); 45 mA (4735)	
Voltage Range (±V _{CC}) Voltage Asymmetry (∆ between i+V _{CC} i&i−V _{CC} i		733); ±35 mA (473	5)	±25 mA (4731/473	3); 45 mA (4735)	
Voltage Range (±V _{CC}) Voltage Asymmetry (∆ between I+V _{CC} I&I−V _{CC} I Current (±I _{CC}) @ V _{CC} = ±15 V		733); ±35 mA (473	5)	±25 mA (4731/473) -55 °C to +125 °C	3); 45 mA (4735)	
Voltage Range (±V _{CC}) Voltage Asymmetry (∆ between I+V _{CC} I&I-V _{CC} I Current (±I _{CC}) @ V _{CC} ≈ ±15 V ENVIRONMENT/RELIABILITY	 ±17 mA (4731/4	733); :35 mA (473	5)	±25 mA (4731/473	3); 45 mA (4735)	

Output Protection: May be shorted to ground indefinitely; to +Vcc for 5 s NOTES

D After trim @ 10 Hz and 10 kHz (4731)/100 Hz and 100 kHz (4733)/1 kHz and 1 MHz (4735) D See Figure 5G for definition

Φ See Figure 36 to definition Φ Constant voltage at Zero trim pin Φ Measured from -25°C to +85°C, Hot (+25°C to +85°C) & Cold (-25°C to +25°C) Φ Measurement, made for ±V_{cc} = ±9 V to ±18 V Φ Measured for -55°C to +125°C, Hot (+25°C to +125°C) & Cold (-55°C to +25°C) Φ I_g = 100 μA for 4731 and 4733, 1 mA for 4735 Φ στ 112°C

Specified over entire temperature range, -55°C to +125°C

Teledyne Philbrick makes no representation that use of its modules in the circuits described herein, or use of other technical information contained herein will not infringe on existing or future patent rights nor do the descriptions contained herein imply the granting of licenses to make, use, or sell equipment constructed in accordance therewith.

Suggested Power Supplies: 2403 or 2301. Request AN-20 for V to F applications.

Allied Drive at Route 128, Dedham, Massachusetts 02026 Tel: (617)329-1600 TWX:(710)348-6726 Telex: 92-4439

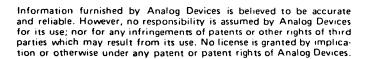
High Accuracy Data Acquisition Instrumentation Amplifier

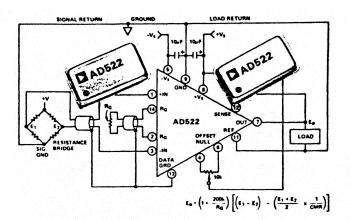
FEATURES

Performance

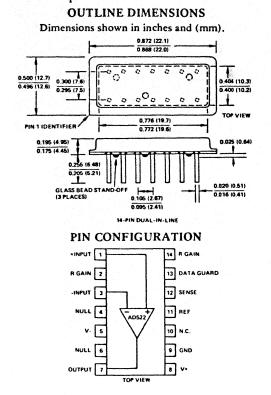
Low Drift: $2.0\mu V/^{\circ}C$ (AD522B) Low Nonlinearity: 0.005% (G = 100) High CMRR: >110dB (G = 1000) Low Noise: $1.5\mu V$ p-p (0.1 to 100Hz) Low Initial VOS: $100\mu V$ (AD522B) Hermetically-Sealed, Electrostatically Shielded DIP <u>Versatility</u> Single-Resistor Gain Programmable: $1 \le G \le 1000$ Output Reference and Sense Terminals Data Guard for Improving ac CMR <u>Value</u> Internally Compensated No External Components except Gain Resistor Active Trimmed Offset, Gain, and CMR Low Cost: \$13.00 (100's, A)

PRODUCT DESCRIPTION


The AD522 is a precision IC instrumentation amplifier designed for data acquisition applications requiring high accuracy under worst-case operating conditions. An outstanding combination of high linearity, high common mode rejection, low voltage drift, and low noise makes the AD522 suitable for use in many 12-bit data acquisition systems.


An instrumentation amplifier is usually employed as a bridge amplifier for resistance transducers (thermistors, strain gauges, etc.) found in process control, instrumentation, data processing, and medical testing. The operating environment is frequently characterized by low signal-to-noise levels, fluctuating temperatures, unbalanced input impedances, and remote location which hinders recalibration.

The AD522 was designed to provide highly accurate signal conditioning under these severe conditions. It provides output offset voltage drift of less than $10\mu V/^{\circ}C$, input offset voltage drift of less than $0.5\mu V/^{\circ}C$, CMR above 80dB at unity gain (110dB at G = 1000), maximum gain nonlinearity of 0.001% at G = 1, and typical input impedance of $10^{\circ}\Omega$.


This excellent performance is achieved by combining a proven circuit configuration with state-of-the-art manufacturing technology which utilizes active laser trimming of tight-tolerance thin-film resistors to achieve low cost, small size and high reliability. This combination of high value with no-compromise performance gives the AD522 the best features of both monolithic and modular instrumentation amplifiers, thus providing extremely cost-effective precision low-level amplification.

The AD522 is available in three versions with differing accuracies and operating temperature ranges; the "A", and "B" are specified from -25° C to $+85^{\circ}$ C, and the "S" is guaran-

teed over the military/aerospace temperature range of -55°C to +125°C. All versions are packaged in a hermeticallysealed, electrostatically shielded 14-pin DIP and are supplied in a pin configuration similar to that of the popular AD521 instrumentation amplifier.

 Route 1 Industrial Park; P.O. Box 280; Norwood, Mass. 02062

 Tel: 617/329-4700
 TWX: 710/394-6577

 West Coast
 Mid-West
 Texas

 213/595-1783
 312/894-3300
 214/231-5094

312/894-3300			214/23
A	-	~	

Appendix 5.C.

SPECIFICATIONS

(typical @ +VS = $\pm 15V$, RL = $2k\Omega \& TA = +25^{\circ}C$ unless otherwise specified)

NODEL	AD522A	AD522B	AD522S
AIN Gain Equation	$1 + \frac{2(10^5)}{100}$	•	•
and the second sec	Rg		
Gain Range	1 to 1000	a da esta esta esta esta esta esta esta est	• •
Equation Error	0.2%	0.05%	an a
G = 1 G = 1000	0.2% max 1.0% max	0.05% max 0.2% max	
Nonlinearity, max (see Fig. 4)	L.V.O HIEA	U.4 70 (112X	
G = 1	0.005%	0.001%	••
G = 100	0.01%	0.005%	••
vs. Temp, max			
G = 1	2ppm/°C (1ppm/°C typ)	•	e al 🍨 de la companya de la companya
G = 1000	50ppm/°C (25ppm/°C typ)	1990 - 19900 - 19900 - 19900 - 1990 - 1990 - 19900 - 1990 - 1990 - 1990 - 1990	•
OUTPUT CHARACTERISTICS		•	
Output Rating	±10V @ 5mA		
DYNAMIC RESPONSE (See Fig. 6)			
Small Signal (-3dB) G = 1	300kHz	in a state of the second s	
G = 1 G = 109	3kHz		an a
G = 105 Full Power GBW	1.5kHz		
Slew Rate	0.1V/µs		Notes 🖕 and the second s
Settling Time to 0.1%, G = 100	0.1 v /µs		
to 0.01% , G = 100	5ms		 A second sec second second sec
to 0.01%, $G = 100$	2ms	ante ante ante ante ante ante ante ante	ng ta∎ kalina ang san
to 0.01% , G = 1	0.5ms		en e
/OLTAGE OFFSET	a na mangana na mangan Na mangana na	· · · · · · · · · · · · · · · · · · ·	
Offsets Referred to Input			
Initial Offset Voltage			
(adjustable to zero)			
G = 1	±400µV max (±200µV typ)	$\pm 200\mu V max(\pm 100\mu V typ)$	≥ :00µV max (±100µV typ)
vs. Temperature, max (see Fig. 3)			
G = 1	±50μŲ/°C (±10μV/°C τyp)	$\pm 25\mu V/^{\circ}C(\pm 5\mu V/^{\circ}C typ)$	±100μV/°C (±10μV/°C typ)
G = 1000	±6µV/°C	±2µV/°C	±6µV/°C
1 < G < 1000	$\pm (\frac{50}{C} + 6)\mu V/^{\circ}C$	$\pm (\frac{25}{G} + 2)\mu V/^{\circ}C$	$\pm (\frac{100}{G} + 6) \mu V/^{\circ} C$
	G G	`G <i>2,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	G
vs. Supply, max			an a
G = 1	±20µV/%		
G = 1000	±0.2µV/%	• · · · · · · · · · · · · · · · · · · ·	
NPUT CURRENTS			
Input Bias Current			
Initial max, +25°C	±25nA	±15nA	±25nA
vs. Temperature	±100pA/°C	±50pA/°C	±100pA/°C
Input Offset Current			
Initial max, +25°C	±20nA	±10nA	±20nA
vs. Temperature	±100pA/°C	±50pA/°C	±100pA/°C
NPUT			
Input Impedance	the spirit set of the set		
Differential	10 ⁹ Ω		ng ta 🍂 ng tangga ta
Common Mode	10°Ω		•
Input Voltage Range			
Maximum Differential Input, Linear	±10V		an a
Maximum Differential Input, Safe	±20V		
Maximum Common Mode, Linear	±10V		 A second sec second second sec
Maximum Common Mode Input, Safe	±15V		•
Common Mode Rejection Ration,			
Min @ $\pm 10V$, $1k\Omega$ Source			
Imbalance (see Fig. 5)			
G = 1 (dc to 30Hz)	75dB (90dB typ)	80dB (100dB typ)	75dB (90dB typ)
$\mathbf{G} = 10 \left(\mathbf{dc} \text{ to } \mathbf{10Hz} \right)$	90dB (100dB typ)	95dB (110dB typ)	90dB (110dB typ)
$\mathbf{G} = 100 (\mathbf{dc} \mathbf{to} \mathbf{3Hz})$	100dB (110dB typ)	100dB (120dB typ)	100dB (120dB typ)
G = 1000 (dc to 1Hz)	100dB (120dB typ)	110dB (>120dB typ)	100dB (>120dB typ)
G = 1 to 1000 (dc to 60Hz)	75dB (88dB typ)	80dB (88dB typ)	
Voltage Noise, RTI (see Fig. 4)			
0.1Hz to 100Hz (p-p)	15.17	en de la companya de La companya de la comp	
G = 1 G = 1000	15µV		
G = 1000 10Hz to 10kHz (rms)	1.5µV		
G = 1	15µV		
	1 J M 4		
EMPERATURE RANGE	25°C 95°C		-55°C to +125°C
Specified Performance	-25°C to +85°C		->> C to +125 ⁻ C
Operating Storage	-55°C to +125°C		
Storage	-65°C to +150°C	-	
OWER SUPPLY			
Power Supply Range	±(5 to 18)V		•
Quiescent Current, max @ ±15V	±10mA	±8mA	±8mA
RICE	· · · · · · · · · · · · · · · · · · ·		
			£45.00
(1-24)	\$29.25	\$36.00	\$45.00
(1-24) (25-99)	\$29.25 \$23.40	\$36.00 \$28.80	\$36.00

*Specifications same as AD522A. **Specifications same as AD522B. Specifications subject to change without notice.

SPECIFICATIONS

(typical @ +VS = $\pm 15V$, R_L = $2k\Omega \& T_A = +25^{\circ}C$ unless otherwise specified)

NODEL	AD522A	AD522B	AD522S
GAIN Come Ferretron	$1 + \frac{2(10^5)}{2}$		2012년 - 1997년 2017년 - 1997년 1987년 1991년 - 1997년 1월 19
Gain Equation	I T Rg		
Gain Range	1 to 1000		
Equation Error			
G = 1	0.2% max	0.05% max	
G = 1000	1.0% max	0.2% max	
Nonlinearity, max (see Fig. 4)			
G = 1	0.005%	0.001%	antenne i i na Alexandria. Na statute de la constatute de la constatu
G = 100	0.01%	0.005%	
vs. Temp, max G = 1	2ppm/°C (1ppm/°C typ)		- 201 - 10 - 201
G = 1000	50ppm/°C (25ppm/°C typ)	그렇게 가 많이 많이 가 많이 많이 들었어.	승규는 가슴 옷에서 나라서 가다.
OUTPUT CHARACTERISTICS	copping c copping c cyp,	an a	
Output Rating	±10V @ 5mA	같은 것 : 특별 것 같은 것 같은 것 같은 것 같은 것	
OYNAMIC RESPONSE (See Fig. 6)			
Small Signal (-3dB)			
G = 1	300kHz		1
G = 100	3kHz	방법을 흘리면 그는 것이 같이 많이 많이 많이 없다.	
Full Power GBW	1.5kHz		
Slew Rate	0.1V/µs	그는 그 옷 많이 있는 것 같아요. 이 가지 않는 것이 없다.	
Settling Time to 0.1% , G = 100	0.5ms		
to 0.01% , G = 100	5ms 2mc	2011년 1월 2012년 1월 201 1912년 1월 2012년 1월 2012	ranka ang Zeona. Tanana ≢a
to 0.01%, G = 10 to 0.01%, G = 1	2ms 0.5ms	na statu zastat 1993 - Alisan Alisan, sa sa sa statu	
OLTAGE OFFSET			
Offsets Referred to Input			
Initial Offset Voltage (adjustable to zero)			
G = 1	±400µV max (±200µV typ)	±200µV max(±100µV typ)	2:00µV max (±100µV typ)
vs. Temperature, max (see Fig. 3)			
G = 1	±50µV/°C(±10µV/°C typ)	±25µV/°C (±5µV/°C typ)	±100µV/°C (±10µV/°C typ)
G = 1000	±6µV/°C	±2µV/°C	±6μV/°C
1 < G < 1000	$\pm(\frac{50}{G}+6)\mu V/^{\circ}C$	$\pm (\frac{25}{G} + 2)\mu V/^{\circ}C$	$\pm(\frac{100}{G}+6)\mu V/^{\circ}C$
	-`G ****``č	- G - 2/μ+7 C	-` G
vs. Supply, max			나는 다양하는 것은 가격에 가능하는 것이다.
G = 1	±20µV/%		그렇게 흘러 나는 사람이 가지?
G = 1000	±0.2µV/%		
NPUT CURRENTS			
Input Bias Current		- 그는 것은 그는 것을 가지 않는 것을 했다.	
Initial max, +25°C	±25nA	±15nA	±25nA
vs. Temperature	±100pA/°C	±50pA/°C	±100pA/°C
Input Offset Current	+22.4		100 1
Initial max, +25°C	±20nA	±10nA	±20nA
vs. Temperature	±100pA/°C	±50pA/°C	±100pA/°C
NPUT			
Input Impedance	10 ¹ 0		
Differential	10°Ω		
Common Mode	10 [°] Ω		그 승규는 것이 같이 가지 않는 것이 같이 많이 했다.
Input Voltage Range	+101	그는 그 같은 것이 있는 것 같은 것을 하는 것이 같이 없다.	· 영양 영양 가 가 있는 것이 같이 있는 것이 있는 것이 있다. - 이번 아이에 바 이번 것이 있는 것이 있는 것이 있는 것이 있는 것이 있다. - 이번 아이에 바 이번 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 없다.
Maximum Differential Input, Linear	±10V ±20V		성감 수가 있는 것이 같이 많이 많이 같이 같이 없다.
Maximum Differential Input, Safe Maximum Common Mode Linear	±20V ±10V	· · · · · · · · · · · · · · · · · · ·	경험 수학 가는 것이 많이 많이 많이 없다.
Maximum Common Mode, Linear Maximum Common Mode Input, Safe	±15V		
Common Mode Rejection Ration,			
Min $\oplus \pm 10V$, 1k Ω Source			
Imbalance (see Fig. 5)			
G = 1 (dc to 30Hz)	75dB (90dB typ)	80dB (100dB typ)	75dB (90dB typ)
G = 10 (dc to 10Hz)	90dB (100dB typ)	95dB (110dB typ)	90dB (110dB typ)
G = 100 (dc to 3Hz)	100dB (110dB typ)	100dB (120dB typ)	100dB (120dB typ)
G = 1000 (dc to 1Hz)	100dB (120dB typ)	110dB (>120dB typ)	100dB (>120dB typ)
G = 1 to 1000 (dc to 60Hz)	75dB (88dB typ)	80dB (88dB typ)	•
IOISE			
Voltage Noise, RTI (see Fig. 4)			
0.1Hz to 100Hz (p-p)			
G = 1	15μV		2019년 - 1019년 - 1919년 - 1919년 - 1019년 - 1019년 - 1019년 -
G = 1000	1.5μV		
10Hz to 10kHz (rms)			and the second
G = 1	15µV	•	•
EMPERATURE RANGE	0-		
Specified Performance	-25°C to +85°C		-55°C to +125°C
Operating	-55°C to +125°C		•
Storage	-65°C to +150°C	•	•
OWER SUPPLY			
Power Supply Range	±(5 to 18)V	Hera Arrista III. In the state of the state	•
Quiescent Current, max @ ±15V	±10mA	±8mA	±8mA
an a			
	\$29.25	\$36.00	\$45.00
PRICE	\$29.25 \$23.40 \$19.50	\$36.00 \$28.80 \$24.00	\$45.00 \$36.00 \$30.00

*Specifications same as AD522A. **Specifications same as AD522B. Specifications subject to change without notice.

these errors can not be corrected by calibration. Common mode rejection of the AD522 is active laser-trimmed to the limits of thin-film resistor stability. Further trimming could improve CMR on a short term basis, but regular readjustment would be necessary to maintain this improvement (see Figure 2). In this example, untrimmed CMR and noise cause a total error of $\pm 0.0065\%$ of full scale and are the major contributors to resolution error.

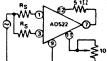


Figure 2. Optional CMR Trim

PERFORMANCE CHARACTERISTICS

Offset Voltage and Current Drift: The AD522 is available in four drift selections. Figure 3 is a graph of maximum RTO offset voltage drift vs. gain for all versions. Errors caused by offset voltage drift can thus be determined for any gain. Offset current drift will cause a voltage error equal to the product of the offset current drift and the source impedance unbalance.

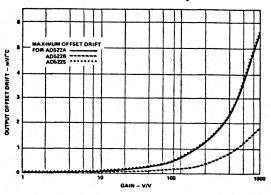


Figure 3. Output Offset Drift (RTO) vs. Gain

Gain Nonlinearity and Noise: Gain nonlinearity increases with gain as the device loop-gain decreases. Figure 4 is a plot of typical nonlinearity vs. gain. The shape of the curve can be safely used to predict worst-case nonlinearity at gains below 100. Noise vs. gain is shown on the same graph.

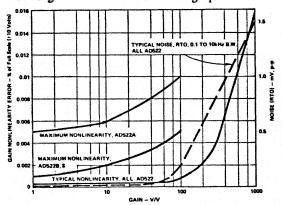


Figure 4. Gain Nonlinearity and Noise (RTO) vs. Gain

Common Mode Rejection: CMR is rated at $\pm 10V$ and $1k\Omega$ source imbalance. At lower gains, CMR depends mainly on thin-film resistor stability but due to gain-bandwidth considerations, is relatively constant with frequency to beyond 60Hz. The dc CMR improves with increasing gain and is increasingly subject to phase shifts in limited bandwidth high-gain amplifiers. Figure 5 illustrates CMR vs. Gain and Frequency.

Dynamic Performance: Settling time and unity gain bandwidth are directly proportional to gain. As a result, dynamic performance can be predicted from the well-behaved curves of Figure 6.

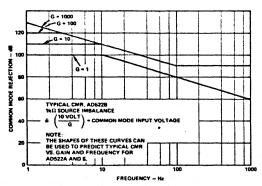


Figure 5. Common Mode Rejection vs. Frequency and Gain

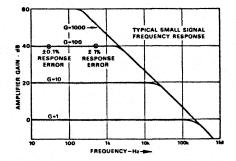


Figure 6. Small Signal Frequency Response (-3dB)

SPECIAL APPLICATIONS

Offset and Gain Trim: Gain accuracy depends largely on the quality of R_G . A precision resistor with a 10ppm/°C temperature coefficient is advised. Offset, like gain, is laser-trimmed to a level suitable for most applications. If further adjustment is required, the circuit shown in Figure 1 is recommended. Note that good quality (25ppm) pots are necessary to maintain voltage drift specifications.

CMR Trim: A short-term CMR improvement of up to 10dB at low gains can be realized with the circuit of Figure 2. Apply a low-frequency 20/G volt peak-to-peak input signal to *both* inputs through their equivalent source resistances and trim the pot for an ac output null.

Sense Output: A sense output is provided to enable remote load sensing or use of an output current booster. Figure 7 illustrates these applications. Being "inside the loop", booster drift errors are minimized. When not used, the sense output should be tied to the output.

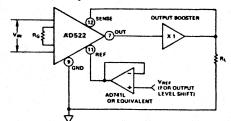
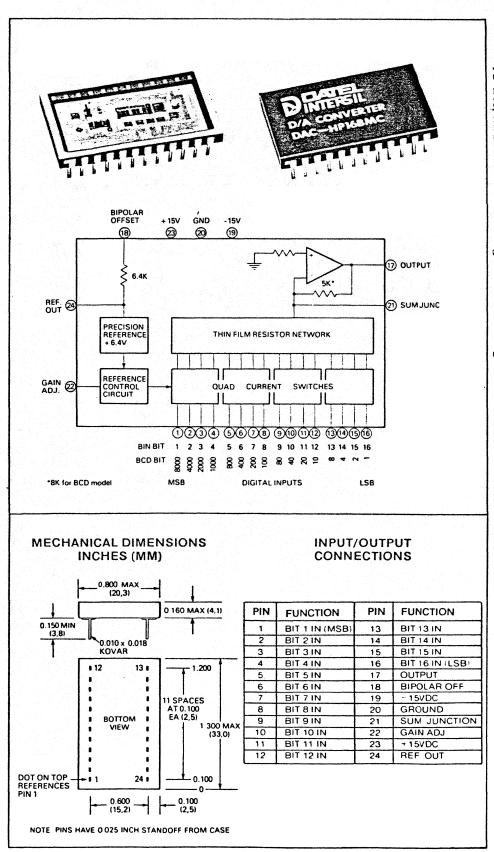


Figure 7. Output Current Booster and Buffered Output Level Shifter

Reference Output: The reference terminal is provided to permit the user to offset or "level shift" the output level to a datum compatible with his load. It must be remembered that the total output swing is ± 10 volts to be shared between signal and reference offset. Furthermore, any reference source resistance will unbalance the CMR trim by the ratio $10k/R_{ref}$. For example, if the reference source impedance is 1Ω , CMR will be reduced to $80dB (10k\Omega/1\Omega = 10,000 = 80dB)$. A buffer amplifier can be used to eliminate this error, as shown in Figure 7, but the drift of the buffer will add to output offset drift. When not used, the reference terminal should be grounded.

16-Eit, Mercelectronic Digital-to-Analog Converters DAC-HP16B And DAC-HP16D

FEATURES


- 16 Bit Binary Model
- 4 Digit BCD Model
- Voltage Output
- 15ppm/°C max. Gain Tempco
- Linearity to ±0.003%

GENERAL DESCRIPTION

The DAC-HP series are high resolution hybrid D/A converters with voltage output. They are self-contained, including a low tempco zener reference circuit and output operational amplifier, all in a miniature 24 pin double spaced ceramic DIP package. There are two basic models in the series. The DAC-HP16B has 16 bit binary resolution with ±0.003% linearity while the DAC-HP16D has 4 digit BCD resolution with ±0.005% linearity. Input coding is complementary binary and complementary offset binary for the DAC-HP16B and complementary BCD for the DAC-HP16D. The binary version operates in both unipolar and bipolar modes with output voltages of 0 to +10V and ±5V respectively. Binary versions with a bipolar output voltage range of $\pm 10V$ are available, denoted by the suffix "-1" after the model designation. The BCD version operates in the unipolar mode only with 0 to +10V output.

The DAC-HP design incorporates thin film hybrid technology which has been in volume production. Selected low tempco nichrome-on-silicon thin film resistor networks are combined with tightly matched quad current switches to achieve 16 bit resolution. The thin film resistors together with the low tempco zener reference circuit result in a maximum gain tempco of ± 15 ppm/°C for the DAC. The thin film resistors are functionally laser trimmed for optimum converter linearity.

The resolution, stability, and voltage output of these converters make them ideal for precision applications such as speech and waveform reconstruction, precision ramp generators, and computer controlled testing. They are available in three operating temperature ranges: 0 to 70°C, -25 to +85°C, and -55 to +125°C. High reliability versions are also available under Datel Intersil's "S" program and MIL-STD-883 level B screening. Power requirement is $\pm 15VDC$.

DATEL-INTERSIL, INC., 11 CABOT BOULEVARD, MANSFIELD, MA 02048/TEL. (617) 339-9341/TWX 710-346-1953/TLX 951340

	DAC-HP16B (Binary)	DAC-HP16D (BCD)
MAXIMUM RATINGS Positive Supply, pin 23 Negative Supply, pin 19 Digital Input Voltage, pins 1-16 Output Current, pin 17	+18V -18V +5.5V ±20mA	* * *
INPUTS Resolution	16 bits Comp. Binary Comp. Off. Binary	4 digits Comp. BCD —
Input Logic Level, bit ON ("0") ¹ Input Logic Level, bit OFF ("1") ¹ Logic Loading		
OUTPUT Output Voltage Range, Unipolar ² Output Voltage Range, Bipolar Output Voltage Range, "-1" Suffix. Output Current, min Output Impedance	0 to +10V ±5V ±10V ±5 mA 0.05 ohm	* * *
PERFORMANCE Linearity Error, max. Monotonicity, 10°C to 40°C Gain Error, before trimming Zero Error, before trimming Gain Tempco, max. ³ Gain Tempco, max. BGC, DGC Zero Tempco, unipolar, max. Offset Tempco, bipolar, max. Differential Linearity Tempco Settling Time, 10V change ⁵ Slew Rate. Power Supply Rejection	±15ppm/°C ±20ppm/°C	±0.005% 16 bits * * • • 15μsec. *
POWER REQUIREMENT (Quiescent, all bits HI)	+ 15VDC a - 15VDC a	
PHYSICAL-ENVIRONMENTAL Operating Temperature Range Storage Temperature Range Package Type Pins Weight	0°C to 70°C (BMC, -25°C to +85°C (BI -55°C to +125°C (E -65°C to +150°C 24 pin ceramic 0.010 x 0.018 inch 0.2 oz.	MR, DMR) 3MM, DMM) diameter Kovar

Tak: MON. JOHAS

- 1. It is recommended that these converters be operated with local supply bypass capacitors of 1μ F (tantalum type) at the +15V and -15V supply pins. The capacitors should be connected as close to the pins as possible. In high frequency noise environments an additional .01 μ F ceramic capacitor should be used in parallel with each tantalum bypass.
- 2. The analog, digital, and power grounds should be separated from each other as close as possible to pin 20 where they all must connect together.
- 3. The external gain adjustment shown in the diagrams gives an adjustment of $\pm 0.2\%$ of full scale range. The converters are internally trimmed to $\pm 0.1\%$ at full scale. A wider range of adjustment may be achieved by decreasing the value of the 510K ohm resistor.
- 4. The zero adjustment, or offset adjustment, has an adjustment range of ±0.35% of full scale range. The unipolar zero is internally set to zero within ±0.1% of full scale range.
- 5. If the reference output (pin 24) is used, it must be buffered by an operational amplifier in the noninverting mode. Current drawn from pin 24 should be limited to $\pm 10\mu$ A in order that the temperature coefficient of the reference circuit not be affected. This is sufficient current for the bias current of most of the popular operational amplifier types.

ORDERING INFORMATION

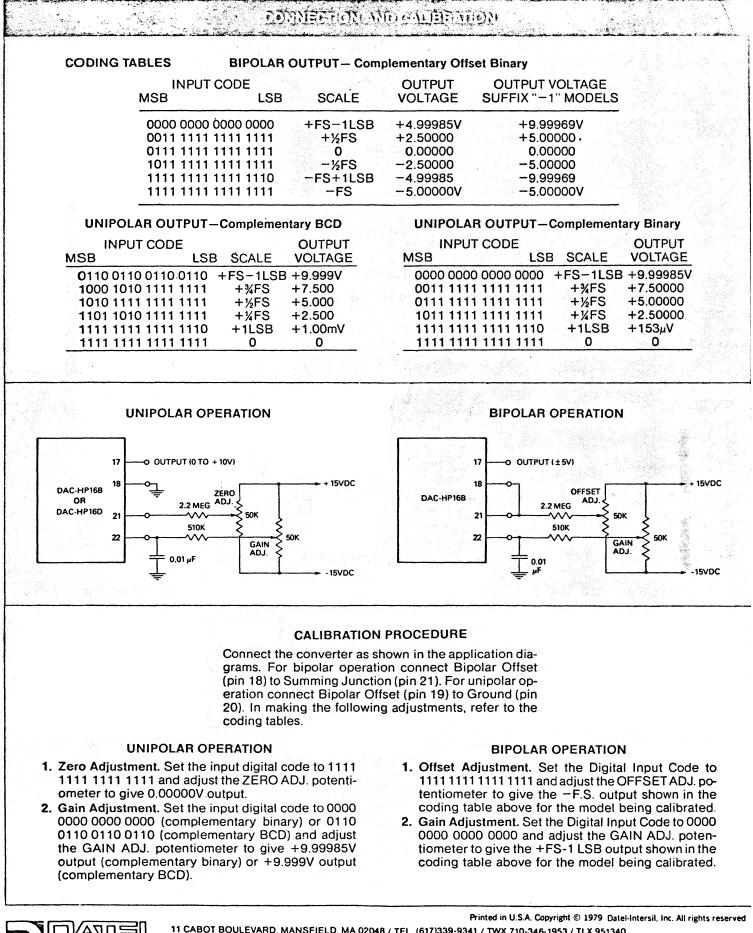
	OPER.		PRICE
MODEL	TEMP. RANGE	SEAL	(1-24)
DAC-HP16BGC	0 to 70C	EPOXY	\$ 72.50
DAC-HP16BMC	0 to 70C	HERM.	\$131.00
DAC-HP-16BMR	-25 to +85C	HERM.	\$164.00
DAC-HP16BMM	-55 to +125C	HERM.	\$230.00
DAC-HP16BMC-1	0 to 70C	HERM.	\$136.50
DAC-HP16BMR-1	-25 to +85C	HERM.	\$169.00
DAC-HP16BMM-1	-55 to +125C	HERM.	\$235.00
DAC-HP16DGC	0 to 70C	EPOXY	\$ 72.50
DAC-HP16DMC	0 to 70C	HERM.	\$131.00
DAC-HP16DMR	-25 to +85C	HERM.	\$164.00
DAC-HP16DMM	-55 to +125C	HERM.	\$230.00

Mating Socket: DILS-3 (24 pin socket) \$1.95 each

Trimming Potentiometer: TP50K \$3.00 each

For high reliability versions of the DAC-HP series, including units screened to MIL-STD-883, Level B, contact factory.

THESE CONVERTERS ARE COVERED BY GSA CONTRACT

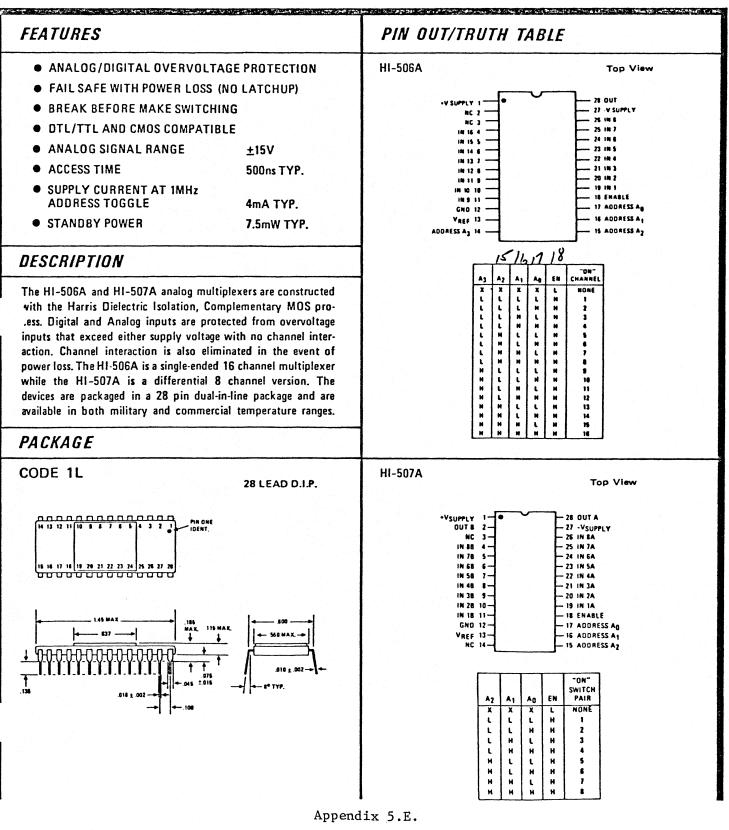

FSR is 0 to +FS or -FS to +FS voltage.
 To 0.005% FSR.

1/2 scale input.

3. For all models except DAC-HP16BGC & DAC-16DGC.

_ 45 _

Appendix 5.D.



11 CABOT BOULEVARD, MANSFIELD, MA 02048 / TEL. (617)339-9341 / TWX 710-346-1953 / TLX 951340 Santa Ana, (714)835-2751, (L.A.) (213)933-7256 • Sunnyvale, CA (408)733-2424 • Gaithersburg, MD (301)840-9490 • Houston, (713)781-8886 • Dailas, TX (214)241-0651 OVERSEAS: DATEL (UK) LTD-TEL: ANDOVER (0264)51055 • DATEL SYSTEMS SARL 602-57-11 • DATELEK SYSTEMS GmbH (089)77-60-95 • DATEL KK Tokyo 793-1031

PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

HI-506A/HI-507A 16 Channel Analog Multiplexer with Overvoltage Protection

- 47 -

SPECIFICATIONS		na kana sa kana kana kana sa	
ABSOLUTE MAXIMU	M RATINGS		
Supply Voltage Between P	ins 1 and 27 40V	Total Power Dissipation*	1200mW
VREF to Ground	+20V	Operating Temperature:	
VEN, VA, Digital Input Ove	ervoltage:	HI-506A/HI-507A-2	-55°C to +125°C
V. J V _{Supp}	lγ(+) +4V	HI-506A/HI-507A-5	0°C to +75°C
VA { V _{Supp} V _{Supp}	_V (−) −4V	Storage Temperature	-65°C to +150°C
Analog Input Overvoltage:			
Vo VSupp	ly(+) +20V		
V _S V _{Supp}	i _y (-) -20V	*Derate $8 \text{mW}/^{\circ}\text{C}$ above $T_{A} = +$	25°C

ELECTRICAL CHARACTERISTICS

Unless Otherwise Specified.

Supplies = +15V, -15V; V_{REF} (Pin 13) = Open; V_{AH} (Logic Level High) = +4.0V; V_{AL} (Logic Level Low) = +0.8V For Test Conditions, consult Performance Characterisitcs section.

n An Antonio de Carlos Antonio de Carlos de			506A/50 °C to +12		a (1973). A 1973	506A/507 PC to +759	이 경영한 이 것 것	
PARAMETER	TEMP.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNITS
ANALOG CHANNEL CHARACTERISTICS								
VS, Analog Signal Range	Full	-15		+15	- 15		+15	v
[*] R _{ON} , On Resistance (Note 1)	+25°C Full		1.2 1.5	1.5 2.0		-1.5 1.8	1.8 2.0	κΩ κΩ
* IS(OFF), Off Input Leakage Current	+25 ⁰ C Full		0.03	±50		0.03	<u>±</u> 50	nA nA
ID(OFF), Off Output Leakage Current HI-506A	+25°C Full		1.0	:500		1.0	: 500	nA nA
HI-507A	Full			:250			:250	nA
1D(OFF) with Input Overvoltage Applied (Note 2)	+25°C Full		4.0	2.0		4.0		nA µA
1D (ON), On Channel Leakage Current	+25°C		0.1			0.1		nA
HI-506A	Full			±500			±500 ± 250	nA nA
HI-507A DIGITAL INPUT CHARACTERISTICS	Full			<u> </u>			1 250	
VAL, Input Low Threshold TTL Drive VAL, Input High Threshold (Note 7)	Full Full	4.0		0.8	4.0		0.8	v v
VAL MOS Drive (Note 3)	+25°C +25°C	6.0		0.8	6.0		0.8	۲ ۲
*1 _A , Input Leakage Current (High or Low)	Full			1.0			5.0	μA
SWITCHING CHARACTERISTICS tg. Access Time	+25°C		0.5	1.0		0.5		μs
tOPEN. Break - Before Make Delay	+25°C		80			80		ns
ton (EN), Enable Delay (ON)	+25°C	ang da sing Alawang da	300			300		ns
TOFF (EN), Enable Delay (OFF)	+25°C		300			300		ns
"Off. Isolation" (Note 4)	+25°C		65			65		d8
CS (OFF), Channel Input Capacitance	+25°C		5			5		pF
CD (OFF), Channel Output Capacitance HI-506A	+25°C		50			50		pF
HI-507A	+25°C		25			25		pF
CA, Digital Input Capacitance	+25°C		5			5		pF pF
CDS (OFF). Input to Output Capacitance	+25°C		1				ata sed	pr
POWER REQUIREMENTS PD, Power Dissipation	Full		7.5			7.5		mW
*I+, Current Pin 1 (Note 5)	Full	an an tha stair Tha an tha	0.5	2.0		0.5	5.0	mA
*I-, Current Pin 27 (Note 5)	Full		0.02	1.0		0.02	2.0	mA
*I+, Standby (Note 6)	Full		0.5	2.0		0.5	5.0	. mA
*I-, Standby (Note 6)	Full		0.02	1.0		0.02	2.0	mА

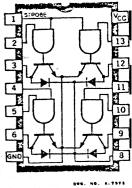
NOTES 1. $V_{OUT} = \frac{1}{10}V, I_{OUT} = -100 \,\mu\,A$

2. Analog Overvoltage = ± 33V

3. V_{REF} = +10V

5. V_{EN} = +4.0V

6. V_{EN} = 0.8V


7. To drive from DTL/TTL circuits, $1\kappa\Omega\text{Pull-up}$ resistors to +5.0V supply are recommended

4. $V_{EN} = 0.8V$, $R_{L} = 1K$, $C_{L} = 7pF$, $V_{S} = 3VRMS$, f = 500KHz

*100% Tested For DASH 8

RECOMMENDED OPERATING CONDITIONS

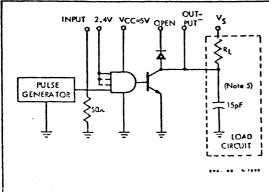
MIN	NOM	MAX	UNITS		
				[]	
i					Г
4.5	5.0	5.5	V		
4.5	5.0	5.5	V		Ľ
4.75	5.0	5.25	V		Г
	1				L
- 55	25	+125	°C		Ľ
-55	25	+125	°C		۲.
0	25	+70	°C		
	150	250	mA		6
		1999 - Barneller, antoine ann			
		40	V	UHC-407	Ľ
		100	V		ີ່ປ
	4.5 4.75 55 55 0	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.5 5.0 5.5 \vee 4.75 5.0 5.25 \vee -55 25 $+125$ \circ C -55 25 $+125$ \circ C 0 25 $+70$ \circ C 150 250 mA 40 \vee $UHC-407$

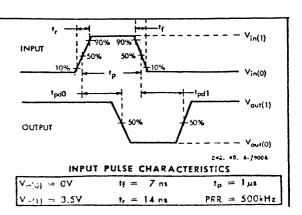
1D-407 UHD-507 1P-407 UHP-507

ELECTRICAL CHARACTERISTICS: (over operating temperature range unless otherwise noted)

			ery and	lest Condi	tions	an signa	Limits	tu a 11	1 1 1 2
Characteristic	Symbol	Temp.	Vcc ·	Driven Input	Other Input	Output	Min. Typ. Max.	Units	Notes
"1" Input Voltage	Vin(1)		MIN				2.0	V	
"O" Input Voltage	Vin(0)		MIN				0.8	V	
"1" Output Reverse Current Types UHC-407, UHD-407, and UHP-407	loff		MIN	0.8V	Vcc	40V	50	μA	
"1" Output Reverse Current Types UHC-507, UHD-507, and UHP-507	loff		MIN	0.87	Vcc	1007	50	μA	
"O" Output Voltage Types	Von		MIN	2.0V	2.0V	150mA	0.4	V	
UHP-407 aud UHP-507			MIN	2.0V	2.0V	250mA	0.6	V	
"0" Output Voltage Types UHC-407	Von		MIN	2.0V	2.0V	150mA	0.5	V	
UHD-407, UHC-507, and UHD-507			MIN	2.0V	2.0V	250mA	0.7	V	
"O" Input Current at all Inputs except Strobe	lin(0)		MAX		4.5∨		-0.55 -0.8	mA	2
"0" Input Current at Strobe	lin(0)		MAX	0.4V	4.5V		-1.1 -1.6	mA	
"1" Input Current at all Inputs	lin(1)		MAX	2.4∀	0V		40	μA	2
except Strobe			MAX	5.5V	0V		1	mA	
"1" Input Current at Strobe	lin(1)		MAX	2.4V	ov		160	μA	2
			MAX	5.5V	0V		1	mA	
Diode leakage Current	ILK .	NOM	NOM	Vcc	Vcc	OPEN	200	μA	6
Diode Forward Voltage Drop	VD	NOM	NOM	٥v	0V		1.5	V	7
"1" Level Supply Current	lcc(i)	NOM	NOM	٥٧	0V		6	mA	1, 3
"O" Level Supply Current	ICC(0)	NOM	NOM	57	5V		20	mA	1, 3

SWITCHING CHARACTERISTICS: $V_{cc} = 5.0V$, $T_A = 25^{\circ}C$


ليتم الكرية بعينة لاعترج والمناج والمحجون المحجون المحجون	88.9.4	and the second	Limits		
Characteristic	Symbol	Test Conditions	Min. 38 Typ Max.	Units	Notes
Turn-on Delay Time	tpd0		and the second		4
Types UHC-407, UHD-407, UHP-407		$C_L = 15 pF, R_L = 6W, 265\Omega, R_S = 40V$	85	ns	
Types UHC-507, UHD-507, UHP-507		$C_L = 15 pF, R_L = 15W, 670\Omega, R_S = 100V$	195	ns	
Turu-off Delay Time	tpd1				4
Types UHC-407, UHD-407, UHP-407		$C_{L} = 15 pF, R_{L} = 6W, 265\Omega, R_{S} = 40V$	95	ns	
Types UHC-507, UHD-507, UHP-507		$C_L = 15 pF$, $R_L = 15 W$, 670Ω , $R_S = 100 V$	220	ns	


NOTES:

- 1. Typical values are at Vcc=5.0V, TA=25°C.
- 2. Each input tested separately.

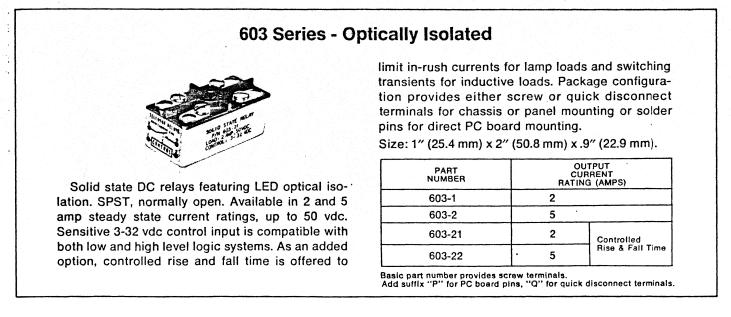
3. Each gate.

 Voltage values shown in the test circuit waveforms are with respect to network ground terminal.

- Capacitance values specified include probe and test fixture capacitance.
 Diode leakage current measured at VR=Voff(min).
- Diode leakage current measured at VR = Voff(min).
 Diode forward voltage drop measured at If = 200mA.

- 49 -

TELEDYNE RELAYS


SERENDIP® Commercial / Industrial DIP Solid State Relays

Subminiature solid state relays in standard TO-116 DIP packages. Featuring all solid state circuitry with hybrid microcircuit construction, and high input/output isolation (up to 2500 volts/10⁹ ohms). Six models available providing choice of output: bipolar (ac or dc), ac (triac), and dc (transistor). Bipolar (640/644 series) and dc (643 series) are direct pin-for-pin replacements for standard DIP reed relays. AC versions (641 series) are UL Recognized – File #E55197.

		DATA	+	OUTPUT (LOAD) RATINGS CURRENT				
	VOLTAGE (VDC)	MAX. CURRENT (MADC @ SV)	AC/DC	@ 10V INPUT	@ 5V INPUT	VOLTAGE		
640- 1	3.8-10	22	BIPOLAR (AC or DC)	80 MA	40 MA	± 50 Vpeak		
641-1	3.8-10	15	AC	0.5 A (Note 1)	0.5 A	140 V _{RMS}		
641-2	3.8-10	15	AC	0.5 A (Note 1)	0.5 A	280 Vrms		
643-1	3.8-10	15	DC	400 MA	200 MA	60 V₀c		
643-2	3.8-10	15	DC	100 MA	50 MA	250 V₀c		
644-1	3.8-6	18	BIPOLAR (AC or DC) (Note 2)	5 MA	5 MA	± 5 Vpeak		
	ith heat sink. Standard DIP I low offset voltge (100 micro		available as accessory.					

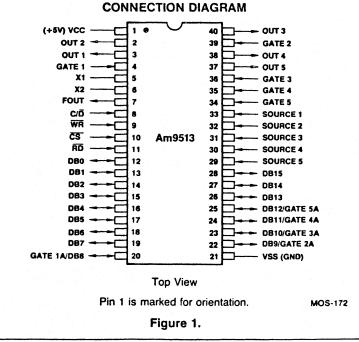
Solid State DC Relay

TELEDYNE RELAYS

3155 West El Segundo Boulevard, Hawthorne, California 90250 · Telephone (213) 973-4545

DISTINCTIVE CHARACTERISTICS

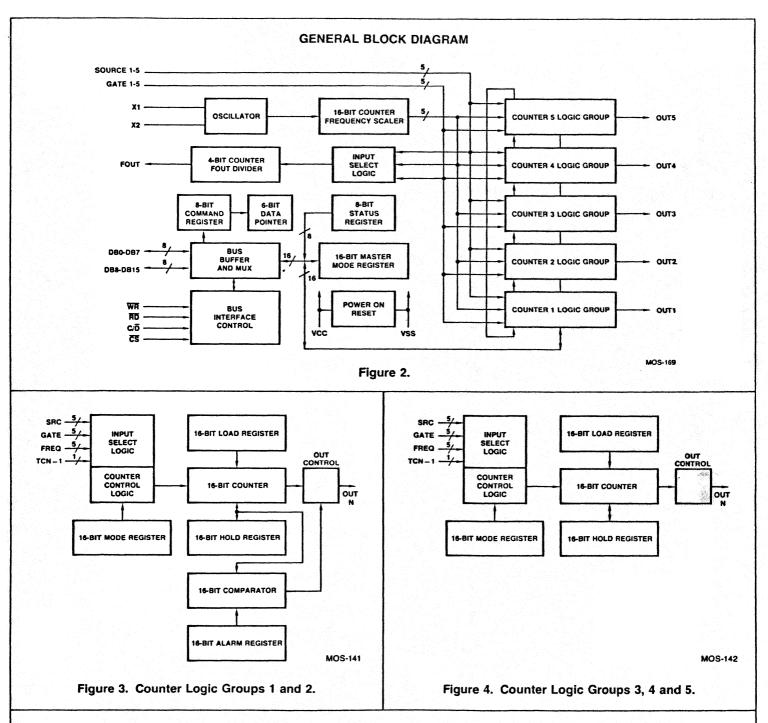
- Five independent 16-bit counters
- High speed counting rates
- Up/down and binary/BCD counting
- Internal oscillator frequency source
- Tapped frequency scaler
- Programmable frequency output
- 8-bit or 16-bit bus interface
- Time-of-day option
- Alarm comparators on counters 1 and 2
- Complex duty cycle outputs
- One-shot or continuous outputs
- Programmable count/gate source selection
- Programmable input and output polarities
- Programmable gating functions
- Retriggering capability
- +5 volt power supply
- Standard 40-pin package
- 100% MIL-STD-883 reliability assurance testing


TABLE OF CONTENTS

General Description			1
Pinout			
Block Diagram	•	2	2
Interface Signal Description		2	2
Functional Description			
Control Port Registers			
Data Port Registers			
Register Access		8	3
Master Mode Control Options			
Operating Mode Description			
Counter Mode Control Options			
Command Descriptions			
Maximum Ratings			
Electrical Characteristics			
Switching Characteristics			
Applications Information			
Physical Dimensions			
	1		

GENERAL DESCRIPTION

The Am9513 System Timing Controller is an LSI circuit designed to service many types of courting, sequencing and timing applications. It provides the capability for programmable frequency synthesis, high resolution programmable duty cycle waveforms, retriggerable digital timing functions, time-of-day clocking, coincidence alarms, complex pulse generation, high resolution baud rate generation, frequency shift keying, stop-watching timing, event count accumulation, waveform analysis and many more. A variety of programmable operating modes and control features allow the Am9513 to be personalized for particular applications as well as dynamically reconfigured under program control.


The STC includes five general-purpose 16-bit counters. A variety of internal frequency sources and external pins may be selected as inputs for individual counters with software selectable activehigh or active-low input polarity. Both hardware and software gating of each counter is available. Three-state outputs for each counter provide either pulses or levels. The counters can be programmed to count up or down in either binary or BCD. The accumulated count may be read without disturbing the counting process. Any of the counters may be internally concatenated to form an effective counter length of up to 80 bits.

		Counting Frequency	
Package Type	Temperature Range	7MHz	
Molded		AM9513PC	
	0°C ≤ T _A ≤ +70°C	AM9513DC	
Hermetic*		AM9513CC	
Hermetic	$-55^{\circ}C \leq T_{A} \leq +125^{\circ}C$	AM9513DM	

ORDERING INFORMATION

Copyright & 1980 by Advanced Micro Devices, Inc. - 51 - Advanced Micro Devices reserves the right to modify information contained in this document without notice.

INTERFACE SIGNAL DESCRIPTION

Figure 5 summarizes the interface signals and their abbreviations for the STC. Figure 1 shows the signal pin assignments for the standard 40-pin dual in-line package.

VCC: +5 volt power supply

VSS: Ground

X1, X2 (Crystal)

X1 and X2 are the connections for an external crystal used to determine the frequency of the internal oscillator. The crystal should be a parallel-resonant, fundamental-mode type. An RC or LC or other reactive network may be used instead of a crystal. For driving from an external frequency source, X1 should be left open and X2 should be connected to a TTL source and a pull-up resistor.

FOUT (Frequency Out, Output)

The FOUT output is derived from a 4-bit counter that may be programmed to divide its input by any integer value from 1 through 16 inclusive. The input to the counter is selected from any of 15 sources, including the internal scaled oscillator frequencies. FOUT may be gated on and off under software control and when off will exhibit a low impedance to ground. Control over the various FOUT options resides in the Master Mode register. After power-up, FOUT provides a frequency that is 1/16 that of the oscillator.

GATE1-GATE5 (Gate, Inputs)

The Gate inputs may be used to control the operations of individual counters by determining when counting may proceed. The same Gate input may control up to three counters. Gate pins may also be selected as count sources for any of the counters and for the FOUT divider. The active polarity for a selected Gate input is programmed at each counter. Gating function options allow level-sensitive gating or edge-initiated gating. Other gating modes are available including one that allows the Gate input to select between two counter output frequencies. All gating functions may also be disabled. The active Gate input is conditioned by an auxiliary input when the unit is operating with an external 8-bit data bus. See Data Bus description. Schmitt-trigger circuitry on the GATE inputs allows slow transition times to be used.

SRC1-SRC5 (Source, Inputs)

The Source inputs provide external signals that may be counted by any of the counters. Any Source line may be routed to any or all of the counters and the FOUT divider. The active polarity for a selected SRC input is programmed at each counter. Any duty cycle waveform will be accepted as long as the minimum pulse width is at least half the period of the maximum specified counting frequency for the part. Schmitt-trigger circuitry on the SRC inputs allows slow transition times to be used.

OUT1-OUT5 (Counter, Outputs)

Each 3-state OUT signal is directly associated with a corresponding individual counter. Depending on the counter configuration, the OUT signal may be a pulse, a square wave, or a complex duty cycle waveform. OUT pulse polarities are individually programmable. The output circuitry detects the counter state that would have been all bits zero in the absence of a reinitialization. That information is used to generate the selected waveform type. An optional output mode for Counters 1 and 2 overrides the normal output mode and provides a true OUT signal when the counter contents match the contents of an Alarm register.

DB0-DB7, DB8-DB15 (Data Bus, Input/Output)

The 16, bidirectional Data Bus lines are used for information exchanges with the host processor. HIGH on a Data Bus line corresponds to one and LOW corresponds to zero. These lines act as inputs when \overline{WR} and \overline{CS} are active and as outputs when \overline{RD} and \overline{CS} are active. When \overline{CS} is inactive, these pins are placed in a high-impedance state.

After power-up or reset, the data bus will be configured for 8-bit width and will use only DB0 through DB7. DB0 is the least significant and DB7 is the most significant bit position. The data bus may be reconfigured for 16-bit width by changing a control bit in

the Master Mode register. This is accomplished by writing an 8-bit command into the low-order DB lines while holding the DB13-DB15 lines at a logic high level. Thereafter all 16 lines can be used, with DB0 as the least significant and DB15 as the most significant bit position.

When operating in the 8-bit data bus environment, DB8-DB15 will never be driven active by the Am9513. DB8 through DB12 may optionally be used as additional Gate inputs (see Figure 6). If unused they should be held high. When pulled low, a GATENA signal will disable the action of the corresponding counter N gating. DB13-DB15 should be held high in 8-bit bus mode whenever CS and WR are simultaneously active.

CS (Chip Select, Input)

The active-low Chip Select input enables Read and Write operations on the data bus. When Chip Select is high, the Read and Write inputs are ignored. The first Chip Select signal after power-up is used to clear the power-on reset circuitry.

RD (Read, Input)

The active-low Read signal is conditioned by Chip Select and indicates that internal information is to be transferred to the data bus. The source will be determined by the port being addressed and, for Data Port reads, by the contents of the Data Pointer register. WR and $\overline{\text{RD}}$ should be mutually exclusive.

WR (Write, Input)

The active-low Write signal is conditioned by Chip Select and indicates that data bus information is to be transferred to an internal location. The destination will be determined by the port being addressed and, for Data Port writes, by the contents of the Data Pointer register. WR and RD should be mutually exclusive.

C/D (Control/Data, Input)

The Control/Data signal selects source and destination locations for read and write operations on the data bus. Control Write operations load the Command register and the Data Pointer. Control Read operations output the Status register. Data Read and Data Write transfers communicate with all other internal registers. Indirect addressing at the data port is controlled internally by the Data Pointer register.

Signal	Abbreviation	Туре	Pins
+5 Volts	VCC	Power	1
Ground	VSS	Power	1
Crystal	X1, X2	1/0, 1	2
Read	RD	Input	1
Write	WR	Input	1
Chip Select	CS	Input	1
Control/Data	C/D	Input	1
Source N	SRC	Input	5
Gate N	GATE	Input	5
Data Bus	DB	1/0	16
Frequency Out	FOUT	Output	1
Out N	OUT	Output	5

Package	Data Bus Width (MM14)	
Pin	16 Bits	8 Bits
12	DBO	DBO
13	DB1	DB1
14	DB2	DB2
15	DB3	DB3
16	DB4	DB4
17	DB5	DB5
18	DB6	DB6
19	DB7	DB7
20	DB8	GATE 1A
22	DB9	GATE 2A
23	DB10	GATE 3A
24	DB11	GATE 4A
25	DB12	GATE 5A
26	DB13	(VIH)
27	DB14	(VIH)
28	DB15	(VIH)

Figure 5. Interface Signal Summary.

Figure 6. Data Bus Assignments.

FUNCTIONAL DESCRIPTION

The Am9513 block diagrams (Figures 2, 3 and 4) indicate the interface signals and the basic flow of information. Internal control lines and the internal data bus have been omitted. The control and data registers are all connected to a common internal 16-bit bus. The external bus may be 8 or 16 bits wide; in the 8-bit mode the internal 16-bit information is multiplexed to the low order data bus pins DB0 through DB7.

An internal oscillator provides a convenient source of frequencies for use as counter inputs. The oscillator's frequency is controlled at the X1 and X2 interface pins by an external reactive network such as a crystal. The oscillator output is divided by the Frequency Scaler to provide several sub-frequencies. One of the scaled frequencies (or one of ten input signals) may be selected as an input to the FOUT divider and then comes out of the chip at the FOUT interface pin.

The STC is addressed by the external system as two locations: a control port and a data port. The control port provides direct access to the Status and Command registers, as well as allowing the user to update the Data Pointer register. The data port is used to communicate with all other addressable internal locations. The Data Pointer register controls the data port addressing.

Among the registers accessible through the data port are the Master Mode register and five Counter Mode registers, one for each counter. The Master Mode register controls the programmable options that are not controlled by the Counter Mode registers.

Each of the five general-purpose counters is 16 bits long and is independently controlled by its Counter Mode register. Through this register, a user can software select one of 16 sources as the counter input, a variety of gating and repetition modes, up or down counting in binary or BCD and active-high or active-low input and output polarities.

Associated with each counter are a Load register and a Hold register, both accessible through the data port. The Load register is used to automatically reload the counter to any predefined value, thus controlling the effective count period. The Hold register is used to save count values without disturbing the count process, permitting the host processor to read intermediate counts. In addition, the Hold register may be used as a second Load register to generate a number of complex output waveforms.

All five counters have the same basic control logic and control registers. Counters 1 and 2 have additional Alarm registers and

comparators associated with them, plus the extra logic necessary for operating in a 24-hour time-of-day mode. For real-time operation the time-of-day logic will accept 50Hz, 60Hz or 100Hz input frequencies.

Each general counter has a single dedicated output pin. It may be turned off when the output is not of interest or may be configured in a variety of ways to drive interrupt controllers, Darlington buffers, bus drivers, etc. The counter inputs, on the other hand, are specifically not dedicated to any given interface line. Considerable versatility is available for configuring both the input and the gating of individual counters. This not only permits dynamic reassignment of inputs under software control, but also allows multiple counters to use a single input, and allows a single gate pin to control more than one counter. Indeed, a single pin can be the gate for one counter and, at the same time, the count source for another.

A powerful command structure simplifies user interaction with the counters. A counter must be armed by one of the ARM commands before counting can commence. Once armed, the counting process may be further enabled or disabled using the hardware gating facilities. The ARM and DISARM commands permit software gating of the count process in some modes.

The LOAD command causes the counter to be reloaded with the value in either the associated Load register or the associated Hold register. It will often be used as a software retrigger or as counter initialization prior to active hardware gating.

The DISARM command disables further counting independent of any hardware gating. A disarmed counter may be reloaded using the LOAD command, may be incremented or decremented using the STEP command and may be read using the SAVE command. A count process may be resumed using an ARM command.

The SAVE command transfers the contents of a counter to its associated Hold register. This command will overwrite any previous Hold register contents. The SAVE command is designed to allow an accumulated count to be preserved so that it can be read by the host CPU at some later time.

Two combinations of the basic commands exist to either LOAD AND ARM or to DISARM AND SAVE any combination of counters. Additional commands are provided to: step an individual counter by one count; set and clear an output toggle; issue a software reset; clear and set special bits in the Master Mode register; and load the Data Pointer register.

CONTROL PORT REGISTERS

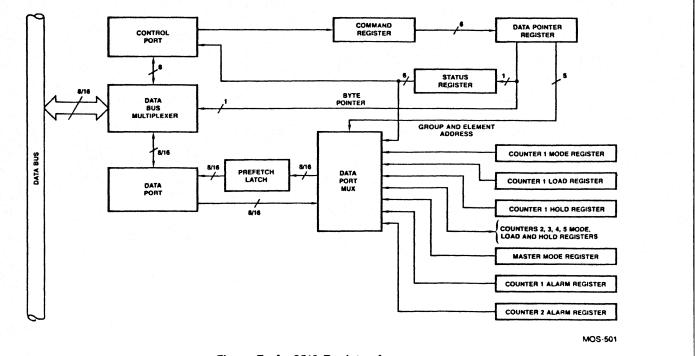
The STC is addressed by the external system as only two locations: a Control port and a Data port. Transfers at the Control port $(C/\overline{D} = High)$ allow direct access to the command register when writing and the status register when reading. All other available internal locations are accessed for both reading and writing via the Data port $(C/\overline{D} = Low)$. Data port transfers are executed to and from the location currently addressed by the Data Pointer register. Options available in the Master Mode register and the Data Pointer control structure allow several types of transfer sequencing to be used. See Figure 7.

Transfers to and from the control port are always 8 bits wide. Each access to the Control port will transfer data between the Command register (writes) or Status register (reads) and Data Bus pins DB0-DB7, regardless of whether the Am9513 is in 8- or 16-bit bus mode. When the Am9513 is in 8-bit bus mode, Data Bus pins DB13-DB15 should be held at a logic high whenever \overline{CS} and \overline{WR} are both active.

Command Register

The Command register provides direct control over each of the five general counters and controls access through the Data port by allowing the user to update the Data Pointer register. The "Command Description" section of this data sheet explains the detailed operation of each command. A summary of all commands appears in Figure 21. Six of the command types are used for direct software control of the counting process. Each of these six commands contains a 5-bit S field. In a linear-select fashion, each bit in the S field corresponds to one of the five general counters (S1 = Counter 1, S2 = Counter 2, etc.). When an S bit is a one, the specified operation is performed on the counter so designated; when an S bit is a zero, no operation occurs for the corresponding counter.

Data Pointer Register


The 6-bit Data Pointer register is loaded by issuing the appropriate command through the control port to the Command register. As shown in Figure 7, the contents of the Data Pointer register are used to control the Data Port multiplexer, selecting which internal register is to be accessible through the Data Port. The Data Pointer consists of a 3-bit Group Pointer, a 2-bit Element Pointer and a 1-bit Byte Pointer, depicted in Figure 8. The Byte Pointer bit indicates which byte of a 16-bit register is to be transferred on the next access through the data port. Whenever the Data Pointer is loaded, the Byte Pointer bit is set to one, indicating a least-significant byte is expected. The Byte Pointer toggles following each 8-bit data transfer with an 8-bit data bus (MM13 = 0), or it always remains set with the 16-bit data bus option (MM13 = 1). The Element and Group pointers are used to select which internal register is to be accessible through the Data Port. Although the contents of the Element and Group Pointer in the Data Pointer register cannot be read by the host processor, the Byte Pointer is available as a bit in the Status register.

Random access to any available internal data location can be accomplished by simply loading the Data Pointer using the command shown in Figure 9 and then initiating a data read or data write. This procedure can be used at any time, regardless of the setting of the Data Pointer Control bit (MM14). When the 8-bit data bus configuration is being used (MM13 = 0), two bytes of data would normally be transferred following the issuing of the "Load Data Pointer" command.

To permit the host processor to rapidly access the various internal registers, automatic sequencing of the Data Pointer is provided. Sequencing is enabled by clearing Master Mode bit 14 (MM14) to zero. As shown in Figure 10, several types of sequencing are available depending on the data bus width being used and the initial Data Pointer value entered by command.

When E1 = 0 or E2 = 0 and G4, G2, G1 point to a Counter Group, the Data Pointer will proceed through the Element cycle. The Element field will automatically sequence through the three values 00, 01 and 10 starting with the value entered. When the transition from 10 to 00 occurs, the Group field will also be incremented by one. Note that the Element field in this case does not sequence to a value of 11. The Group field circulates only within the five Counter Group codes.

If E2, E1 = 11 and a Counter Group is selected, then only the Group field is sequenced. This is the Hold cycle. It allows the Hold registers to be sequentially accessed while bypassing the Mode and Load registers. The third type of sequencing is the Control

Figure 7. Am9513 Register Access.

ANALOGHigh Accuracy, 100kHz and 1MHzDEVICESVoltage to Frequency Converters

FEATURES

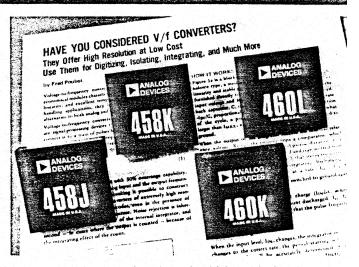
High Stability: 5ppm/°C max, Model 458L 15ppm/°C max, Model 460L Low Nonlinearity: 100ppm max, Model 458 150ppm max, Model 458 Versatility: Differential Input Stage Voltage and Current Inputs Floating Inputs: ±10V CMV Wide Dynamic Range: 6 Decades, Model 460 TTL/DTL or CMOS/HNIL Compatible Output

APPLICATIONS

Fast Analog-to-Digital Converter High Resolution Optical Data Link Ratiometric Measurements 2-Wire High Noise Immunity Digital Transmission Long Term Precision Integrator

GENERAL DESCRIPTION

Models 458 and 460 are high performance, differential input, voltage to frequency modular converters designed for analog to digital applications requiring accuracy and fast data conversion. Model 458 offers a 100kHz full scale frequency, guaranteed nonlinearity of $\pm 0.01\%$ maximum over five decades (1Hz to 100kHz) of operation and guaranteed low maximum gain drift in three model selections; model 458L: 5ppm/°C max; model 458K: 10ppm/°C max; and model 458J: 20ppm/°C max. Model 460 offers a 1MHz full scale frequency, guaranteed maximum nonlinearity of $\pm 0.015\%$ over six decades (1Hz to 1MHz) of operation and guaranteed low maximum gain drift in three selections; model 460L: 15ppm/°C max; model 460K: 25ppm/°C max; and model 460J: 50ppm/°C max. Model 460L is the industries' first 1MHz V/F converter to offer 15ppm/°C maximum gain drift.


The differential input stage of models 458 and 460 provide the versatility of either direct interface to off-ground 0 to +11V input signals with common mode voltages (CMV) to \pm 10V, as well as ground referenced positive, 0 to +11V or negative, 0 to -11V signals. Both models also accept positive current signals: 0 to +0.5mA, model 458; 0 to +1mA, model 460 for current to frequency (I/F) applications.

The rated performance of both models 458 and 460 is achieved without the need for external components or adjustments. Optional adjustments are available for trimming full scale frequency and the input offset voltage.

WHERE TO USE MODELS 458 AND 460

The combination of low gain drift, low nonlinearity and the versatility of a differential input with both high speed (100kHz/1MHz) models, offer excellent solutions to a wide variety of demanding applications; in high speed remote data acquisition systems – two wire data transmission over long

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

LS 458 and 4

wires; in 5½ digit DVM's – featuring high resolution A/D conversion, monotonic performance, no missing codes and high noise rejection; in strain gage bridge weighing applications – accurate ratiometric measurements over wide dynamic range.

DESIGN APPROACH - PRECISION CHARGE BALANCE Models 458 and 460 incorporate a superior charge balance design that result in high linearity and temperature stability see Figure 1. Both models accept unipolar, single-ended voltage or current input signals directly. By offsetting the input using the current terminal, models 458 and 460 will accept

bipolar input voltages up to ±5V.

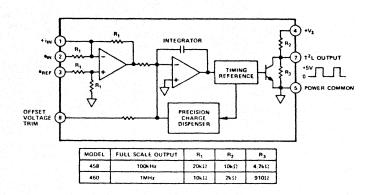
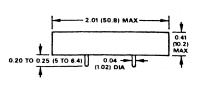
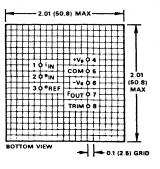


Figure 1. Block Diagram - Models 458, 460

P.O. Box 280; Norwood, Massachusetts 02062 U.S.A Telex: 924491 Cables: ANALOG NORWOODMASS

SFECIFICATIONS (typical @ +25°C and $V_S = \pm 15VDC$ unless otherwise noted)


	100kHz Full Scale 458	1MHz Full Scale 460		
MODEL	J K L	JĮKĮL		
TRANSFER FUNCTION				
Voltage Input	$f_{OUT} = (10^4 \text{Hz/V}) e_{IN}$	$f_{OUT} = (10^5 \text{Hz/V}) e_{IN}$		
Current Input	$f_{OUT} = (2 \times 10^5 \text{Hz/mA}) i_{IN}$	$f_{OUT} = (10^6 \text{Hz/mA}) i_{IN}$		
ANALOG INPUT				
Configuration	Differential	Differential		
Voltage Signal Range				
e_{IN} Terminal ($e_{BEF} = 0$)	0 to +10V dc min	0 to +10V dc min		
$e_{\rm REF}$ Terminal ($e_{\rm IN} = 0$)	0 to -10V dc min	0 to -10V dc min		
Differential $(c_{IN} - c_{REF})$	0 to +10V dc min	0 to +10V dc min		
Overrange	+10% min	+10% min		
Current Signal Range (iIN)	0 to +0.5mA min	0 to +1mA min		
Common Mode Voltage	±10V	±10V		
Common Mode Rejection	40dB	40dB		
Impedance, e _{IN} Terminal	20kΩ	l0kΩ		
e _{REF} Terminal	40kΩ	20kΩ		
i _{IN} Terminal	Ω0	Ωο		
Max Safe Input	±Vs	±V _S		
ACCURACY				
Warm Up Time	5 Seconds to 0.01%	2 Minutes to 0.02%		
Nonlinearity, $e_{IN} = +0.1 \text{mV}$ to $\pm 11 \text{V}$	±0.01% of Full Scale, max	±0.015% of Full Scale, max		
$e_{IN} = -0.1 \text{mV} \text{ to } -11 \text{V}$	±0.01% of Full Scale	±0.015% of Full Scale		
Full Scale Error ¹	+0.1% to +2%, max	+0.1% to $+2%$, max		
Gain vs. Temperature (0 to +70°C)	±20ppm/°C max ±10ppm/°C max ±5ppm/°C max	±50ppm/°C max ±25ppm/°C max ±15ppm/°C max		
vs. Supply Voltage	±15ppm/%	±25ppm/%		
vs. Time	±10ppm/day	±10ppm/day		
Input Offset Voltage ²	±10mV max	±10mV max		
vs. Temperature (0 to +70°C)	$\pm 30 \mu V/^{\circ} C max$	$\pm 30\mu V/^{\circ}C max$		
vs. Supply Voltage	$\pm 10\mu V/\%$	±10µV/%		
vs. Time	±20ppm/day	±10ppm/day		
RESPONSE				
Settling Time, ±0.01% +10V Step	3 Output Pulses Plus 2µs	2 Output Pulses Plus 2µs		
Overload Recovery Time	10ms	1ms		
FREQUENCY OUTPUT ³	TTI (DTI Comercial Deles	TTI (DTI Compatible Bulan		
Waveform Pulse Width	TTL/DTL Compatible Pulses 5µs	TTL/DTL Compatible Pulses 500ns		
Rise and Fall Time	300ns/50ns	60ns/50ns		
Pulse Polarity	Positive	Positive		
Logic "1" (High) Level	+2.4V min	+2.4V min		
Logic "0" (Low) Level	+0.4V max	+0.4V max		
Capacitive Loading	500pF max	200pF max		
Fan Out Loading	10 TTL Loads min	10 TTL Loads min		
Impedance	3kΩ (High State)	670Ω (High State)		
POWER SUPPLY ⁴				
Voltage, Rated Performance	±15V dc	±15V dc		
Voltage, Operating	±13 v dc ±(13 to 18)V dc	±13 v dc ±(13 to 18)V dc		
Current, Quiescent	(+25, -8)mA	(+25, -8)mA		
	1 · · · · · · · · · · · · · · · · · · ·			
TEMPERATURE RANGE	0 to +70°C	0 to +70°C		
Rated Performance				
Operating	-25°C to +85°C	-25°C to +85°C		
Storage	-55°C to +125°C	-55°C to +125°C		
MECHANICAL				
Case Size	2" x 2" x 0.4"	$2'' \times 2'' \times 0.4''$		
Weight	45 Grams	45 Grams		
Mating Socket	AC1016	AC1016		
mating socket	ACIDIO			


¹ Adjustable to zero using 500Ω potentiometer. ³ Adjustable to zero using 50kΩ potentiometer. ³ Protected for continuous short-circuits to ground and momentary (less than 1 sec) shorts to the +V_S supply. Output is not protected for shorts to the -V_S supply. ⁴ Recommended power supply, ADI model 904, ±15V @ 50mA output.

Specifications subject to change without notice.

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

Applying the Voltage to Frequency Converter

VOLTAGE TO FREQUENCY OPERATION

Models 458 and 460 provide accurate conversion of analog signals into a train of constant width and constant amplitude pulses at a rate directly proportional to the analog signal amplitude. The output continuously tracks the input signal, responding directly to changes in the input signal; external clock synchronization is not required. The output pulse train is TTL/DTL compatible, permitting direct interface to digital processing circuits. Adding a resistor from the output terminal, pin 7, to the +15V supply (1.2k Ω model 458; 820 Ω model 460), shifts the output swing from 0 to +5V to 0 to +12V, providing a 4V noise immunity for driving high noise immunity logic (HNIL) and CMOS logic.

BASIC V/F HOOK-UP AND OPTIONAL TRIMS

Models 458 and 460 can be applied directly to achieve rated performance without external trim potentiometers or other components. Figures 2, 3 and 4 below illustrate the basic wiring connections for either V/F converter model. Using the basic hookup without trims, full scale ($e_{IN} = 10V$) accuracy is +0.1% to +2% and the input offset voltage is ±10mV max. The full scale and input offset voltage errors can be eliminated by using the FINE TRIM PROCEDURE.

FINE TRIM PROCEDURE

Connect the optional trims as shown in Figure 2, 3 or 4 and allow a five minute warm-up after initial power turn-on.

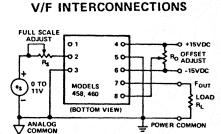


Figure 2. Positive Input Signal

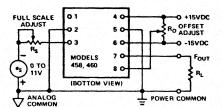


Figure 3. Negative Input Signal

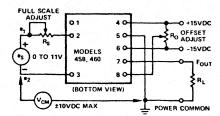
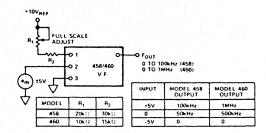


Figure 4. Floating Input Signal

EXTERNAL CONNECTIONS FOR VOLTAGE TO FREQUENCY OPERATION, WITH OPTIONAL INPUT OFFSET VOLTAGE AND FULL SCALE FREQUENCY ADJUSTMENTS

Using a precision, stable voltage source, set the input voltage e_S , to 10mV. Adjust the OFFSET trim, R_O , for an output pulse interval of 0.1 sec (model 458) or 0.01 sec (model 460). Set the input voltage to +10.000V and adjust the FULL SCALE trim for an output pulse frequency of 100kHz (model 458), or 1MHz (model 460). The V/F converter may now be used without further adjustment.

DIFFERENTIAL INPUT


The e_{IN} and e_{REF} input terminals represent a true differential input capable of accepting a signal from a strain gage bridge, a balanced line, or a signal source sitting at a common mode voltage. The differential input eliminates the need for a differential amplifier to handle these signals.

To apply the 458 or 460 voltage inputs differentially, the e_{IN} pin must always be positive with respect to the e_{REF} pin as shown in Figure 4. The differential signal source may be completely floating with common mode voltages up to $\pm 10V$ max. For differential inputs the output frequency is:

$$F_{OUT} = \left[\underbrace{(e_1 - e_2)}_{INPUT} + \underbrace{\left(\frac{e_1 + e_2}{2}\right) \times \left(\frac{1}{CMR}\right)}_{INPUT}\right] K_g$$

SIGNAL
$$K_g = 10^4 Hz/V; \text{ model } 458$$
$$10^5 Hz/V; \text{ model } 460$$

OFFSETTING INPUT FOR BIPOLAR INPUTS

The input summing terminal, $+i_{IN}$, may be used to improve dynamic response as well as scale the output frequency to directly convert bipolar input voltages. An offset current is fed through an external resistor from a stable voltage reference. As shown in Figure 5, input voltages of $\pm 5V$ min can be converted directly.

Figure 5. Offsetting Input to Accept ±5V Bipolar Inputs

The output may also be scaled up so that low amplitude signals, such as 1V will give full scale output frequency; 100kHz model 458 or 1MHz model 460. By scaling the output frequency for low level signals, the step response will significantly improve. As shown in Figure 6 for model 458, the step response for a 1 volt input decreases from 200 μ s beforinput scaling, to 20 μ s with scaling.

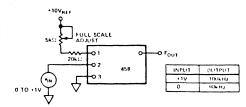


Figure 6. Offsetting Input to Achieve Improved Dynamic Response for Small Signal Inputs

PERFORMANCE SPECIFICATIONS

Nonlinearity: Nonlinearity error is specified as a % of 10V full scale input and is guaranteed over the 0.1mV to 11V operating signal range; $\pm 0.01\%$ max, models 458J/K/L, $\pm 0.015\%$ max, models 460J/K/L. Typical nonlinearity performance is illustrated in Figure 7.

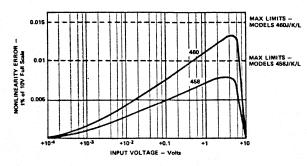


Figure 7. Nonlinearity Error Versus Input Voltage

Gain Temperature Stability: Gain drift is specified in ppm of output signal and is guaranteed for each model over the 0 to +70°C temperature range; 5ppm/°C (458L), 10ppm/°C (458K), 20ppm/°C (458J), 15ppm/°C (460L), 25ppm/°C (460K) and 50ppm/°C (460J) max.

LONG TERM PRECISION INTEGRATOR

In critical measurement applications, such as pollution monitoring where it is required to integrate for periods greater than 1 hour with overall accuracy of 0.05%, the V/F converter offers a superior low cost approach when compared to the traditional operational integrator circuit. As shown in Figure 8, the analog signal is applied to a precision input amplifier, model 52K and then to the V/F input. The V/F output is connected to a large capacity counter and display, operating as a totalizer. The total pulse count is equal to the time integral of the analog input signal. Since the output displayed is an accumulated pulse count, there is no integrator drift error. A feature of this approach is the infinite hold capability without errors due to time drift, since the counter may be held at any time without affecting the output reading.

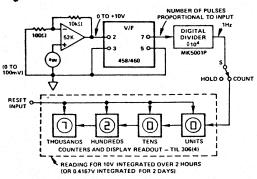


Figure 8. Models 458/460 as Long Term Integrator with Arbitrary Display Calibration. Frequency Division Ratio can Otherwise be Chosen to Provide Direct Readout in any Desired Units

RATIOMETRIC MEASUREMENTS

The circuit shown in Figure 9 illustrates a simple and inexpensive way of using two 100kHz V/F converters to achieve ratiometric measurements with less than 0.1% error over a dynamic range of 10,000 to 1. One converter is used as the input V/F to a digital counter and display, while a second converter, with a digital divide-by-N circuit is used as the time base for the counter. The counting time is one half the output period of the divide-by-N circuit, resulting in an output count of $2NV_1/V_{REF}$.

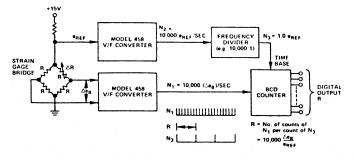


Figure 9. High Resolution, Wide-Range Ratiometer Using Model 458 V/F Converter

PRECISION HIGH CMV ANALOG ISOLATOR

By combining the V/F converter with a floating power supply and optical isolator as shown in Figure 10, accurate low level measurements in the presence of high common mode voltages may be achieved. Only the CMV rating of the optical isolator and the breakdown rating of the power supply limit the CMV rating. Using this approach for isolating transducers, ground loop problems are eliminated. Cost and complexity are minimized since only a single optical isolator is required to couple the serial pulse output from the V/F to the digital readout.

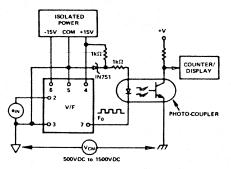


Figure 10. Optical Isolation Using LED Photo Isolator to Provide Up to 1500VDC CMV Isolation

APPLICATION IN DATA ACQUISITION SYSTEMS High Noise Immunity Data Transmission: A method of ac-

High Noise Immunity Data Transmission: A method of accurately transmitting analog data through high noise environments is illustrated in Figure 11. This approach utilizes the self clocking output of models 458 and 460 and eliminates the need for costly additional twisted pair for external synchronization. Model 610 amplifies the low level differential transducer signal up to the 10V full scale V/F input level. A differential line driver is used to drive a twisted pair cable. The differential line driver and receiver offer high noise immunity to common mode noise signals.

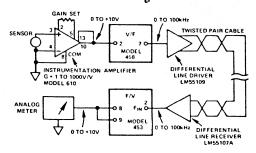


Figure 11. Application of Model 458 V/F Converter in a High Performance, High Noise Rejection Two-Wire Data Transmission System