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HEAT FLOW IN A COOLED COAXIAL TRANSMISSION LINE

ABSTRACT

Presented here are the results of a theoretical study of the heat flow
and temperature gradients within a coaxial transmission line. The type of
cable studied is frequently used in microwave research where cryogenic
temperatures are required to maintain a minimal noise level in the circuits.
Two refrigerating stations were taken into account, including their place-
ment and efficiency. The solution to the linear differential model is
presented in its entirety along with graphical displays of the effects of
geometry and materials on temperatures, the equivalent conductivity of the

inner conductor, and heat flow.
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Introduction

The problem under consideration here is the flow of heat through a
coaxial cable connecting an outside source to a microwave device cooled to
20° K. The geometry of the cable is taken to be cylindrically symmetric
over its 5 cm length, with refrigerating stations in thermal contact with
the outer conductor (See Figure 1). 1In setting up a differential model of
heat flow I found it necessary to make the following assumptions:

1. The lengthwise flow of heat through the electrically insulating
dielectric is negligible when compared to that in the two surround-
ing metal conductors.

2. The variation in thefmal conductivity with temperature can be
approximated by a simple average without adding unreasonable un-
certainty to the calculations.

3. The refrigerators are in ideal thermal contact with the outer
conductor.

Along with these assumptions the knowledge that temperature drop in a

given material is proportional to heat flow allowed the construction of a

linear model with a familiar solution.
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Sketch of the coaxial transmission line.
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The Differential Model and its Solution

The model I have sketched in Figure 2 represents the heat currents and
temperatures of interest in the coaxial line. Longitudinal flow toward the
cold end is taken as the +z direction and radial flow is pictured as the
perpendicular path between the inner and outer conductors. The variables
have the following connotations:

1° R2 - thermal resistivity of the inner and outer conductors

respectively (units degrees )

watt cm
z
G - thermal conductivity of the teflon cylinder around the
inner conductor watts

degree cm,
Q(z)
T(z)

steady state heat flow (watts)

steady state temperature (degrees K)
The thermal constants of the materials themselves are related to Rl’ R2 and
G by geometrical factors of the line.
In the infinitesimal length dz there is an equal influx and outflux of
heat with some temperature drop in the direction of flow. The four z-dependent

variables we are seeking are Tl’ T2, Q1 and QZ' From the model, the following

four equations evidently characterize the process:

(1) 41, = -(R; d2) Q

(2) dr, = -(R, d2) Q,
(3) do; = (6 dz)(T, - T))
(4) dq, = (G dz) (T, - T))

Each differential change in the four variables is in balance with the heat flow

or temperature gradient existing in the length dz.



The coupled set of linear differential equations shown above can be
solved by proposing a solution of the form exz‘such that the operator-%;
can be replaced by the constant A. By dividing equations 1 to 4 by dz and

making this substitution, we arrive at a set of linear algebraic equations

in the four unknowns. In matrix form these are written:

r— N r - — ™
(¢D) A 0 Rl 0 Tl =10
(2) 0 A0 R2 T2 =10
(3) G G A 0 Q1 = |0
@ -6 -¢ o xrj o = 0]

Knowing that the determinant of the matrix must now be identically zero
yields the characteristic equation in eigenvalue A:

4 2 _
A' - (R + GR)A” =0

Roots: A =0, 0, F W[EEIfITﬁg?
The presence of two zero-roots allows a constant and linear term to enter
into the solution which then becomes:
(5) T (2) = A+Bz+ ce’? + pe™?

By separately applying 3 of the 4 equations, we can determine the form of the

other variables.

(6) Apply (1): Ql(z) =5 - ifke +-§—Xe
1 1 1
R R,
(7) Apply (3): Tz(z) = A + Bz —ECe)\Z - —zDe'-AZ
Ry R

(8) Apply (2): Qz(z) =

|
0
|

Finally, with the thermal properties of each material known, the only re-
maining task is to apply 4 appropriate boundary conditions from the physical

make-up of the problem in order to determine the constants A, B, C and D.



Boundary Conditions

Given just one refrigerator, we can set up 4 boundary conditions from
the problem by inspection. The temperature at the hot end for both conductors
is room temperature (300°5. The temperature at the single refrigerator is
known (20°) and we'll insulate the inner conductor at the cold end by keeping
it unconnected and in a vacuum (Ql(z) goes to 0 at the cold end). With this

configuration the temperature at the cold end of the inner conductor is:
) T2(0) - TZ(L)
17 AL + R2/R1

Tl(L); TZ(L) + (1 + R2/R

where L distance from hot end to the refrigerator

T2(L) = temperature of the refrigerator

T2(0) room temperature at the hot end -- (the formula
valid for AL > 3 so that sinh AL % cosh AL)

The general case has more than a single refrigerator and must be treated
as separate sections of cable (perhaps each with different materials) joined
in a "continuous" way. Each section has its own ) and constants A, B, C, D
which describe it. Thus, each requires 4 boundary conditions. The two tem—
peratures at the hot end and temperature and heat flow at the cold end are
the same given any number of sections. For each section after the first,

4 more B.C.'s are obtained as follows: The outer conductor temperature for
both sections is the refrigerator's temperature. At the inner conductor the
heat flow out of one section is the same as ﬁhe flow into the next, and there
can be no temperature jump there. Simply stated, 2 continuities plus 1
refrigerator give the 4 boundary conditions. The constants for all the sec-

tions can then be solved simultaneously with one large matrix inversion that

will be demonstrated later.



Equivalent Thermal Resistance of the Inner Conductivity

Up to now the end of the inner conductor has been taken as completely
insulated from heat flow, and we have seen how to find the "open circuit"
temperature at that point. When the cable is connected to a device however,
heat will flow into that device based on its temperature and the equivalent
thermal resistance of the coax and the device. Because of the linear coup-
ling of heat flow to temperature and constant coefficients in the differential
equations, the solution is indeed a linear one such that each boundary condi-
tion has a linear effect on each of the 4 variables of interest. For example,
this means that the temperature at the cold end of the inner conductor varies
linearly with the boundary condition for the amount of heat draining from it:

Tl(L) = -R Ql(L) + T0

equiv
The quantity To is the "open circuit" temperature (which exists when Ql(L) =
0), and the constant of proportionality is the equivalent resistance of the
inner conductor. Before we can determine Re . we must solve the matrix

quiv
equation for the constants A, B, C, D.

The General Solution for the Constants

The method of generating 4 boundary conditions for each section of the
coax was described above. Here we will examine the practical case of two re-
frigerators at distances Ll and L2 along the line and show how the constants
can be found.

The functional forms of T(z) and Q(z) are known from equations (5) - (8)

except for the 4 constants for each section of the coax. Let these be treated

as variables and z be fixed for each particular boundary condition. Then 8

equations are generated as follows:



Tl(O) = 300 room temperature (L2) = 20 second refrigerator
T2(O) = 300 room temperature Tl(Ll) -7 (Ll) = 0 continuity
- . . - [ = . .
Tz(Ll) = 77 first refrigerator Ql(Ll) Ql(Ll) 0 continuity
Té(Ll) = 77 first refrigerator (LZ) =0 insulated end

The primed variables denote the second section of line. In matrix form these

are written:
M] C] =B]  and thus  C] = [M]™T B]
where [M] is the matrix of 1, z, ekz, e“)\z terms evaluated at fixed z
C] is the vector of coefficients (A, B, C, D, A', B', C¢', D")
B] is the vector of boundary conditions (300, 300, 77, 77, 20,
0, 0, 0)
From the matrix form of the solution it is again evident that each boundary
condition has a linear effect on the coefficients. By setting all Bi =0

except I! (L ) which we will denote by Q into the device, the ratio of T! (LZ)

to Q0 can be determined. It is in fact:

Ty (@y) AL AL
"‘6;"’“’Requiv =mg g tmg ghy T my; g 2+ mg e 2

where [m] = [M]7%
Along with the open circuit temperature, this equivalent resistance (in
degrees/watt) completes the characterization of the heat flow through the

inner conductor.

Calculations

The physical dimensions of the coax are shown in Figure 1. The cross-
sectional areas of the inner and outer conductors and dielectric are .0065,

.0300, and .0642 cmz, respectively. Taking averages of the thermal



conductivities between the refrigerator temperatures, we obtain the following
numbers:*

Conductivities in Watts/cm degree

Beryllium Copper Stainless Steel Teflon
(inner conductor) (outer conductor) (dielectric)
300° - 77° .63 Jd1 .0033

77° - 20° .26 .05 .0021

The values for Rl and R2 used in the model are related to the above by Rl =

l/(arealgl) and R, = 1/(area2g2) where 8> 8, are the conductivities. To
find the geometrical factor for G we integrate its conductivity radially over
T
the hollow cylinder of dielectric and find G = g 2ﬂ/ln(—2), where r,
tefl T i
denotes the radius. These values are shown below:
Ry ) G
300° - 77° 244 303 .0174
77° - 20° 592 667 .0111

The distance to the 77° refrigerator is taken as Ll = 2.7 cm, and the

distance to the 20° refrigerator is L2 = 5.0 em. This is the "standard"

configuration referred to in the graphs.
The first assumption I made can now be checked. The smallest ratio of

conductivities (for longitudinal heat flow) between conductor and dielectric

% It is also possible to propose a change of variables at this point to
account for some non-constant function g(T). One integrates g(T) over
the appropriate temperature range, and thus obtains a new variable in
which the differential equations are again linear. The restriction,
however, is that all 3 conductivities must have the identical
T-dependence for the new variable to be useful. No practical use was
found for the particular materials here, but with some compromises
an application for this change of variable could be found.



is 11 and occurs between the stainless steel outer conductor and the teflon
at the cold end. Thus, there is at least 11 times as much longitudinal heat
flow anywhere in either of the conductors as in the dielectric. Having two
conductors then makes the first assumption valid to within a 5% correction.
From the standard configuration of refrigerators and for these materials
we obtained the value of 37° for the open circuit temperature, and an equi-
valent thermal resistance of .31 degrees/mWatt or conductance of 3.2 mWatt/

degree.

Conclusions

On the following pages I present a large amount of information in graphi-
cal form that was extracted from the model. The following conclusions can be
drawn regarding the coax line, the equivalent conductivity, and refrigeration:

1. The temperature gradient is essentially linear along the line for
the first few centimeters, but is highly dependent on the place-
ment of refrigerators.

2. The temperature of each refrigerator has a very strong effect on
the cold-end temperature of the inner conductor, and thus it is
crucial to optimize the efficiency of the refrigerators.

3. Only the cold-end conductivities of the 3 materials have a signi-
ficant effect on the final temperature, with the order of signi-
ficance being inner conductor, dielectric, and outer conductor.

4., The value used for room temperature has little effect on the
final temperature of the line.

5. For a given set of materials the equivalent conductivity at the
end of the inner conductor is almost entirely a function of the

distance between refrigerators.
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6. The optimum placement of the 77° refrigerator, if it has 3 times
the capacity of the 20° station, is 7/10 of the way to the 20°
refrigerator, independent of the length of the line.

All of these investigations were done by the HP 9845 computer in the

electronics division. The program remains on file for further study and to

provide data for comparison with experimental measurements.
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