Performance measurements and models of Tianma Radio telescope(TM65m)

Jinqing Wang, Michael Kesteven, Rongbing Zhao, Jian Dong, Weiye Zhong, Bing Li, Qinghui Liu, Zhiqiang Shen

Shanghai Astronomical Observatory

2016 September 20 Green bank
- Pointing model
- Sub_reflector model
- Efficiency/system noise temperature/SEFD
- Surface measurement by holography and gravity model
Active surface
1008 panels

Sub_reflector
Hexapod(XYZ)

Receiver
Q(2)/ Ka/ K(2)
Ku/ X/ C/ S/ L
Pointing VS efficiency

\[T = T_{\text{src}} \exp(-4\ln(2)(x/\theta)^2) \]

<table>
<thead>
<tr>
<th>Pointing error/beam width</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss of gain</td>
<td>0.027</td>
<td>0.105</td>
<td>0.22</td>
<td>0.36</td>
<td>0.5</td>
</tr>
</tbody>
</table>
Pointing error main comes from:

1) Mechanical error [model, titlemeter]
2) Encoder accuracy and stability
3) Servo system
4) Sub_reflector XY offsets [model, PSD]
5) Active surface [model]
6) Temperature [model, titlemeter, sensor, PSD]
7) Wind [PSD, half_power track]
Pointing Model measurement

\[\text{Delt}_{AZ} = C1 + \tan(E0) \cdot \cos(A0) \cdot C3 + \tan(E0) \cdot \sin(A0) \cdot C4 + \tan(E0) \cdot C5 - 1/ \cos(E0) \cdot C6 \]

\[\text{Delt}_{EL} = C2 - \sin(A0) \cdot C3 + \cos(A0) \cdot C4 + \cos(E0) \cdot C7 + C8/\tan(E0) \]
K band pointing model
(sub_reflector enable)
Sub_reflector Model

\[\Delta Y = A + B \cos(EL) \]

\[\Delta Z = C + D \sin(EL) \]

@ X band 8.4GHz
Tested model VS FEM simulation

\[Y = A + B \cos(\theta) \]

\[A = -45.83 \pm 2.11 \quad B = 80.59 \pm 2.84 \]

\[Z = C + D \sin(\theta) \]

\[C = -20.75 \pm 0.51 \quad D = 33.97 \pm 0.76 \]
Efficiency & Tsys measurement

\[
\eta(\varphi) = \frac{2kT_d (\varphi) K_1 K_2 K_3 K_4 K_5}{\Sigma A_g}
\]

\[
T_{as} = \frac{(R_S - R_b)}{R_N - R_b} T_{cal}
\]

\[
T_{sys} = \frac{R_b - R_0}{R_N - R_b} T_{cal}
\]

\[
S' = S \cdot \exp(-\tau_0 / \sin El)
\]
C band (4GHz–8GHz)

system noise temperature
C band performance
Sub_reflector fixed @4.8GHz 20MHz Bandwidth
C band performance
Sub_reflector Enable @4.8GHz 20MHz Bandwidth
X band performance
Sub_reflector fixed @ 8.75GHz 20MHz Bandwidth

[Graphs showing efficiency, SE=DI, Tsys(K), DPFU(K/Jy) vs. EI (°)]
Sub_reflector Enable @8.75GHz 20MHz Bandwidth
Ku band performance
Sub_reflector Enable @15.6GHz 20MHz Bandwidth
Ka band performance
Sub_reflector Enable @31.1GHz 20MHz Bandwidth
L/ C/ S/ X/ Ku/ Ka bands performance

<table>
<thead>
<tr>
<th>Band</th>
<th>Sub_reflector</th>
<th>Frequency (MHz)</th>
<th>Tsys @Zenith</th>
<th>DPFU (K/ly)</th>
<th>Efficiency max</th>
<th>归一化 Poly(aX^2+bX^2+cX+d) (X=Elevation/degree)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L(V)</td>
<td>fixed</td>
<td>1488</td>
<td>32</td>
<td>0.768</td>
<td>0.60 @ El=46.4</td>
<td>1.6E-6, -3.6247E-4, 0.02326739, 0.54048039</td>
</tr>
<tr>
<td>L(H)</td>
<td>fixed</td>
<td>1488</td>
<td>30</td>
<td>0.796</td>
<td>0.60 @ El=43.4</td>
<td>2.05E-6, -3.565E-4, 0.01829101, 0.66628028</td>
</tr>
<tr>
<td>S(LCP)</td>
<td>fixed</td>
<td>2265</td>
<td>50</td>
<td>0.880</td>
<td>0.570 @ El=9.463</td>
<td>5.0E-8, -9.83E-6, -0.00143989, 1.01446614</td>
</tr>
<tr>
<td>S(RCP)</td>
<td>fixed</td>
<td>2265</td>
<td>52</td>
<td>0.709</td>
<td>0.59 @ El=9.463</td>
<td>7.0E-8, -1.197E-5, -0.00158865, 1.01694279</td>
</tr>
<tr>
<td>C(LCP)</td>
<td>move</td>
<td>4800</td>
<td>20</td>
<td>0.771</td>
<td>0.64 @ El=18.7</td>
<td>6.4E-7, -1.1909E-4, 0.00706175, 0.86551465</td>
</tr>
<tr>
<td>C(RCP)</td>
<td>move</td>
<td>4800</td>
<td>20</td>
<td>0.785</td>
<td>0.65 @ El=47.1</td>
<td>6.8E-7, -1.2899E-5, 0.00759555, 0.85688260</td>
</tr>
<tr>
<td>C(LCP)</td>
<td>move</td>
<td>6425</td>
<td>19</td>
<td>0.719</td>
<td>0.56 @ El=54.7</td>
<td>3.0E-8, -3.02E-5, 0.00303171, 0.91954072</td>
</tr>
<tr>
<td>C(RCP)</td>
<td>move</td>
<td>6425</td>
<td>19</td>
<td>0.708</td>
<td>0.59 @ El=54.7</td>
<td>1.6E-7, -4.839E-5, 0.00396896, 0.90378113</td>
</tr>
<tr>
<td>C(LCP)</td>
<td>move</td>
<td>7500</td>
<td>17</td>
<td>0.764</td>
<td>0.64 @ El=55.3</td>
<td>1.7E-7, -6.086E-5, 0.00585544, 0.85217763</td>
</tr>
<tr>
<td>C(RCP)</td>
<td>move</td>
<td>7500</td>
<td>17</td>
<td>0.764</td>
<td>0.64 @ El=55.3</td>
<td>1.7E-7, -6.086E-5, 0.00585544, 0.85217763</td>
</tr>
<tr>
<td>X(LCP)</td>
<td>move</td>
<td>8400</td>
<td>33</td>
<td>0.789</td>
<td>0.66 @ El=50.1</td>
<td>-1.99E-6, 2.4240E-4, -0.00757999, 1.01186495</td>
</tr>
<tr>
<td>X(RCP)</td>
<td>move</td>
<td>8400</td>
<td>31</td>
<td>0.782</td>
<td>0.65 @ El=50.9</td>
<td>-1.99E-6, 2.4415E-4, -0.00763073, 1.0090602</td>
</tr>
<tr>
<td>Ku(LCP)</td>
<td>move</td>
<td>15600</td>
<td>25</td>
<td>0.807</td>
<td>0.670 @ El=50.877</td>
<td>-5.13E-6, 0.00039693, -0.00038884, 0.66734680</td>
</tr>
<tr>
<td>Ku(RCP)</td>
<td>move</td>
<td>15600</td>
<td>30</td>
<td>0.850</td>
<td>0.710 @ El=51.738</td>
<td>4.71E-6, 0.0003573, 0.00617772, 0.51436883</td>
</tr>
<tr>
<td>Ka(LCP)</td>
<td>move</td>
<td>31100</td>
<td>80</td>
<td>0.600</td>
<td>0.470 @ El=48.211</td>
<td>-6.14E-6, 0.00022601, 0.02134806, 0.13347056</td>
</tr>
<tr>
<td>Ka(RCP)</td>
<td>move</td>
<td>31100</td>
<td>70</td>
<td>0.563</td>
<td>0.470 @ El=48.937</td>
<td>-6.35E-6, 0.00025843, 0.01525549, 0.15628293</td>
</tr>
</tbody>
</table>
K band dual beam Tsys/ Trec/ Tsky
K band Beam1-RCP @19.45GHz

16y8m25 cloudy
Q band dual beam Receiver
Noise Temperature

Tianma Q-Band Two-Beam Cryogenic Receiver

Receiver Noise Temperature [K]

Frequency [GHz]
Q band (38-48GHz) dual beam
System noise temperature
Q band Beam1 performance @43GH
2016y8m6 cloudy
Microwave Holography on TM65m for surface error measurement

- Phase coherent
 - satellite ___ high accuracy panel setting
 - radio source (VLBI) ___ gravity deformation

- Phase Retrieve
 - OOF ___ gravity deformation & real-time detection
 - [See Dr. JianDong’s poster]
Input freq = 12.2GHz ~ 12.75GHz
Output freq = 900MHz ~ 1450MHz
Gain = 60dB
LO = 11.3GHz

Input freq = 900MHz ~ 1450MHz
Output freq = 100kHz ~ 20MHz
Gain = 30dB
Adjustable Attenu = 30dB
65m Ku LNB

Base Band Converter

Real-time correlator

Reference antenna
Ku LNB

100MHz-distributor
Asia4 Ku beacon (12.25GHz)
Far Field
Amplitude and Phase
<table>
<thead>
<tr>
<th>D (m)</th>
<th>65</th>
<th>63</th>
<th>60</th>
<th>58</th>
<th>56</th>
<th>(UT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMS(mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.274</td>
<td>0.267</td>
<td>0.257</td>
<td>0.251</td>
<td>0.243</td>
<td>16y1m19 09:16-11:40</td>
<td></td>
</tr>
<tr>
<td>0.278</td>
<td>0.270</td>
<td>0.263</td>
<td>0.260</td>
<td>0.255</td>
<td>16y1m19 14:44-17:06</td>
<td></td>
</tr>
<tr>
<td>0.288</td>
<td>0.281</td>
<td>0.273</td>
<td>0.263</td>
<td>0.256</td>
<td>16y1m27 11:24-13:54</td>
<td></td>
</tr>
</tbody>
</table>
Measurement Error

\[e_s = \frac{N \lambda}{2 \pi \text{SNR}(O)} \]

![Graph showing SNR vs. Measurement Error with different N values](image)

![Graph showing dB vs. arsec with color scale](image)
Repeated measurement error by 3 times independent tests

<table>
<thead>
<tr>
<th>D (m)</th>
<th>65</th>
<th>63</th>
<th>60</th>
<th>58</th>
<th>56</th>
<th>53</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMS (mm)</td>
<td>0.132</td>
<td>0.121</td>
<td>0.113</td>
<td>0.109</td>
<td>0.106</td>
<td>0.099</td>
<td>0.093</td>
</tr>
</tbody>
</table>
Ka efficiency improvement @31.15GHz

Ka 31.15GHz efficiency improvement in theory:
36% (0.58mm) -> 54% (0.3mm)
Main Surface Gravity Model Measurement by Short Baseline (~6km) VLBI
Radial sweep scans and correlation

One pattern: ~20 minutes
Resolution: ~3m
Meaure error: ~0.17mm
Radio source: 3C84
Integration time: 1 second
Freq & Bandwidth: 8.4GHz & 16MHz

Radial sweep

![Graphs showing amplifier and phase data over time]
Gravity model simulation and measurement

left: FEM simulation files

right: measurement file

E:\65\主动面\促动器调整量(原始)\5’ 仰角促动器调整量.txt
E:\65\主动面\促动器调整量(原始)\10’ 仰角促动器调整量.txt
E:\65\主动面\促动器调整量(原始)\15’ 仰角促动器调整量.txt
E:\65\主动面\促动器调整量(原始)\20’ 仰角促动器调整量.txt
E:\65\主动面\促动器调整量(原始)\25’ 仰角促动器调整量.txt
E:\65\主动面\促动器调整量(原始)\30’ 仰角促动器调整量.txt
E:\65\主动面\促动器调整量(原始)\35’ 仰角促动器调整量.txt
E:\65\主动面\促动器调整量(原始)\40’ 仰角促动器调整量.txt
E:\65\主动面\促动器调整量(原始)\45’ 仰角促动器调整量.txt
E:\65\主动面\促动器调整量(原始)\50’ 仰角促动器调整量.txt
E:\65\主动面\促动器调整量(原始)\55’ 仰角促动器调整量.txt
E:\65\主动面\促动器调整量(原始)\60’ 仰角促动器调整量.txt
E:\65\主动面\促动器调整量(原始)\65’ 仰角促动器调整量.txt
E:\65\主动面\促动器调整量(原始)\70’ 仰角促动器调整量.txt
E:\65\主动面\促动器调整量(原始)\75’ 仰角促动器调整量.txt
E:\65\主动面\促动器调整量(原始)\80’ 仰角促动器调整量.txt
E:\65\主动面\促动器调整量(原始)\85’ 仰角促动器调整量.txt
E:\65\主动面\促动器调整量(原始)\90’ 仰角促动器调整量.txt

D:\share\2015y\6m\20\1453\Activesurface.txt
D:\share\2015y\6m\20\1524\Activesurface.txt
D:\share\2015y\6m\20\1555\Activesurface.txt
D:\share\2015y\6m\20\1626\Activesurface.txt
D:\share\2015y\6m\20\1657\Activesurface.txt
D:\share\2015y\6m\20\1728\Activesurface.txt
D:\share\2015y\6m\20\1759\Activesurface.txt
D:\share\2015y\6m\20\1830\Activesurface.txt
D:\share\2015y\6m\20\1901\Activesurface.txt
D:\share\2015y\6m\20\1932\Activesurface.txt
D:\share\2015y\6m\20\2003\Activesurface.txt

17.6
22.9
28.1
33.9
39.4
45.4
51.4
67.1
62.4
68.3
73.3
\[\Delta(i) = P(0) + P(1)\sin El + P(2)\cos El \]
Sub-reflector XYZ position derived from holography aperture phase VS the sub-reflector model constructed from amplitude sweeps
conclusions

- All receivers have been installed. K and Q bands need more testing for the weather and pointing problems.
- Introduced the performance of pointing, surface accuracy and models construction.
- Elevation pointing error needs more improvement and verification in servo control, encoder setup and models.
- Both phase coherent and phase retrieve holography are adopted for panel setting and gravity deformation model construction.

The surface accuracy is better than 0.3mm (RMS) at elevations around 53°. For higher and lower elevations we need more testing and verification for the accuracy improvements.
Questions...