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ABSTRACT

We describe an algorithm for identifying radio frequency interference in astronom-
ical data by detecting cyclostationarity using the strip spectral correlation analyzer.
Cyclostationarity is a property common to many sources of interference but rare in
astrophysical sources. We test our algorithm using simulated interfering signals with
a variety of modulation processes, symbol durations, numbers of bits-per-symbol, and
signal-to-noise ratios, and compare the performance for different algorithmic parame-
ters and thresholds for flagging a signal as interference. We also include a simulated
astrophysical spectral line. Our algorithm performs reasonably well for most simulation
parameters, with an average area under the resulting receiver operating characteristic
curve of 0.90 and ¢ coefficient value of 0.61 when averaged over all signal properties
and when using optimal algorithmic parameters. However, we find better performance
for subsets of the simulated signals, especially when the signals have relatively narrow
bandwidth compared to a spectrometer channel. Our approach does not perform as
well for wide-bandwidth signals and frequency-switched signals with large frequency
deviations. We discuss potential strategies for improving performance for these types
of interferers. We believe cyclostationary signal processing is a promising approach to
interference mitigation that can complement other methods.
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31 1. INTRODUCTION

2 Radio frequency interference (RFI) is a ubiq-
33 uitous problem in radio astronomy, analogous to
s light pollution at optical wavelengths. Sources
55 of RFI are legion, including (but certainly not
3 limited to) telecommunications, wireless Inter-
w net, navigational aides such as radar and Global
38 Positioning System (GPS), high-speed electron-
3 ics, and electrical generators and transmission
w0 lines. RFT degrades the quality of astronomical
s data by raising the effective noise floor, some-
2 times making it impossible to detect weak as-
a3 trophysical sources, and in extreme cases can
s damage the sensitive electronics used in mod-
ss ern radio telescopes. Radio astronomy observa-
s tories are often been built in remote locations,
. taking advantage of terrain to shield telescopes,
s and are sometimes protected by regulatory re-
10 strictions on the types and strength of nearby
so transmitters. However, the growing number of
s1 satellite transmitters and mobile electronic de-
52 vices, coupled with ever more sensitive astro-
s3 nomical instruments, make it impossible for any
s« observatory to completely escape the effects of
ss RF1. There is an urgent need for strategies that
s will allow radio astronomers to share the spec-
s7 trum with other users.

ss ldeally, one would subtract an interfering sig-
so nal, leaving behind only the astronomical signal
60 of interest and instrumental noise, with no loss
&1 of data. In practice, it is difficult to estimate
&2 and remove the interfering signal without bias-
63 ing the underlying astronomical signal. It is,
e therefore, more common to identify and “flag”
&s samples contaminated by RFI so that they can
s be ignored at some stage of processing, at the
v expense of losing a (potentially large) fraction
e of the data. The challenge then becomes ro-
s bustly detecting RFI on short timescales, so as
70 to maximize the fraction of usable data.

7 A number of RFI identification techniques
= have been developed. Some of these assume
7 that signals from astrophysical sources can be

7 closely approximated as Gaussian random pro-
75 cesses, calculate moments of the observed data,
6 and flag non-Gaussian outliers as RFI (e.g. Nita
7z et al. 2007; Nita & Gary 2010a; Purver et al.
76 2022). Others use principal component analysis
79 to identify bases in which RFIT stand out from
so sources of interest (Yuan et al. 2022). Machine
a1 learning offers another approach, in which algo-
g2 rithms are trained to recognize the same charac-
83 teristics that humans use to manually identify
ss RFI (e.g. Akeret et al. 2017; Vafaei Sadr et al.
ss 2020; Pinchuk & Margot 2022). Each of these
ss approaches has advantages and drawbacks. Sta-
g7 tistical tests are straightforward and can be
ss computationally inexpensive, but may also ac-
s cidentally flag strong, impulsive astronomical
o sources. Principal component analysis and ma-
a1 chine learning can use a rich, multi-dimensional
o representation of the data to identify RFI, but
o3 can fail when confronted with novel sources
« not in the training data set, though unsuper-
os vised learning methods may be able to overcome
o this weakness. Because RFI can take on many
o7 forms, and can have different impacts in differ-
s ent observing modes, it is important to explore
o new mitigation techniques that can complement
10 and, in some cases, improve upon existing meth-
101 ods.

w2 In this paper, we explore the use of cyclo-
103 stationary signal processing (CSP) to identify
e RFL. A cyclostationary process is one with a
105 statistical moment, such as mean or variance,
s that changes periodically or quasi-periodically
w7 (Gardner et al. 2006), as opposed to a wide-
108 sense stationary process whose statistical mo-
100 Mments are constant in time. Many sources of
o RFI are cyclostationary, with alternating cur-
w rent being a simple example. Cyclostationar-
2 ity also arises from digital information encod-
u3 ing schemes in which the amplitude, frequency,
us and/or phase of a carrier wave switches between
us some finite number of possible states. Each
ue state represents a symbol and the total num-



PERFORMANCE OF RFI MITIGATION VvIA CSP 3

u7 ber of possible states determines the number of
us bits that can be transmitted by each symbol.
1o The signal will be cyclostationary at modula-
120 tion frequencies related to the symbol rate, also
121 known as the Baud rate. Since most! astrophys-
122 ical processes are approximately wide-sense sta-
123 tionary, evidence of cyclostationarity could be a
124 powerful way of distinguishing between RFT and
125 astronomical sources.

s Cyclostationarity has been discussed as an
12z RFI mitigation technique in radio astronomy by
128 Hellbourg et al. (2012) and Cucho-Padin et al.
120 (2019), but has not yet been widely adopted.
130 We have developed an algorithm for identify-
w ing and flagging RFT in astronomical data when
132 there is significant evidence of cyclostationar-
13 ity. Our long-term goal is to develop a system
134 that can be integrated into modern radio astron-
13s omy digital spectrometers, but before doing so
136 it is important that we determine the optimal
137 algorithmic parameters and rigorously charac-
138 terize its efficacy. As a first step in this pro-
139 cess, we simulated a large number of human-
1o generated signals using amplitude, phase, and
w1 frequency shift keying, and pre-processed them
12 in a way that emulates the digital spectrometer
13 used by the Robert C. Byrd Green Bank Tele-
s scope (GBT). Using this simulated data, we de-
1s fined a “ground truth” that we then compared
us to the output of our algorithm. We simulated
17 different symbol rates, numbers of bits per sym-
us bol, and signal-to-noise (S/N) ratios, in addition
19 to the different keying techniques. This allowed
150 Us to explore the impact of different algorith-
151 mic parameters within a large parameter space.
12 In §2 and §3 we provide some theoretical back-
153 ground and define our algorithm in detail. In
154 84 we describe our simulations, including the
155 parameter space of the various signals and al-
156 gorithmic parameters, and the metrics we use

I Pulsars and potential extraterrestrial techno-signatures

are important exceptions.

157 to judge performance. We present results in §5
158 and discuss future avenues of research in §6, be-
150 fore concluding in §7.

o 2. OVERVIEW OF CYCLOSTATIONARY
161 SIGNAL PROCESSING

62 Let z(t) a be a radio-frequency signal de-
163 scribed by

o () = ST 45 (e (1)

165 where s(t) is a signal of bandwidth B, f. > B'is
166 the carrier frequency, t is time, and ¢ is phase.
167 $(t) can itself be represented by in-phase and
168 quadrature components:

169 S<t) —— (2)

If s(t) is periodic on a timescale Tp, then x(t)
will be cyclostationary, and we can extract sev-
eral quantities of interest from x(t). The first,
known as the non-conjugate cyclic autocorre-
lation function (CAF), is a Fourier series rep-
resentation of the traditional auto-correlation
function given by

R:Crym* (T> -

To/2
1 T T -

i E{ <t _) * (t - _>} —27r2atdt
T / z(t+ 7 T 5 e

—Ty/2
(3)

where E is the expectation operator, * denotes
complex conjugation, t is time, 7 is a time offset
known as the lag, and « is the cycle frequency
(Gardner 1991). A second quantity of interest
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is the conjugate CAF?

Ry, (1) =
To/2
1 T T ;
— E{ (t —) (t——)} “Emetgy (4
T / x| t+ 5) ¢ 5) ¢ (4)
~T/2
w In a  cyclostationary  analog to  the

11 Wiener—Khinchin theorem, the Fourier trans-
2 form of RS, . and RS, with respect to 7 yields
173 the non-conjugate and conjugate spectral corre-
wa lation functions, respectively (SCF; also known
ws as the cyclic spectrum; Gardner 1991):

5o () = / RO (r)e " dr  (5)
S° (1) = / RO (r)e2dr.  (6)
178 —00

179 We will refer to v as the spectral frequency to dif-
180 ferentiate it from the cycle frequency. The non-
11 conjugate CAF and SCF will be non-zero only
e for o, = n /Ty, while the conjugate CAF and
183 SCF will be non-zero only for o,, = n/Ty + 2f.,
18 Where n = 0,1,2,... is an integer. Note that
18s when a = 0, the non-conjugate SCF reduces to
16 the usual definition of the power spectral den-
w87 sity (PSD).

188 The non-conjugate and conjugate spectral co-
189 herence are normalized versions of the non-
100 conjugate and conjugate SCF, defined as

Y PEeY L Iy
52 ()

Paa(V) = VS, (v+af2)S0,, (v —a/2)

191

(8)

192

193

(V£ a/2) is a frequency-shifted ver-
105 sion of the PSD. Note that when ov = 0 the non-
106 conjugate spectral coherence function is unity
17 for all values of v, regardless of the properties
108 of the input signal.

1o Our algorithm exploits the fact that the SCF?
20 of a stationary process only has significant
200 power when o = 0, whereas the SCF of a cyclo-
202 stationary process also has significant power at
203 higher cycle frequencies. Since the magnitude
20 Of the spectral coherence function is < 1, it is
205 especially useful for setting detection thresholds
206 for data with arbitrary mean and variance.

10 where SY

207 3. AN ALGORITHM FOR DETECTING RFI
208 USING CYCLOSTATIONARY SIGNAL
209 PROCESSING

20 In general, the data collected by a radio tele-
an scope may contain a large number of cyclosta-
212 tionary sources of RFI whose properties (e.g.
213 carrier frequency, modulation frequency, encod-
212 ing scheme, etc.) will not be known a priori.
215 To blindly find evidence of cyclostationarity we
216 need to have some way of efficiently estimat-
217 ing the SCF for a large number of discrete a.
218 We make use of the strip spectral correlation
20 analyzer (SSCA; Roberts et al. 1991), which
20 works by time-averaging frequency-domain cor-
21 relations (see Equations 9 and 10). Given a sig-
22 nal discretely sampled at a rate f; with N to-
23 tal points, the SSCA estimates the SCF at N
224 discrete values of . The number of spectral
s frequencies, M, is controlled via a first-stage
26 channelizer. In words, the steps in the SSCA
227 are

»s 1. Take a data set, denoted as x[n], of length

2 The nomenclature here can be confusing, since the non-y
conjugate CAF is calculated using the traditional def-
inition of the autocorrelation function in which z(t) is
multiplied by a lagged version of its complex conjugate,
while the conjugate CAF is calculated without using the
conjugate of z(t). We use this nomenclature to be con-
sistent with other CSP literature.

N points and duration 7'.

3 In the remainder of this paper we will use SCF as an ab-
breviation for the non-conjugate and conjugate spectral
correlation and coherence functions in contexts where
these are interchangeable.
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Figure 1. An example visualization of various forms of the SCF for a rectangular-pulse binary phase-shift
keyed signal with a Baud rate of 0.1 Hz and carrier frequency of 0.05 Hz. The signal was 32,768 samples
long and the SCFs were generated via our implementation of the strip spectral correlation analyzer using
M = 64 (see text for details). For clarity, we have only plotted a corresponding to the top 200 values of the
SCFs.

2. Use a windowing function and sliding 20 4. Take a discrete Fourier transform of the
Fourier transform to channelize subsets of 2 result of step 3 along the time axis.
x[n], each of length M, yielding X[v, 7],
where v, are the channelizer frequencies
(not the final spectral frequencies that ap-
pear in Equations 5 and 6) and r is the
time index.

3. Multiply X|[vg,r] by x*[r] (for the non- 2 5. If desired, compute the spectral coher-
conjugate SCF) or x[r] (for the conjugate 2 ence using an over-sampled estimate of
SCF) 244 the PSD.
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Table 1. Generalized Extreme Value Distribution Shape Parameters (&,u,0) for Various SSCA Parameters

LyNCH, SMITH, & HARRISON

Method | M 32 64 128 256 512 1024

° 1024 | (0.06,0.35,0.02) .

5 2048 | (0.06,0.27,0.01)  (0.10,0.36,0.02) -

Ei 4096 | (0.06,0.20,0.01) (0.03,0.28,0.01)  (0.03,0.38,0.02) o

o 8192 | (0.03,0.15,0.01)  (0.06,0.21,0.01) (0.05,0.29,0.01)  (0.05,0.40,0.01) e

§ 16384 | (0.02,0.11,0.01) (0.01,0.16,0.01)  (0.02,0.22,0.01) (0.03,0.30,0.01) ~ (0.05,0.41,0.01)
32768 | (0.04,0.08,0.00) (0.03,0.11,0.00) (0.01,0.16,0.01) (0.00,0.23,0.01) (0.00,0.32,0.01) (0.05,0.43,0.01)
1024 | (0.06,0.42,0.03)

g 2048 | (0.00,0.32,0.02) (0.06,0.43,0.02) .

e 4096 | (0.02,0.25,0.01) (0.06,0.33,0.02) (0.03,0.44,0.02) e

B 8192 | (0.00,0.18,0.01)  (0.00,0.25,0.01) (0.04,0.34,0.02) (0.06,0.45,0.02) o

© 16384 | (0.06,0.14,0.01) (0.00,0.19,0.01)  (0.00,0.26,0.01)  (0.00,0.35,0.02) ~ (0.04,0.46,0.02) :
32768 | (0.00,0.10,0.01) (0.02,0.14,0.01) (0.02,0.19,0.01) (0.00,0.27,0.01) (0.05,0.36,0.02)  (0.03,0.48,0.02)

Mathematically, the SSCA for the non- 2 Fourier transform implemented as part of the

conjugate SCF can be written as

TIT* Y 2 2 -
Z X[vg, r] z*[rlw[n — r]e”2™a/N - (9)

SvukJrqAa {n @ . qAOé:| _
T

and for the conjugate SCF

Guitada | Yk _ qAal
o T2 2 |

Z X[vg, r] z[rlwln — r]e”2™/N(10)

25 where the T' subscript indicates time averaging,
26 Ao = T~ is the cycle frequency resolution, ¢
247 1S an integer index running from —N/2 to N/2,
xs and w is a windowing function. The cycle and
210 spectral frequencies are

A
250 V:% - qTQ/ (11)
251 a=v, + qAa .

252 For the SSCA to provide an accurate estimate of
253 the SCF it must satisfy the condition N/M >
s 1. In this work, we only considered cases where
255 N/M > 8.

6 We implemented the SSCA in Python, closely
a7 following the approach described by Carter
258 (1992). We use a Hann window and short-time

260 cuSignal package (Thompson & Nicely 2021) for
261 the first-stage channelization, overlapping each
22 window by M — 4 samples. We use the CuPy
23 (Okuta et al. 2017) fast Fourier transform rou-
24 tines for the second-stage transform. One criti-
265 cal and difficult aspect of using the SSCA to es-
26 timate the spectral coherence is estimating the
7 PSD at the appropriate frequencies, particularly
s when the PSD estimate takes on small values,
%90 in which case small errors in the denominator
o0 of Egqs. 7 and 8 can lead to numerical arti-
on facts. We use a time-averaged estimate of the
o2 PSD calculated from the input to the SSCA.
o3 Specifically, we use the SciPy implementation
2 of Welch’s method with 32 time domain seg-
zs ments (i.e. each segment has a length of N/32
26 points), 50% overlap between segments, and a
o7 Hann window. Empirically, this leads to a ro-
28 bust estimate of the spectral coherence (see Fig.
279 1)

20 'To use the SSCA to find evidence of cyclo-
2s1 stationarity, we must define a robust detec-
282 tion statistic. We experimented with using the
23 mean, median, and maximum energy of both
284 S’;Yw<*) and p? ) (in the remainder of this pa-
25 per we use (k) in the subscripts of S and p
26 t0 mean both the non-conjugate and conjugate
27 SCF). Recall that for all signal types, includ-
288 ing stationary ones, the non-conjugate spectral
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280 correlation function reduces to the PSD and
200 the non-conjugate spectral coherence function
201 reduces to unity for all v. Since we are only
202 interested in cyclostationary signals, it is there-
203 fore sufficient to consider only o # 0. We find
204 that it is not ideal to use S'jx(*> for detection
205 because the observed values depend on the in-
206 put mean and variance of the data, which may
207 not always be known in advance. We tried ac-
208 counting for this by normalizing our input data
200 to have zero mean and unit variance, but this
s00 biased g;“x(*) in the presence of strong signals.
;0 We had much better results using the p% ) and
s02 S0 adopted this approach for all the results pre-
s03 sented here. Furthermore, as explained in §5.1,
s0 our algorithm works best when based on the
;05 maximum amplitude of the spectral coherence,
306 as opposed to the mean or median.

27 The maximum amplitude of p¢ ., follows a
a8 generalized extreme value (GEV) distribution,
300 whose probability density function is

Flrs €)= ~t()e @ (1)

311 where

B L O HEE0 g
[1+& (=) ¢ ifE#0

s13 The quantile function for the GEV distribution
314 18

if ¢ =0,
if € 40

pp—on[—In(p)]
[-Inp)]~¢-1
:

315 Q (p) = ( 14)

w+o

sis We can thus set a detection threshold, pinresh
s1i7 such that we consider the data set under analy-
a1s sis to show significant evidence of cyclostation-
310 arity when

o max {0270, ()]} > Q(Putwesn) - (15)

o) observed

31 In principle the shape parameters should be in-
s22 dependent of the implementation details of the

323 SSCA, but in practice we find a small but com-
324 plicated dependence on the choice of M and N,
»s and especially on the windowing function. We
16 determined the shape parameters empirically
w7 for a Hann window for various combinations of
28 M and N, and for the non-conjugate and conju-
29 gate spectral coherence function, by generating
30 normally distributed complex random values,
a1 passing the data through our SSCA implemen-

s tation, and recording max{\ pjﬁ%(u)\}

observed

133 We repeated this procedure 103 times and fit a
s GEV distribution to the results using the stats
135 module in SciPy, recording the best-fit values
16 of p and . The results are shown in Table
ss7 1. Recall that we only considered cases where
133 M/N > 8. We use these shape parameters to
330 determine Q(Pinresn) for any given combination
10 of M, N, and conjugate/non-conjugate spectral
sa coherence.

2 We also explored using the mean and median
s3 values of the SCF as a detection statistic, which
sa follow normal distributions in the presence of
us noise. Since they do not perform as well as the
s maximum value of the SCF, we do not report
a7 the distribution parameters here.

348 4. SIMULATIONS

s We wish to measure the efficacy of our algo-
ss0 rithm for various types of RFI and to determine
;51 the optimal values of M, N, and pgresn. We
2 are especially interested in emulating the data
353 stream of modern radio telescope instruments
34 50 that our findings can be readily applied in
35 real-world contexts. To do so, we simulated a
36 large number of data sets and applied our al-
357 gorithm for different parameter combinations.
58 The steps in our simulations were

390 1. Define the signal parameters: symbol du-
360 ration (¢sm, the inverse of the Baud rate),
361 bits per symbol (npy), and energy per
362 symbol (Egym).
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Table 2. Simulation and Algorithmic Parameters®

Modulation Lsym it Eeym/No M N Dthresh
Type (samples) (dB)
ASK 30 1 3 32 | 1024 | 0.001
OOK 32 2 ) 64 | 2048 | 0.01
QAM 100 4 10 128 | 4096 | 0.05
FSK 128 6 20 8192 0.3
PSK 300 8 16384 | 0.6
512 32768 | 0.9
1000 0.95
1024 0.99
0.999
0.9999

@This table is meant to be read down each column, and not across each row. Note that OOK signals
are by definition limited to 1-bit.

2. Generate a symbol sequence, s, in the 35 6. Define a “ground truth” of which spec-

form of random integers in the interval s trometer channels and time samples con-
[0,2™i¢) and use this to modulate some s tain the simulated RFI.
property of a complex exponential carrier ss 7. Independently analyze the output of each

wave. We simulated signals with seven

lated astronomical spectrometer, produc-
ing a number of narrow-band, Nyquist-
sampled complex voltage time series cor-
responding to different frequency chan-
nels.

. , , 389 spectrometer channel using our SSCA-
different types of modulation: amplitude oo based algorithm using both the non-
shift kf)yllng (ASkaS(;I{l)_OH ke(};mtg (OOK; 301 conjugate and conjugate spectral coher-
& .spec1a case O, ) quacrature ar,n_ 302 ence function for various combinations of
plitude modulation (QAM; also a special M. N. and

303 resh-
case of ASK), phase shift keying (PSK), T Pthresh
and frequency shift keying (FSK). . 34 8. Compare the output of our algorithm with
' . 305 the ground truth record and characterize
- Add a simulated astrophysical spectral the performance of the algorithm using
line with a Gaussian profile. o7 various metrics.
. Include additive white Gaussian mnoise s 9. Repeat this process ten times for each sig-

(AWGN) with some noise power spectral s nal parameter and algorithmic combina-
density (Np). 400 tion in order to better characterize the dis-
) ) i 401 tribution of the various performance met-

. Pass the final time series through a simu- N rics.

w03 In all cases we worked in normalized units, i.e.
ws with a sampling rate f; = 1 Hz. The car-
a5 rier frequency of the simulated RFI was f. =
ws 0.3 Hz. We always used a noise power of
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wr No = 1 WHz™!, so that the S/N is equivalent
a8 to the value Egyy,. The full parameter space of
a9 our simulations is shown in Table 2. In the fol-
a0 lowing sections we describe the above steps in
a1 more detail.

a12 4.1. Simulated Interference Signals

a3 There are many different modulation pro-
sa cesses in use with telecommunications signals,
a5 some of which are quite complex. While we are
a6 interested in eventually characterizing our algo-
a7 Tithm with as many encoding schemes as pos-
ais sible, as a first step we limit our simulations
a0 to a simplified and somewhat idealized parame-
a0 ter space using basic amplitude, phase, and fre-
a1 quency shift keying processes. Each symbol se-
w22 quence, denoted as s, was a pulse train that
423 consisted of ngym symbols that were each tgym, in
24 length, so that s was a total of ngym, X tgym sam-
a5 ples long. The symbols themselves were simply
26 random integers in the interval [0, 2™0it=). This
227 symbol sequence was convolved with a Hann
w28 window to reduce spectral leakage. The carrier
220 wave for each signal was

ES m .
430 $(t) = | =Y o 2mifet
tsym

s Using this definition the integrated energy of
132 (1) 1S Ngym Esym. The modulation schemes are
s33 described below.

(16)

434 4.1.1. Amplitude Shift Keyed Signals

i35 For generic ASK signals the modulated am-
a3 plitude is related to the symbol sequence by

2s

= — -1 17
a AL T— ( )

437
s33 This normalization ensures that the amplitude
3 modulation is defined on the interval [—1,+1].
a0 To ensure that the integrated energy is nsym Fsym
w1 we divided the final signal by the standard de-
w2 viation of a. For the special case of an OOK

w3 signal, npyy = 1 and @ = s without any normal-
aas ization, i.e. a is either 0 or 1.

ws  We also simulated signals using QAM, which
us consists of two carrier waves, known as the
w7 in-phase (I) and quadrature (()) components,
as which have the same frequency while being 90°
a0 out of phase. The amplitude of I and @) are
w0 modulated independently according to Equa-
ss1 tion 17 using different symbol sequences. The
ss2 total number of bits is split evenly between the
i3 two sequences. When ny;; = 1, Q = 0 and only
asa 1 is used.

455 4.1.2. Phase Shift Keyed Signals

s For PSK signals with ny;, > 2, the phase mod-
w57 ulation is given by

2s +1

INbit

458 o= (18)

0 Using this definition the discrete phases are
w0 bounded on [m/2™it (2 — 1/2™it)]. However,
w1 when npy = 2, we instead follow the typical
w62 convention that ¢ switches between 0 and 7.

463 4.1.3. Frequency Shift Keyed Signals

ss  We simulated a voltage controlled oscillator to
a5 generate FSK signals. The oscillator frequency
a6 was defined as

467 f = fo + SKO (19)

s where fo is the quiescent oscillator frequency (in
w0 OUr case, the frequency of the carrier wave) and
w0 Ky is the oscillator gain in units of HzV~1. We
an defined the phase of the carrier by integrating
a2 over f, thus ensuring that the phase was contin-

13 uous across frequency shifts. In our simulations
aa we used Ky = 0.01 Hz.

ats 4.2. Simulated Spectral Line

as  Our algorithm should be insensitive to sta-
a7 tionary astronomical sources. We confirmed
a3 this by adding a voltage time series correspond-
a0 ing to a spectral line with a Gaussian profile.
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s0 In all our simulations the line had an ampli-
s tude of 20 V, was centered at a frequency of
2 0.1 Hz, and had a full-width at half-maximum
a3 of 0.01 Hz. We first created the line with the rel-
s evant parameters in the frequency domain but
s With random phases, mimicking an incoherent
ss6 astrophysical source. We then took an inverse
a7 Fourier transform to create the corresponding
a8 voltage time series.

489 4.3. Simulated Spectrometer

w0 We passed the input data stream through a
a1 64-channel, 24-tap polyphase filterbank (PFB)
a2 spectrometer (Price 2021). This architecture
103 is similar to that of the Versatile Green Bank
a4 Astronomical Spectrometer (VEGAS), the pri-
w5 mary backend for the GBT (Prestage et al.
w6 2015). In our implementation, we read 64 x 24 =
s07 1536 complex samples, multiplied this time se-
s08 Ties by a windowing function of the same length,
a0 Teshaped the data set into a 64 x 24 array, took
so0 & fast Fourier transform along the first axis,
so0 and then summed the result. This created an
s amplitude spectrum with 64 Nyquist-sampled
so3 channels. The window that we used was the
sos product of a sinc function and Hann window.
sos We did not form a power spectrum by taking
sos the square modulus of the PFB output, but in-
sor stead retained the full phase information. We
so8 repeated this channelization step until we accu-
so0 mulated 10N amplitude spectra.

510 4.4. Ground Truth Determination

su  The Hann window that we used to taper the
si2 symbol sequence and our PFB implementation
s13 both greatly reduce spectral leakage, but do not
sia eliminate it completely. Therefore, the RFT sig-
s15 nal is present at some level across all PFB chan-
si6 nels, but usually at a level that is not expected
si7 to corrupt astronomical data. For the purposes
sis of defining the ground truth comparison record,
s10 we passed both a noise-free version of the sig-
s20 nal and the realization of AWGN through our

s21 PFB and formed the resulting power spectra.
s22 We considered the signal to be present at a sig-
s23 nificant level when its power was greater than
s24 O equal to the corresponding noise power.

525 4.5. SCF FEstimation and Flagging

s 'The output of the PFB was 64 narrow-band
s27 times series, each 10N points long. We ana-
s2s lyzed each channel independently in segments
s20 that were each N points long (recall that, in
s3 the SSCA, N is equal to the number of discrete
s3 o at which the SCF is estimated), resulting in
s22 ten SCF estimates for each PFB channel across
s33 our full data set. Note that there is a trade-off
s3 in the choice of N between cycle frequency res-
s35 olution and the time resolution with which we
s3 can flag data as being contaminated with RFI.

537 4.6. Performance Metrics

We computed several binary classification
metrics. First, we compared the output of our
algorithm for both the non-conjugate and con-
jugate SCF to our ground truth definition and
counted the number of true positives (TP), true
negatives (TN), false positives (FP), and false
negatives (FN). We also computed these for the
union of the non-conjugate and conjugate out-

puts. From these we calculated the following
metrics:
TP
TPR = ——— 20
TP +FN (20)
FP
FPR = ———— 21
R FP + TN (21)
b= TP x TN — FP x FN

(22)

s3s where TPR is the true positive rate, FPR is the
s39 false positive rate, and ¢, also known as the
ss0 Matthews correlation coefficient, is a widely-
sa1 used binary classification metric that performs
se2 well for imbalanced classes. We also plot re-
se3 ceiver operating characteristic (ROC) curves,

V(TP + FP)(TP + FN)(TN + FP)(TN + FN)
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Figure 2. A summary plot for an ASK signal with tsm = 128 samples, npis = 2, and Egym/No = 5 dB,
processed using (M, N) = (32,32768) and pghresh = 0.999. We show here the results of combining our
algorithmic output for both the non-conjugate and conjugate SCF. This is one of the best performing
combination of parameters in our simulations. In the mitigated spectrum we remove samples that are
flagged by our algorithm (indicated in the mask panel), which completely removes the simulated signal. The
simulated astrophysical spectral line appearing at 0.1 Hz is unaffected.

i.e. FPR vs TPR for different values of pipnresh,
and from these estimate the area-under-curve
(AUC) value using a trapezoidal integration
method as implemented in SciPy. A perfect
classifier will have an ROC curve that imme-
diately rises to a TPR of 1.0 and an FPR of
0.0, and will maintain a TPR of 1.0 while the
FPR rises as lower thresholds are used. The
corresponding AUC would be 1.0. An uninfor-

ss3 mative classifier has an ROC curve with a slope
ssa Of one and an AUC of 0.5. Values of ¢ and AUC
sss in excess of 0.7 are generally considered to be
ss6 good, and values in excess of 0.8 are generally
ss7 considered to be very good.

558 5. RESULTS

ss0  Figure 2 shows an example summary plot from
ss0 one of our simulations. We used 423,360 com-
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Non-Conjugate

1.0
0.8 -
_ 0.6 "] AUC = 0.66
x o AUC = 0.63
F 0.4 - P AUC = 0.81
e —$— Mean
0.2 el —— Median
4 —$— Max
0.0 -
T T T T T T
00 02 04 06 08 1.0
Conjugate
1.0
0.8 -
_ 0.6 AUC = 0.64
x AUC = 0.61
F 0.4 AUC = 0.77
0.2 -
0.0 -
T T T T T T
00 02 04 06 08 1.0
Combined
o
[a
|_

00 02 04 06 08 10
FPR

Figure 3. ROC curves with associated AUC val-
ues for different detection metrics using the non-
conjugate (top) and conjugate (middle) SCF, and
the combination of the two (bottom). The com-
bined results using the maximum value of the SCF
yields the highest AUC.

ss1 binations, and exploring this large parameter
ss2 space is challenging. We begin by determin-
s63 ing whether it is most effective to flag based

Non-Conjugate

1.00
—$— Mean
0.75 - —+— Median
—— Max
S 0.50 -
0.25 A
0.00 A

0‘00‘»3‘0\'396 0306 09 09@ 099909@)9

Conjugate

1.00 ~

0.75 A

©- 0.50 A

0.25

0.00

0‘00‘»3‘0\'396 0306 09 09@ 099909@)9

Combined

1.00 ~

0.75 A

©- 0.50 A

0.25

0.00

0‘00‘»3‘0\'396 0306 09 09@ 099909@)9

Pthresh

Figure 4. ¢ as a function of pypresn for different
detection metrics. Line colors are the same as in
Fig. 3 The combined results using the maximum
value of the SCF yields the highest /phi at a value
of 0.65 for pihresn = 0.9999.

se« ON the mean, median, or maximum value of the
ses SCF. Next, we find the optimal values of M, N,
ses and Pinresn, and then investigate how the perfor-
ss7 mance varies with different signal properties.
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Figure 5. ROC curves for different combinations
of M, and N. Curves for all combinations are
plotted to provide a complete picture of the per-

Figure 6. ¢ coefficients for different combinations
of M, and N. As with Fig. 5, we plot all combina-
tions but highlight two of interest.

formance of our algorithm, but we highlight two
combinations of interest. See text for details. sn1 Tesults over all other simulation parameters. As
s72 noted previously, using the maximum value of
s73 the SCF significantly outperforms the mean or
sz median, with an AUC of 0.85 and maximum
sis ¢ value of 0.65 when combining results for the

s7e non-conjugate and conjugate SCF. We consider

568 5.1. Optimal Detection Metric

se0  Figures 3 and 4 show ROC curves and ¢ for
s7o different detection metrics when aggregating the
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s77 these to be fairly good results, especially consid-
s ering that they cover a wide range of values of
so M and N, signal types, tsym, Mbits, and Egym/No.
se0 In the remainder of this paper we will only con-
se1 sider results when using the maximum value of
se2 the SCF as a detection metric.

583 5.2. Optimal (M, N) Pair

ssa In Figure 5 we show ROC curves and in Fig-
ses ure 6 we show ¢ for all combinations of M and
sss V. In both figures we averaged over all sig-
se7 nal properties (i.e., modulation type, tsym, Mbits,
ses and Egyr, /Np). This provides the most complete
ss0 measure of the performance of our algorithm
so0 but, as we will see, it includes signal properties
s for which the algorithm has weaknesses. We
se2 highlight two (M, N) pairs of particular inter-
s03 est, representing the highest AUC and ¢.

s« The highest AUC is 0.90, which is obtained
s0s when using (M, N) = (32,32768) and the
so6 combination of the non-conjugate and conju-
so7 gate SCF. We consider this an excellent score.
sos The lowest AUC is 0.71, which is obtained for
so0 (M, N) = (32,1024) when using only the non-
s00 conjugate SCF, which is still a good AUC score.
s1 However, the situation is reversed when consid-
o2 ering ¢, i.e. the highest value is ¢ = 0.72 for
o3 (M, N) = (32,1024) at pinresn = 0.9999, while
o0s for (M, N') = (32,32768) and pinresh, ¢ = 0.61.
s The discrepancy between AUC and ¢ can be
s0s understood by examining Table 3, which shows
o7 the TPR, FPR, TNR, and FNR for the two
s0s cases discussed above. As N increases from
00 1024 to 32768, the TPR increases by a factor
s10 of 1.9, but the FPR increases by an even larger
su factor of 3.9. The ¢ coefficient punishes the al-
e12 gorithm for this larger relative increase in FPR.
s13 However, we note that the absolute improve-
s1e ment in TPR is 0.368, while the absolute de-
e1s terioration in FPR is only 0.0129, and remains
s16 quite low. In a real-world context, the question
e1i7 of which parameters are “better” will depend
18 on the scientific goals of the observation. In

Table 3. Performance for pipresn = 0.9999

(M,N) TPR FPR TNR FNR

(32,1024) 0.409 0.00451 0.996 0.591
(32,32768) 0.777 0.0174 0.983 0.223

610 some cases the large absolute improvement in
s TPR will make the slightly higher FPR tolera-
s21 ble, while other cases may require a lower FPR.
s22 For completeness we will report performance for
623 both (M, N) = (32,1024) and (32, 32768) in the
62« Temainder of this paper.

s 1t is worth asking why the FPR increases with
o6 N7 From first principles, we would expect the
sz SSCA to be more accurate as N increases be-
628 cause it is a time-averaging technique for esti-
&0 mating the SCF, and by analyzing more data
e30 the signal-to-noise ratio of an interfering signal
e21 should go up. The observed behavior likely re-
632 sults from our method for defining the ground
633 truth comparison. Recall that we mark a sam-
634 ple as truly containing RFI when the amplitude
e3s of the simulated signal is equal to the noise level.
s36 In the low signal-to-noise regime this will be sen-
e37 sitive to the exact realization of the noise. Such
e38 a situation can occur when RFT spills over with
630 reduced amplitude into nearby PFB channels.
ss0 Since we identify RFI in segments of length N,
éa1 the algorithm may flag data that technically
sa2 falls just below the threshold for being included
643 in our ground truth mask, leading to those sam-
s Ples being marked as false positives. An anal-
&5 Ogous situation could arise in the presence of
sss transient RFI because good data will be flagged
a7 along with bad. We discuss potential ways to
sss mitigate this shortcoming in §6.

s0  We further note that, for any given value of
sso IV, there is a preference for smaller values of M,
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Table 4. Performance for Various pihresh

N 0.898¢ 0.95 0.984° 099 0.998¢ 0.9999 1—4.61 x 10-5 @

log4 TPR 0641 0577 0519 0502 0456  0.409 0.239
FPR 0.205 0.109 0.0410 0.0291 0.0100 0.00451 0.00254

sorg TPR 0854 0.828 0.807 0801 0.788  0.777 0.457
FPR 0.247 0.143 0.0671 0.0526 0.0276 0.0174 0.0100

@Minimizes Eq. 23 for N = 1024
bMinimizes Eq. 23 for N = 32768
“Yields FPR = 0.01 for N = 1024

inelds FPR = 0.01 for N = 32768

es1 but the dependence on M is fairly weak. For the
ss2 sake of simplicity we will only report results for
63 M = 32 going forward. This is fortuitous be-
es« cause smaller M reduce the computational com-
sss plexity of the SSCA.

5.3. Optimal pinresn

656

The optimal parameters for any classification
ess algorithm will depend on the tolerance for false
ss0 positives and false negatives, with ¢ being one
s0 commonly used measure. Figure 6 shows that
661 @ is maximized for pipresh = 0.9999 when aggre-
2 gating over all simulation parameters, but there
s63 are diminishing returns for pgpresn > 0.999.

657

ssa  Another approach is to select a pipresn based
ss upon the ROC curves. A perfect classifier will
esc always have TPR = 1 and FPR = 0, so we
e67 could choose the piesn that comes closest to
sss this point. This is equivalent to finding the min-

660 1M Of

670 \/FPR2 (pthresh) + [1 - TPR(pthresh)]Z- (23)

s We used the SciPy PchipInterpolator rou-
2 tine, which implements a piecewise cubic Her-
&3 Mite interpolating polynomial, to interpolate
e« FPR and TPR as a function of pipresn, and then
s used Brent’s method to find the minimum of
o6 liquation 23. For N = 1024 this results in

o pobe . = 0.898 and for N = 32768 the opti-
ez mal result is piPt = 0.984 (recall that we only

oo consider the case of M = 32).

0 Yet another approach is to choose a sensi-
es1 ble false alarm probability for the maximum
es2 value of the SCF to exceed what is expected
o83 for AWGN, e.g. pihresh = 0.95 or 0.99. While
ssa this may be attractive because it is motivated
ess by the statistics for the SCF, we stress that it
ess 18 not equivalent to the FPR of our algorithm,
7 because we flag data in segments of length N

sss (see §5.2 and §6).

In Table 4 we show TPRs and FPRs for vari-
600 ouS choices of pnresn fOr our two representative
so1 values of N. For the remainder of this paper
e02 we will present results for puresn = 0.99 unless
s03 otherwise noted. We have chosen this value for
e0s three reasons: 1) it results in FPR < 0.02 for
s N = 1024 and FPR < 0.05 for N = 32768; 2) it
s06 15 very close to the optimal value for N = 32768
v when using Eq. 23; and 3) it is one of the val-
s0s Ues we directly simulated, avoiding the need to
690 interpolate other results.

689

5.4. Performance for Different Modulation
Types

700

701

In Figures 7 and 8 we show ROC curves and
03 ¢ separated by modulation type for both N =
704 1024 and N = 32768 (recall that we only con-

702
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Figure 7. ROC curves and AUC values for differ- Figure 8. ¢ for different modulation types and val-
ent modulation types. Different color curves repre- ues of N. The colors and line styles are the same
sent different modulation types, and different line as in Fig. 7. As with AUC, the results are best
styles indicate the two representative values of N for ASK, OOK, and PSK modulation, and reason-
that we consider. We see excellent performance for ably good for QAM modulation. However, the al-
ASK, OOK, and PSK modulation, with good per- gorithm does not perform well for FSK modulation.

formance for QAM modulation, but a weakness to
FSK signals.
06 well for OOK signals, as well as ASK, PSK and

705 sider M = 32). Our algorithm works extremely 77 QAM signals, with maximum AUC 2 0.9. ¢
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Figure 9. AUC values for different values of tgym.
Colors and line styles have the same meaning as in
Fig. 7. AUC values increase quickly with larger
tsym, up to ~ 128 samples, and then either remain
approximately constant or decrease slightly.

708 values span a wider range but are ~ 0.75 for
700 OOK signals at piesn = 0.99, and 0.6-0.75 for
70 all other signal types (except FSK), albeit at
1 higher pnresn- The performance is not as good
72 for FSK signals, with a maximum AUC ~ 0.74
3 and ¢ = 0.56. As discussed in §6, the relative
7 weakness to FSK signals most likely is a conse-
75 quence of the way we independently analyze dif-
n6 ferent PFB channels. The frequency shift that
717 is used could exceed the width of a PFB chan-
718 nel, and in some cases the signal may not return
70 to the original PFB channel within N samples,
720 obscuring its cyclostationary nature. Neverthe-
721 less, the performance for FSK signals is still rea-
722 sonably good when aggregating over all other
73 simulation parameters.

=e  ASK and OOK signals are better detected us-
25 ing the conjugate SCF, while PSK, FSK, and
726 QAM signals are better detected using the non-
727 conjugate SCF. The results for the combination
78 of the two conjugation strategies are usually as

1.0 -

0.8 -

0.6 -

hSS Iy __-__
0.4 A

0.2 A
(32,32768)
004 " (32,1024) gam
T T L | T T T L
102 103
tsym

Figure 10. ¢ for different values of tsym,. Colors
and line styles are the same as in Fig. 7. All values
use Pihresh = 0.99. As with AUC values, ¢ increases
quickly with larger tsym, up to ~ 128 samples, and
then either remain approximately constant or de-
crease slightly.

70 good, and in some cases slightly better, than the
730 best individual results. This highlights the im-
721 portance of using both conjugation strategies.
72 For the sake of clarity, in the remainder of this
733 paper we will only present the combined non-
734 conjugate/conjugate results, but we will still
735 separate results by modulation type since it has
736 a significant impact on the performance of the
737 the algorithm.

738 5.5. Performance for Different Symbol
739 Durations

no  In Figures 9 and 10 we show AUC values and
741 ¢ for different values of ¢4y, separated by mod-
=2 ulation type for our two representative combi-
743 nations of N (we use M = 32 for both). ¢
s coefficients are calculated for pipresn = 0.99. As
us already noted in §5.4, the performance is best
s for OOK and ASK signals, followed by PSK
27 and QAM, while performance is worst for FSK
ns signals. However, we can now see that results
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Figure 11. AUC values for different values of np;s.
Colors and line styles are the same as in Fig. 7.
For most modulation types there is a small drop
in performance between npis = 1 and 2, and rela-
tively constant performance thereafter, though this
does depend on the choice of N. However, the algo-
rithm performs successively worse for FSK signals
as npits increases, becoming nearly uninformative
when npis = 8.

740 also improve, sometimes significantly, when tgy,
70 increases from ~ 30 samples to ~ 100 sam-
751 ples, especially when measuring performance
72 via AUC. We can understand these trends by
753 recalling that we pass our data through a first-
754 stage 64-channel PFB, and analyze each chan-
755 nel independently. When g, < 64, signals are
6 spread across multiple PFB channels, reducing
757 the signal-to-noise ratio. Once tgm is greater
78 than the width of a PFB channel, the signal is
750 fully contained within one channel and the per-
70 formance of the algorithm does not change very
70 much, until reaching the highest values of tgyp,.

72 At the highest values of ts,, we do see a signifi-
763 cant drop in performance when using N = 1024,
764 because as fgm increases there are fewer sym-
765 bols over which we can average to obtain an ac-
766 curate estimate of the SCF. This is an argument

1.09 — (32,32768) —4— ask
---- (32,1024) ook
0.8 - - psk
| —+— fsk
! —4— gam
0.6 -
- Il SIS o ——————— P —————— B 4
A Y
0.4 -
0.2 1
0.0 1
T T T T
2 4 6 8
Npits

Figure 12. ¢ for different values of np;s. Colors
and line styles are the same as in Fig. 7. All val-
ues were calculated for pipresh = 0.99. The drop
in performance when going from npys = 1 to 2,
is smaller than implied by AUC values. However,
as with AUC values, ¢ coefficients imply that the
algorithm is nearly uninformative when np;s = 8.

77 against using small values of NV when trying to
s detect narrow-bandwidth signals.

o The algorithm continues to perform poorly for
70 FSK signals because the frequency shift can still
m exceed the width of a PFB channel.

72 We tested t4m that are and are not evenly di-
73 visible by NV, i.e. that have or do not have Baud
s rates that align precisely with the SSCA cycle
75 frequency bins (see Table 2 for the complete list
776 Of tsym). As expected, the performance for Baud
7 rates that are not equal to a cycle frequency
78 bin are somewhat lower than similar Baud rates
79 that do align with a cycle frequency bin. We re-
780 turn to this point in §6.

w1 95.6. Performance for Different Numbers of
782 Bits

s Figures 11 and 12 show AUC values and ¢ as
7 function of nyys per symbol, separated by mod-
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Figure 13. AUC values for different Egyy,/No.
Colors and line styles are the same as in Fig.
9. As expected, the algorithm performs better as
Esym /Ny increases for all modulation types.

75 ulation type, for our two representative combi-
78 nations of N (both using M = 32). ¢ coethi-
77 cients are calculated for pyresn = 0.99. There is
788 a slight drop in performance when going from
789 one bit to two for ASK, PSK, and QAM signals,
70 but no significant dependence on ny;s at higher
o1 values (OOK signals are only 1-bit). However,
792 there is a strong dependence on nypys for FSK
703 signals, with more bits per symbol leading to
74 steadily worse performance. Once again, this
705 is related to our approach of analyzing PFB
76 channels independently. In our implementation,
707 FSK-like signals with more bits per symbol will
798 be spread over a wider range of frequencies. In
70 the extreme case, a signal may not return to
s00 & given frequency channel within N samples, in
so1 which case its cyclostationary nature will not be
sz detected at all by our algorithm. This does in-
s03 deed seem to be the case, as can be seen by AUC
sos Values approach 0.5 and ¢ coefficients approach
805 ZETO as Mpys increases. However, we can also
s06 see that the algorithm performs well for FSK

1.0 +
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0.4 4
0.2 4 - ——
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Figure 14. ¢ for different Egy,/Ny. Colors and
line styles are the same as in Fig. 9. All values
were calculated for piyresh = 0.99. As with AUC
values, the ¢ coefficients show that the algorithm
performs better as Egym /Ny increases for all mod-
ulation types.

so7 signals when nyys = 1, and its performance re-
sos Mains acceptable up to ny;s = 2-4.

809 5.7. Performance for Different Eqy,/No

s Figure 14 shows ¢ as a function of Egy., /Ny for
su different modulation types, for both N = 1024
sz and N = 32768, and using piresn = 0.99. As
a3 expected, higher Eg,, /Ny leads to better per-
sis formance. The relative improvement is not as
a5 high for ASK, OOK, PSK, and QAM signals
s16 since the algorithm already detects these signals
a7 well, even at low Egp,/No, but there is a large
s18 relative improvement for FSK signals. However,
s19 as discussed in §5.5 and 5.6, there is a strong de-
&0 pendence on other parameters for FSK signals.
g1 The improvements seen here are due to those
g2 few cases where the algorithm works reasonably
s23 well for FSK signals (e.g. npiys = 1). For others,
24 such as very high values of ny;, the algorithm

s2s does not work well for FSK signals even at very
826 high Esym/N0~
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g7 D.8. Performance for Simulated Spectral Line

g8 As noted above, our algorithm should not
s20 identify astrophysical spectral lines as poten-
s30 tial sources of RFI because they are not cyclo-
sa1 stationary. All of the results discussed in the
832 preceeding sections include a simulated spectral
s33 line in the data, and so any false positives would
g3 include samples containing signal from this line.
g3s 1o further verify that this simulated line is not
s3s mistakenly being identified as RFI, we also sim-
ss7 ulated data sets containing only the line and
s3s analyzed them using all algorithmic parameter
s combinations and recorded the FPR (since there
s20 1s 10 true source of RFI, the TPR is undefined).
sa1 We did the same for pure AWGN. We then per-
sz formed a two-sided Kolmogorov-Smirnov test
aa3 using SciPy’s kstest routine. We find KS test
saa statistics of 0.0078, 0.0064, and 0.0096 for the
sss non-conjugate SCF, conjugate SCF, and com-
ass bined results, respectively. These correspond to
sar p-values of > 0.99. As expected, we thus find no
as evidence for rejecting the null hypothesis that
a0 the FPRs of the data sets containing the sim-
o ulated spectral line and pure noise come from
ss1 the same distribution.

852 6. DISCUSSION

ss3  These results show that cyclostationary tests
gse are a promising approach to RFI mitigation.
s Aggregating our results across different signal
g6 properties provides a more complete picture of
ss7 how our algorithm performs, but for particu-
sss larly favorable combinations of signal properties
g0 the performance can be much better than the
g0 aggregate results imply. As an example, when
se1 using the combined non-conjugate/conjugate
862 SCF, (M, N) = (32,32768) and Pthresh —
863 0.99, for tg,m = 128 samples, npis = 1, and
s6¢ Fgyrn/Nog = 10 dB, we find TPR > 0.97 and
ss FPR < 0.06 for all modulation types except
sss FSK (which has TPR = 0.94 and FPR =
s 0.13). If we choose (M,N) = (32,1024) and

868 Pthresh 0.999 we can achieve ¢ > 0.78

seo for all modulation types except QAM (¢ =
g0 0.72) and FSK (¢ = 0.69). Furthermore, we
gnn find no evidence that our algorithm system-
g2 ically flags the simulated astrophysical spec-
e73 tral line that we included in our simulations.
sza Obviously, we cannot optimize the properties
srs of real-world RFI to maximize the effective-
s76 ness of mitigation techniques, but these results
sr7 do suggest that cyclostationary tests can per-
grs form extremely well and potentially comple-
s7o ment other approaches. For example, spectral
g0 Kurtosis (Nita & Gary 2010a,b; Smith et al.
se1 2022) is a computationally simple statistical
ss2 method that distinguishes normally-distributed
ss3 data and from RFT, though it has weaknesses to
ss4 sidelobe spillover as well as weaker signals and
sss those that have a 50% duty cycle. Smith et al.
sss (2022) measured the performance of single- and
ss7 multi-scale SK using many of the same simu-
sss lated sources of RFI as we use here. ¢ scores
sso varied substantially depending on the character-
so0 istics of the signal and SK parameters, but could
sa1 be as high as ~ 0.75 for ASK signals with high
s> data rates, and were usually ~ 0.5-0.7, which
s03 is broadly similar to our results (E. Smith,
s« private communication). AOFLAGGER is
sos Used on low-frequency arrays such as the Low
sos Frequency Array (LOFAR) and the Murchison
sor Widefield Array (MWA; Offringa et al. 2010a,b,
sos 2012), and flags the post-correlation visibili-
soo ties with the highly optimized SumThreshold
o0 method. AOFLAGGER does very well at flag-
o1 ging most RFT in the dataset, but operates on
2 the power values, which means its performance
903 may be hindered by uneven bandpass responses
s Or strong periodic astronomical signals such as
s pulsars or FRBs.

o Nevertheless, the current implementation of
o7 our algorithm does have a weakness to signals
o8 that are spread across multiple PFB channels,
o0 Whether because of the modulation technique
a0 being used or intrinsic bandwidth of the signal
ot itself. As noted previously, this stems from ana-
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a2 lyzing each PFB channel independently. When
o3 & signal is spread across multiple channels the
o effective Egy /Ny decreases. In the worst-case
o5 scenario, a frequency-switched signal may not
a6 return to a given PFB channel within the block
a7 of data that we analyze, completely obscur-
ais ing its cyclostationary nature. We chose to
a0 analyze PFB channels independently in order
o0 to more closely match the architecture of the
o1 digital spectrometer used at the GBT. In this
o case, PFB channels are formed on a field pro-
o3 grammable gate array prior to being transmit-
o2¢ ted to computers where a real-time RFI miti-
o5 gation algorithm might be implemented. How-
o6 ever, there are alternative architectures or ap-
o7 proaches. For example, RFI mitigation could
o8 be implemented prior to the PFB. The PFB op-
a0 eration could also be inverted in software, and
30 groups of PFB channels could be analyzed in
a1 groups covering sufficient bandwidth to capture
a2 even relatively broad-band RFI. These groups
o33 could also be made to overlap by using an over-
oz sampled PFB, to avoid missing signals that
035 CTOSS over group boundaries.

a6 In §5.2 we showed that while using larger val-
o7 ues of NV leads to a higher TPR, it also leads to
o3s @ higher FPR. We attribute this to our method
a9 of defining a ground truth comparison, but we
a0 also expect it to be true when data contain tran-
wn sient RFI. Our algorithm operates on data in
w2 segments of length V| so there is a chance that
a3 samples that are free of RFI will be incorrectly
aas flagged when RFI only contaminates some of
as the samples. By analyzing data that contains
us both cyclostationary and non-cyclostationary
a7 signals, we would also lower the sensitivity of
us the algorithm. We could avoid these pitfalls by
ao using multiple values of NV and selecting the best
w0 value for any given segment of data by choos-
os1 ing the value that maximizes the signal-to-noise
ss2 Tatio of the SCF. Using multiple values of N
sz would also lead to different cycle frequency res-
osa Olutions, which could help detect signals at dif-

oss ferent Baud rates. However, this would increase
56 computational cost, which is already high to be-
os7 gin with (see below).

s (Quantization errors may also impact the per-
o0 formance of our algorithm. In our simulations
o0 we generated signals with floating point pre-
o1 cision, but modern analog-to-digital converters
92 (ADCs) use much lower quantization depth, e.g.
o3 the VEGAS spectrometer used at the GBT out-
oss puts 8-bit values. This may be at least partially
s ameliorated by using higher bit-depth ADCs —
ss commercial models are now available that out-
os7 put 12-bit values and that can sample band-
ss Widths of several GHz.

oo However, each of these approaches does come
oo with challenges.  Sampling with more bits
onn increases data rates, requiring new network
a2 topologies. Analyzing the full bandwidth with
o3 different values of N would be computationally
ora expensive and may exceed the resources avail-
o5 able with modern hardware for all but rela-
o76 tively narrow observing bands. Inverting the
o7 PFB operation and using overlapping groups
ors also adds computational cost. The compu-
o9 tational complexity of the SSCA algorithm is
o0 O ~ NMlog, N (Roberts et al. 1991). Process-
o1 ing a bandwidth of 1 GHZ in two separate po-
ss2 larization channels with our optimal algorithmic
o83 parameters of M = 32 and N = 32768 in real-
osa time would thus require a computing system ca-
ses pable of ~ 30 PFLOPS. This is well beyond the
sss capability of current commercial graphics card,
o7 but the current generation of GPUs designed for
s artificial intelligence training offer theoretical
os0 Maximum computational power of ~ 300-600
o0 TFLOPS, depending on the numerical precision
a1 being used. Over the next several years it may
o2 become feasible to adopt a hybrid approach,
93 wherein wide observing bandwidths are split
004 into a modest number of overlapping sub-bands
o5 and processed independently before being com-
ws bined to record the full bandwidth. A similar
97 approach has already been developed to enable
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s real-time coherent dedispersion of pulsars using
w0 the GBT’s 0.7 — 4 GHz ultrawideband receiver,
oo for which the GBT’s VEGAS spectrometer will
wo use 24 compute nodes to process 3.3 GHz of
w02 instantaneous bandwidth, as well as to enable
w03 cyclostationary techniques for studying pulsars
i (Demorest 2011).  Another approach is to es-
wos chew real-time RFI mitigation in favor of tem-
106 porarily recording Nyquist-sampled voltages to
wor disk and processing them offline with some rea-
100s sonable turnaround time. This approach is used
w00 by the Breakthrough Listen project (MacMahon
1010 et al. 2018) to process several GHz of instanta-
o neous bandwidth. We leave a detailed analysis
w12 of these approaches to future work.

w3 We chose a limited number of idealized signal
w1 types to illustrate a CSP-based approach to RFI
s mitigation, but real-world telecommunications
w6 signals can be much more complex. In future
117 work we plan on simulating additional modula-
w1 tion strategies and windowing functions, includ-
019 ing more complex astrophysical sources, and
1020 adding multiple sources of RFI within the fre-
w21 quency range of interest. More complex strate-
w2 gies for improving our algorithm could also in-
1023 clude using multiple PFBs to channelize the
w24 data with different numbers of channels. Fi-
w25 nally, as an alternative to our blind identifica-
w26 tion algorithm, we could study the local RFI
1027 environment and use cyclostationary detectors
w28 that are tuned to sources of RFI with known
1029 properties, which would greatly reduce the com-
030 putational cost. We also plan to apply our al-
w03 gorithm using the optimal parameters derived

1032 here to archived astronomical data collected
1033 with the GBT.

7. CONCLUSIONS

1034

1035 We have developed an approach to identify-
w36 ing and mitigating RFI by testing whether data
1037 contain significant evidence of cyclostationar-
138 ity, and tested its performance using a range of
1030 simulated signals. We find good performance
a0 for most simulated signals, with some weak-
a1 nesses to broad-band and frequency-switched
w4 signals. Specifically, when using optimal algo-
1043 rithmic parameters we find AUC scores > 0.90
w4 and ¢ scores 2 0.61, aggregated over all mod-
s ulation schemes, symbol durations, bits-per-
1046 Symbol, and signal-to-noise ratios that we sim-
a7 ulated. The algorithm performs best for OOK
1as signals and reasonably well for more generic
19 ASK and PSK signals. We find no systemic ten-
wso dency for our algorithm to incorrectly identify
ws1 & simulated astrophysical spectral line. We be-
s2 lieve that tests of cyclostationarity are a promis-
1053 ing technique for RFI mitigation that can com-
1054 plement other approaches.

wss This work is supported by the National Sci-
wss ence Foundation through Advanced Technolo-
1057 gies and Instrumentation grant #1910302. We
10ss are grateful to an anonymous referee for provid-
1050 ing comments that improved the quality of this
10 manuscript, and to Chad Spooner for helpful
e discussions and for maintaining cyclotationary.
1062 blog.
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