Brief Introduction to Radio Telescopes

Frank Ghigo, NRAO-Green Bank

October 2016

Terms and Concepts

Parabolic reflector Blocked/unblocked Subreflector Frontend/backend Feed horn Local oscillator Mixer Noise Cal Flux density Jansky Bandwidth Resolution Antenna power pattern Half-power beamwidth Side lobes Beam solid angle dB (deciBels) Main beam efficiency Effective aperture

Aperture efficiency Antenna Temperature Aperture illumination function Spillover Gain System temperature Receiver temperature convolution

Pioneers of radio astronomy

Karl Jansky 1932

FIG. 1-Karl Guthe Jansky, about 1933.

Grote Reber 1938

-Grote Reber, about 1937.

Unblocked Aperture

- 100 x 110 m section of a parent parabola 208 m in diameter
- Cantilevered feed arm is at focus of the parent parabola

GBT 100 x 110 m Parabola Section

Subreflector and receiver room

On the receiver turret

Basic Radio Telescope

Verschuur, 1985. Slide set produced by the Astronomical Society of the Pacific, slide #1.

Intrinsic Power P (Watts) Distance R (meters) Aperture A (sq.m.)

Flux = Power/Area Flux Density (S) = Power/Area/bandwidth Bandwidth (3)

A "Jansky" is a unit of flux density 10^{-26} Watts / m^2 / Hz

 $P = 10^{-26} 4\pi R^2 S\beta$

Antenna Beam Pattern (power pattern)

Kraus, 1966. Fig.6-1, p. 153.

dB ??

 $\Delta p(dB) = 10\log_{10}(\frac{P_1}{P_2})$

P1/P2	$\Delta p(dB)$
1	0
2	3
10	10
100	20
1000	30

Convolution relation for observed brightness distribution

Figure 2.5 The power pattern of an antenna $A(\theta)$ and the intensity profile of a source $I_1(\theta')$ used to illustrate the convolution relationship. The angle θ is measured with respect to the beam center *OC* and θ' is measured with respect to the direction of the nominal position of the source *OB*.

Thompson, Moran, Swenson, 2001. Fig 2.5, p. 58.

Smoothing by the beam

Fig. 3-6. For a point source the observed distribution is the same as the mirror image of the antenna pattern.

Fig. 3-4. The true brightness distribution B scanned by, or convolved with, the antenna pattern \tilde{P} , as in (a) yields the observed flux-density distribution S, as in (b).

Kraus, 1966. Fig. 3-6. p. 70; Fig. 3-5, p. 69.

Some definitions and relations

Main beam efficiency, 🖏

52 M \mathcal{E}_M

Antenna theorem

Aperture efficiency, The Effective aperture, A_e Geometric aperture, A_g

$$\left| \mathcal{E}_{ap} = \frac{A_e}{A_g} \right| \qquad A_g(GBT) = \pi \left\{ \frac{1}{2} (100m) \right\}^2 = 7854m^2$$

$$\mathcal{E}_{ap} = \mathcal{E}_{pat} \mathcal{E}_{surf} \mathcal{E}_{block} \mathcal{E}_{ohmic} \cdots$$

another Basic Radio Telescope

Kraus, 1966. Fig.1-6, p. 14.

Aperture Illumination Function ←→ Beam Pattern

A gaussian aperture illumination gives a gaussian beam:

$$\varepsilon_{pat} \approx 0.7$$

Surface efficiency -- Ruze formula

$$\mathcal{E}_{surf} = e^{-(4 \pi \sigma / \lambda)^2}$$

$$\mathcal{P} = \text{rms surface error}$$
Effect of surface efficiency
$$\mathcal{E}_{ap} = \mathcal{E}_{pat} \mathcal{E}_{surf} \cdots$$

$$\mathcal{P}_{ap} = \mathcal{E}_{pat} \mathcal{E}_{surf} \cdots$$

100

John Ruze of MIT -- Proc. IEEE vol 54, no. 4, p.633, April 1966.

Detected power (P, watts) from a resistor R at temperature T (kelvin) over bandwidth &(Hz)

Power P_A detected in a radio telescope Due to a source of flux density S

 $P_A = \frac{1}{2}AS\beta$

power as equivalent temperature. Antenna Temperature T_A Effective Aperture A_e

$$S = \frac{2kT_A}{A_e}$$

 $P = kT\beta$

System Temperature

= total noise power detected, a result of many contributions

$$T_{sys} = T_{ant} + T_{rcvr} + T_{atm} (1 - e^{-\tau a}) + T_{spill} + T_{CMB} + \cdots$$

Thermal noise
$$\Delta T = k_1 \frac{T_{sys}}{\sqrt{\Delta v \cdot t_{int}}}$$

Gain(K/Jy) for the GBT

Including atmospheric absorption:

$$S = \frac{2kT_A}{A_e}e^{\tau a}$$

$$G = \frac{T_A}{S} = \frac{\varepsilon_{ap} A_g}{2k}$$

$$G(K/Jy) = 2.84 \cdot \varepsilon_{ap}$$

Physical temperature vs antenna temperature

For an extended object with source solid angle \triangleright_s , And physical temperature T_s , then

for
$$\Omega_s < \Omega_A$$
 $T_A = \frac{\Omega_s}{\Omega_A} T_s$

for
$$\Omega_s > \Omega_A$$
 $T_A = T_s$

In general :
$$T_A = \frac{1}{\Omega_A} \iint_{source} P_n(\theta, \phi) T_s(\theta, \phi) d\Omega$$

Calibration: Scan of Cass A with the 40-Foot.

Tant = Tcal * (peak-baseline)/(cal-baseline)

(Tcal is known)

More Calibration : GBT

