GBT Holography
Claire Chandler
Ronald J. Maddalena

GBT PTCS Conceptual Design Review
April 8/9, 2003 Green Bank
Outline

• What we know
• What we need to improve upon
• Aim of Holography
• Why we need multiple Holography experiments
• Plans for Out-of-Focus holography
 – A preview…
• Plans for Traditional Holography
Telescope Efficiency

- Repeatable (Gravitational) Focus Tracking
 - Subreflector Axial Position
 - Require an accuracy of 1-3 mm in Ys
 - Currently known to ~10 mm
 - Subreflector Lateral Shifts
 - Require an accuracy of 3-6 mm in Xs and Zs.
 - Xs currently known to ~10 mm
 - Zs has yet to be determined due to limitations in subreflector motion.
 - Subreflector Tilts
 - Require an accuracy of 6’ in Xt, Zt
 - Currently known to 10’
Telescope Efficiency

• Repeatable (Gravitational) Large-Scale Surface Errors
 – Require 200 μm
 – 1.2 to 1.5 mm without FEM active surface
 – Probably 450 μm with FEM active
 • 70% at 2 GHz, 60% at 20 GHz, 35% at 42 GHz
 – FEM scale factor is currently assumed.
 – Projection to normal calculation may be wrong

• Small-Scale errors
 – Unknown magnitude
 – Probably the same at all elevations.
Current FEM Model

GBT PTCS Conceptual Design Review – April 8/9, 2003
Efficiencies at 20 GHz

- Red triangles: Surface Control - On
- Blue circles: Surface Control - Off
Aim of Holography

• Flatten efficiency curve
 – Improve Focus tracking
 – Determine FEM scale factor, projection to normal
 – Measure and fix large-scale distortions not predicted by FEM

• Raise high-frequency efficiencies
 – Improve Focus tracking
 – Determine FEM scale factor, projection to normal
 – Measure and fix small-scale surface errors
Types of Holography Experiments

• Phase-retrieval Holography
 – Requires very high signal-to-noise

• Out-of-Focus Holography
 – Large-scale errors
 – Focus tracking
 – Multiple elevations
 – No special hardware

• “Traditional” phase-reference holography
 – Large and small scale errors
 – Focus tracking
 – Small-scale errors can probably be measured over a small range of elevations. Maybe large-scale errors at multiple elevations.
 – Requires special hardware