The BT50A bias-T is for use with SIS mixers with a 4-6 GHz IF. It can be made in six-wire and four-wire versions, compatible with the two SIS bias circuits currently in use at NRAO. Both versions are designed with a degree of electrostatic protection: the amplifier port is internally connected to DC ground, and, following recent OVRO practice all bias leads have built-in series resistors.

The four-wire circuit, shown in Fig. 1, has separate pairs of conductors for voltage monitoring and for the junction bias current. The low-frequency impedance of the bias-T as seen by the SIS mixer is high (≥ 1 kΩ).

The six-wire version, shown in Fig. 2, has separate pairs of conductors for junction voltage and current monitoring and for the source current. The junction bias is developed across the 50-Ω resistor to ground, and the junction current is sensed by the 5-ohm nichrome film resistor. The low-frequency impedance of the bias-T as seen by the SIS mixer is relatively low (~ 50 Ω).

The IF circuit design is based on the (parallel) self-resonant spiral inductors LS and (series) self-resonant chip capacitors CS. The spiral inductor was designed using an electromagnetic simulator to be self-resonant at 5 GHz. The chip capacitor was chosen empirically to have a minimum impedance at 5 GHz when mounted in this circuit. Details of the IF circuit are shown in Fig. 3. The measured return loss and insertion loss are shown in Fig. 4 (room temperature) and Fig. 5 (at 77 K).

The dimensions of the bias-T are shown in Fig. 6. The male K-connector connects to the SIS mixer, and the female K-connector to the IF circulator and amplifier. The two holes “E” allow a copper heat strap to be attached to the body of the bias-T; this is particularly important if the IF isolator and amplifier are operated above 4 K.
Capacitors CS: ATC-100A 4.7 pF with plates vertical.
Air-bridges AB: 2 mil wire 10–20 mils above substrate.
Resistors: (from MiniSystems Inc.)
 1k & 10k: Thick-film MSR10-102E and MSR10-103E, ± 5%
 5 ohm: Nichrome WAF-2AH-50000F ± 1%
 50 ohm: Nichrome WAF-2AH-50R00 ± 5%
Substrate: RT Duroid 6010, K=10.5, t=0.050”.

Fig. 3.

Fig. 4. Measured return loss and insertion loss at room temperature.
Fig. 5. Measured return loss at 77 K.

Fig. 6.