<table>
<thead>
<tr>
<th>Proposal</th>
<th>Investigators</th>
<th>Institute</th>
<th>NRAO Friend</th>
<th>Title</th>
<th>Bands</th>
<th>Back Ends</th>
<th>Days *</th>
<th>Hrs *</th>
</tr>
</thead>
<tbody>
<tr>
<td>BF088</td>
<td>Fish, V.L.</td>
<td>NRAO New Mexico Facilities</td>
<td></td>
<td>Multifrequency Hydroxyl Maser Observations of G11.90 0.14 [V.L. Fish]</td>
<td>L</td>
<td>V</td>
<td>29</td>
<td>4.50</td>
</tr>
<tr>
<td>BK127</td>
<td>Knudsen, K.K., Walter, F., Momjian, E., Carilli, C. L., Yun, M.</td>
<td>Max-Planck-Institute for Astronomy, Heidelberg MPIfA Arecibo Observatory (Puerto Rico) NRAO - Socorro University of Massachusetts</td>
<td></td>
<td>Resolving the AGN and the starburst in an intensely starforming quasar</td>
<td>L</td>
<td>V</td>
<td>13</td>
<td>7.00</td>
</tr>
<tr>
<td>BU031</td>
<td>Ulvestad, J., Neff, S. G.</td>
<td>NRAO - Socorro GSFC</td>
<td></td>
<td>A Search for Young Supernovae in the Antennae Galaxies [J. Ulvestad]</td>
<td>S</td>
<td>V</td>
<td>6</td>
<td>5.00</td>
</tr>
<tr>
<td>GBT05C-023</td>
<td>Camilo, F., Ransom, S., Gaensler, B.M., Slane, P.O., Lorimer, D., Manchester, D.R. N.</td>
<td>Columbia Astrophysics Laboratory NRAO - CV CFA CIA West Virginia University Australia Telescope</td>
<td>Scott Ransom</td>
<td>PSR J1833-1034, the Very Young Pulsar in the SNR G21.5-0.9 [F. Camilo]</td>
<td>8</td>
<td>GB</td>
<td>31</td>
<td>0.50</td>
</tr>
<tr>
<td>GBT05C-042</td>
<td>Ransom, S., Freire, P., Hessels, J. W. T., Begin, S., Stairs, I., Camilo, F., Kaspi, V.</td>
<td>NRAO - CV Arecibo Observatory McGill University University of British Columbia Columbia Astrophysics Laboratory McGill University</td>
<td>Scott Ransom</td>
<td>Timing the Binary and Millisecond Pulsars in NGC6440 and NGC6441 [S. Ransom]</td>
<td>S</td>
<td>GY</td>
<td>7 8</td>
<td>7.00</td>
</tr>
<tr>
<td>GBT05C-046</td>
<td>Stairs, I., Lorimer, D.</td>
<td>University of British Columbia West Virginia University</td>
<td>Scott Ransom</td>
<td>Timing of a Relativistic Binary and other Pulsars from the Arecibo PALFA Survey [I. Stairs]</td>
<td>L</td>
<td>YG</td>
<td>8 9</td>
<td>4.00</td>
</tr>
<tr>
<td>GBT06A-004</td>
<td>Reach, W. T., Palla, F., Riccardo, V., Morris, P.</td>
<td>IPAC, Caltech Osservatorio Astrofisico di Arco Arcetri</td>
<td>Toney Minter</td>
<td>Water Masers from Protostars in IC 1396A [W. T. Reach]</td>
<td>K</td>
<td>S</td>
<td>7</td>
<td>3.00</td>
</tr>
<tr>
<td>GBT06A-013</td>
<td>Braatz, J. A., Lo, F. K. Y.</td>
<td>NRAO - CV NRAO-CV</td>
<td>Jim Braatz</td>
<td>Finding Signatures of a Maser Disk in a Quasar at z=0.66 [J. A. Braatz]</td>
<td>U</td>
<td>S</td>
<td>6</td>
<td>3.00</td>
</tr>
<tr>
<td>GBT06A-014</td>
<td>Tarchi, A., Henkel, C., Brunthaler, A., Braatz, J. A.</td>
<td>Istituto di Radioastronomia Max-Planck-Institut fur Radioastronomie MPIfR NRAO - CV</td>
<td>Jim Braatz</td>
<td>H2O vs Continuum in the Megamaser 3C403: Reverberation Mapping of the Nucleus [J. A. Braatz]</td>
<td>K</td>
<td>S</td>
<td>6 7</td>
<td>2.00</td>
</tr>
</tbody>
</table>

Gregorian Bands: Q=40-50GHz, K=18-26.5GHz, U=12.4-15.4GHz, X=8.2-10.0GHz, C=3.95-5.85GHz, S=1.73-2.6GHz, L=1.15-1.73GHz
Prime Focus Bands: 3=0.29-0.395GHz, 4=0.385-0.520GHz, 6=0.51-0.69GHz, 8=0.68-0.92GHz, A=0.91-1.23GHz
* [] indicates secondary project; () indicates primary project
Back Ends: 2=S2 recorder, B=BCPM, C=cGBPP, D=Digital Continuum Receiver, O-user supplied, P=Spectral Processor, S=Spectrometer, V=VLBA recorder

SRSUMMARY 1 Version 1.3 08/14/2006
<table>
<thead>
<tr>
<th>Proposal</th>
<th>Investigators</th>
<th>Institute</th>
<th>NRAO Friend</th>
<th>Title</th>
<th>Bands</th>
<th>Back Ends</th>
<th>Days *</th>
<th>Hrs *</th>
</tr>
</thead>
<tbody>
<tr>
<td>GBT06A-054</td>
<td>Demorest, P. Backer, D. C. Ferdman, R. Stairs, I. Nice, D. Jacoby, B.A. Bailes, M. Ord, S.</td>
<td>UC Berkeley (Physics) University of California, Berkeley University of British Columbia University of British Columbia Princeton University Naval Research Lab Swinburne University of Technology Swinburne University of Technology</td>
<td>Scott Ransom</td>
<td>Long-term Precision Timing of Millisecond Pulsars [P. Demorest]</td>
<td>L8</td>
<td>YR</td>
<td>4 5</td>
<td>15.25</td>
</tr>
<tr>
<td>GBT06A-072</td>
<td>Kaspi, V. Champion, David Hessels, J. W. T.</td>
<td>McGill University McGill University McGill University</td>
<td>Scott Ransom</td>
<td>ToO GBT Observations of AXP 4U 0142+61 [V. Kaspi]</td>
<td>S</td>
<td>G</td>
<td>12</td>
<td>3.00</td>
</tr>
<tr>
<td>GBT06B-009</td>
<td>Helmboldt, J.</td>
<td>New Mexico, University of</td>
<td>Larry Morgan</td>
<td>The Efficiency of the Star Formation Episodes That Lead to K+A Galaxies [J. Helmboldt]</td>
<td>L</td>
<td>S</td>
<td>14 16 20 19</td>
<td>19.75 [40.50]</td>
</tr>
<tr>
<td>GBT06B-011</td>
<td>Champion, David McLaughlin, M. Lorimer, D.</td>
<td>West Virginia University</td>
<td>Scott Ransom</td>
<td>High precision timing a double neutron star system [David Champion]</td>
<td>3</td>
<td>G</td>
<td>25 26</td>
<td>12.00</td>
</tr>
<tr>
<td>GBT06B-012</td>
<td>Magnani, L. Douglas, K.A. Wennerstrom, E. Chastain, Raymond Onello, J.</td>
<td>University of Georgia University of California, Berkeley University of Georgia University of Georgia SUNY</td>
<td>Ron Maddalena</td>
<td>OH Observations of the Envelope of MBM 40 [L. Magnani]</td>
<td>L</td>
<td>S</td>
<td>1 2 3 4</td>
<td>12.00</td>
</tr>
<tr>
<td>GBT06B-013</td>
<td>Foster, Tyler Kerton, C.R.</td>
<td>NRC Iowa State Univ</td>
<td>Dana Balser</td>
<td>CTB 102: The Largest HII Region in the Galaxy? [Tyler Foster]</td>
<td>C</td>
<td>S</td>
<td>2 3 4 15 17</td>
<td>25.75</td>
</tr>
</tbody>
</table>

Gregorian Bands: Q=40-50GHz, K=18-26.5GHz, U=12.4-15.4GHz, X=8.2-10.0GHz, C=3.95-5.85GHz, S=1.73-2.6GHz, L=1.15-1.73GHz
Prime Focus Bands: 3=0.29-0.395GHz, 4=0.385-0.520GHz, 6=0.51-0.69GHz, 8=0.68-0.92GHz, A=0.91-1.23GHz
* [] indicates secondary project; () indicates primary project
Back Ends: 2=S2 recorder, B=BCPM, C=cGBPP, D=Digital Continuum Receiver, O-user supplied, P=Spectral Processor, S=Spectrometer, V=VLBA recorder

SRSUMMARY

Version 1.3 08/14/2006
<table>
<thead>
<tr>
<th>Proposal</th>
<th>Investigators</th>
<th>Institute</th>
<th>NRAO Friend</th>
<th>Title</th>
<th>Bands</th>
<th>Back Ends</th>
<th>Days *</th>
<th>Hrs *</th>
</tr>
</thead>
<tbody>
<tr>
<td>GBT06B-014</td>
<td>Freire, P., Ransom, S., Gupta, Y.</td>
<td>Arecibo Observatory, National Centre for Radio Astrophysics</td>
<td>Scott Ransom</td>
<td>Continued timing of the eccentric binary system in the globular cluster NGC 1851 [S. Ransom]</td>
<td>S</td>
<td>G</td>
<td>11</td>
<td>4.50</td>
</tr>
<tr>
<td>GBT06B-019</td>
<td>Minter, A.</td>
<td>NRAO - Green Bank</td>
<td>Toney Minter</td>
<td>Obtaining A Complete Sample Of Pulsar OH Absorption With The GBT [A. Minter]</td>
<td>L</td>
<td>M</td>
<td>20 26 [28 30]</td>
<td>10.00 [12.00]</td>
</tr>
</tbody>
</table>

Gregorian Bands: Q=40-50GHz, K=18-26.5GHz, U=12.4-15.4GHz, X=8.2-10.0GHz, C=3.95-5.85GHz, S=1.73-2.6GHz, L=1.15-1.73GHz
Prime Focus Bands: 3=0.29-0.395GHz, 4=0.385-0.520GHz, 6=0.51-0.69GHz, 8=0.68-0.92GHz, A=0.91-1.23GHz
*
[] indicates secondary project; () indicates primary project
Back Ends: 2=S2 recorder, B=BCPM, C=GBPP, D=Digital Continuum Receiver, O-user supplied, P=Spectral Processor, S=Spectrometer, V=VLBA recorder

SRSUMMARY

Version 1.3 08/14/2006
GBT Observing Schedule for August 2006

<table>
<thead>
<tr>
<th>Proposal</th>
<th>Investigators</th>
<th>Institute</th>
<th>NRAO Friend</th>
<th>Title</th>
<th>Bands</th>
<th>Back Ends</th>
<th>Days *</th>
<th>Hrs *</th>
</tr>
</thead>
<tbody>
<tr>
<td>GBT06B-021</td>
<td>Masters, K., Huchra, J., Crook, A., Macri, L., Jarrett, T.H.</td>
<td>Harvard-Smithsonian Center for Astrophysics</td>
<td>Frank Ghigo</td>
<td>Mapping Matter in the Nearby Universe with 2MASS [K. Masters]</td>
<td>L</td>
<td>S</td>
<td>1 4 5 6 8 10 11 16 17</td>
<td>35.50</td>
</tr>
<tr>
<td>GBT06B-025</td>
<td>McLaughlin, M., Lorimer, D., Kramer, M., Stairs, I., Lyne, A. G.</td>
<td>WVU West Virginia University</td>
<td>Scott Ransom</td>
<td>Low Frequency Observations of RRAT Sources [M. McLaughlin]</td>
<td>3</td>
<td>YGB</td>
<td>24 25</td>
<td>10.50</td>
</tr>
<tr>
<td>GBT06B-028</td>
<td>Stairs, I., Thorsett, S., Arzoumanian, Z.</td>
<td>University of British Columbia University of California, Santa Cruz NASA/GSFC</td>
<td>Scott Ransom</td>
<td>Timing the Planet Pulsar in M4 [I. Stairs]</td>
<td>L</td>
<td>BY</td>
<td>14</td>
<td>1.25</td>
</tr>
<tr>
<td>GBT06B-030</td>
<td>Martin, P.G., Boothroyd, A., Viero, M., Miville-Deschenes, M., Lockman, F. J.</td>
<td>University of Toronto University of Toronto University of Toronto IAS Univ. Paris-Sud</td>
<td>Jay Lockman</td>
<td>Characterizing Dust Evolution in Intermediate Velocity Clouds [P.G. Martin]</td>
<td>L</td>
<td>S</td>
<td>1 2 3</td>
<td>7.50</td>
</tr>
</tbody>
</table>

Gregorian Bands: Q=40-50GHz, K=18-26.5GHz, U=12.4-15.4GHz, X=8.2-10.0GHz, C=3.95-5.85GHz, S=1.73-2.6GHz, L=1.15-1.73GHz
Prime Focus Bands: 3=0.29-0.395GHz, 4=0.385-0.520GHz, 6=0.51-0.69GHz, 8=0.68-0.92GHz, A=0.91-1.23GHz
Back Ends: 2=S2 recorder, B=BCPM, C=cGBPP, D=Digital Continuum Receiver, O-user supplied, P=Spectral Processor, S=Spectrometer, V=VLBA recorder

* [] indicates secondary project; () indicates primary project

SRSUMMARY

Version 1.3 08/14/2006
<table>
<thead>
<tr>
<th>Proposal</th>
<th>Investigators</th>
<th>Institute</th>
<th>NRAO Friend</th>
<th>Title</th>
<th>Bands</th>
<th>Back Ends</th>
<th>Days *</th>
<th>Hrs *</th>
</tr>
</thead>
<tbody>
<tr>
<td>GBT06B-040</td>
<td>Kanekar, N. Frail, D. A. Macquart, J.P. van Straten, W.</td>
<td>NRAO-AOC
NRAO-Soc
Astron</td>
<td>Scott Ransom</td>
<td>A Targeted High Frequency Search for Pulsars at the Galactic Center [N. Kanekar]</td>
<td>U</td>
<td>G</td>
<td>10 11</td>
<td>8.00</td>
</tr>
<tr>
<td>GBT06B-052</td>
<td>Yun, M. Tripp, T. York, D. Bowen, D. V.</td>
<td>University of Massachusetts
University of Massachusetts
University of Chicago
Princeton University</td>
<td>Toney Minter</td>
<td>21cm HI Absorption and Emission in a Nearby Galaxy [M. Yun]</td>
<td>L</td>
<td>S</td>
<td>5 6</td>
<td>3.25</td>
</tr>
<tr>
<td>GBT06B-053</td>
<td>Yun, M. Borthakur, S. Verdes-Montenegro L.</td>
<td>University of Massachusetts
University of Massachusetts
Instituto de Astrofisica de Andalucia</td>
<td>Toney Minter</td>
<td>Completing the GBT Survey of Cold Diffuse Intragroup Medium in HCGs [M. Yun]</td>
<td>L</td>
<td>S</td>
<td>26</td>
<td>3.00</td>
</tr>
<tr>
<td>GBT06C-010</td>
<td>Schulte-Ladbeck, R. E. Rosenberg, J.L. Koenig, B. Cherinka, B.</td>
<td>University of Pittsburgh
Center for Astrophysics, Harvard
University of Pittsburgh
University of Pittsburgh</td>
<td>Toney Minter</td>
<td>The connection between galaxies and Damped Lyman Alpha systems [R. E. Schulte-Ladbeck]</td>
<td>L</td>
<td>S</td>
<td>27</td>
<td>8.00</td>
</tr>
<tr>
<td>Calibration</td>
<td>Balser</td>
<td>Calibration/Pointing</td>
<td>XUK</td>
<td>DSP</td>
<td>(17 18 19</td>
<td>(41.50)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Gregorian Bands: Q=40-50GHz, K=18-26.5GHz, U=12.4-15.4GHz, X=8.2-10.0GHz, C=3.95-5.85GHz, S=1.73-2.6GHz, L=1.15-1.73GHz
Prime Focus Bands: 3=0.29-0.39GHz, 4=0.385-0.520GHz, 6=0.51-0.69GHz, 8=0.68-0.92GHz, A=0.91-1.23GHz
Back Ends: 2=S2 recorder, B=BCPM, C=cGBPP, D=Digital Continuum Receiver, O-user supplied, P=Spectral Processor, S=Spectrometer, V=VLBA recorder
GBT Observing Schedule for August 2006

<table>
<thead>
<tr>
<th>Proposal</th>
<th>Investigators</th>
<th>Institute</th>
<th>NRAO Friend</th>
<th>Title</th>
<th>Bands</th>
<th>Back Ends</th>
<th>Days *</th>
<th>Hrs *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maint</td>
<td>NRAO staff</td>
<td></td>
<td>Maintenance</td>
<td></td>
<td>38</td>
<td>1 2 3 7 8 9 10 14 15 16 17 21 22 23 24 28 29 30 31</td>
<td></td>
<td>199.50</td>
</tr>
<tr>
<td>Not Sched</td>
<td>NRAO staff</td>
<td></td>
<td></td>
<td></td>
<td>(5)</td>
<td>(0.08)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Setup</td>
<td>NRAO staff</td>
<td>Scott Ransom, Toney Minter Ji</td>
<td>Observation setup</td>
<td>LS8KUCX3 VSPGBYRM</td>
<td>1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 29 31 [17 18 28 30] (28 30)</td>
<td>42.42</td>
<td>(2.00)</td>
<td></td>
</tr>
<tr>
<td>Tests</td>
<td>Madalena</td>
<td>GO Tests</td>
<td></td>
<td></td>
<td>4</td>
<td>0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tests</td>
<td>NRAO staff</td>
<td>Gen Tests</td>
<td></td>
<td></td>
<td>L DSP</td>
<td>21 22</td>
<td>15.50</td>
<td></td>
</tr>
<tr>
<td>Tests</td>
<td>Heatherly</td>
<td>Governor's School</td>
<td></td>
<td></td>
<td>L SDP</td>
<td>5 8</td>
<td>10.25</td>
<td></td>
</tr>
<tr>
<td>Tests</td>
<td>Morgan</td>
<td>Larry Morgan</td>
<td>PCO 6B15</td>
<td></td>
<td>K S</td>
<td>12</td>
<td>3.50</td>
<td></td>
</tr>
<tr>
<td>Tests</td>
<td>Ford Weadon</td>
<td>PTCS Tests</td>
<td></td>
<td></td>
<td>LS DSP</td>
<td>16</td>
<td>4.00</td>
<td></td>
</tr>
<tr>
<td>Tests</td>
<td>NRAO staff</td>
<td>RCO*3 340 MHz</td>
<td></td>
<td></td>
<td>3 DSP</td>
<td>21</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td>Tests</td>
<td>NRAO staff</td>
<td>RCO*8 800 MHz</td>
<td></td>
<td></td>
<td>8 DSP</td>
<td>31</td>
<td>2.00</td>
<td></td>
</tr>
<tr>
<td>Tests</td>
<td>Brandt</td>
<td>Soft Tests</td>
<td></td>
<td></td>
<td></td>
<td>25 26 27 28</td>
<td>8.00</td>
<td></td>
</tr>
<tr>
<td>Total Hrs</td>
<td>Astronomy</td>
<td>414.50</td>
<td>52.50</td>
<td></td>
<td>43.42</td>
<td>2.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Setup</td>
<td></td>
<td></td>
<td></td>
<td>41.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calibration</td>
<td></td>
<td></td>
<td></td>
<td>199.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maintenance</td>
<td></td>
<td></td>
<td></td>
<td>0.08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tests</td>
<td></td>
<td></td>
<td></td>
<td>45.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Gregorian Bands: Q=40-50GHz, K=18-26.5GHz, U=12.4-15.4GHz, X=8.2-10.0GHz, C=3.95-5.85GHz, S=1.73-2.6GHz, L=1.15-1.73GHz
Prime Focus Bands: 3=0.29-0.395GHz, 4=0.385-0.520GHz, 6=0.51-0.69GHz, 8=0.68-0.92GHz, A=0.91-1.23GHz
* [] indicates secondary project; () indicates primary project
Back Ends: 2=S2 recorder, B=BCPM, C=cGBPP, D=Digital Continuum Receiver, O-user supplied, P=Spectral Processor, S=Spectrometer, V=VLBA recorder

SRSUMMARY

Version 1.3 08/14/2006