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The calibration of data from any radio telescope typically requires knowing the telescope’s aperture 

efficiency, A, as a function of observing wavelength and, in the case of the GBT, the observing 

elevation.   In contrast to the representation of A used by the GBT analysis pipeline, this memo 

provides a much more traditional representation which should be much more convenient for the 

GBT’s pipeline as it requires far fewer parameters.  The pipeline’s current representation requires 

substantial observations in order to provide the necessary modeling while the proposed 

representation requires observations at just a single frequency, thereby saving us telescope time.   I 

provide a modified version of the model of Ghigo (2009b) that better matches the expected and 

measured performance.   I also suggest we continue to use the 40-52 GHz receiver, due to the 

reduction in calibration uncertainty provided by the receiver’s chopper wheel, to best determine 

the required elevation parameters. 

Background 
The definition of aperture efficiency can be found in many classic references (e.g., Baars, 1973; 

Goldsmith, 2002; Rohlfs and Wilson, 2006).  As an example of a typical usage, the flux density of a 

point source, S, is related to the measured antenna temperature, TA, by:  𝑇𝐴 = 𝐴 𝐴𝑔𝑒−𝐴 𝑆/2𝑘, 

where k=Boltzman’s constant, τ=the zenith atmospheric opacity at the observing frequency, A = the 

air mass at the observing elevation, and Ag is the geometrical area of the antenna (D2/4 for a 

circular aperture of projected diameter D). 

The equivalent blackbody temperature of an extended source, TSrc, is related to TA by: 𝑇𝐴 =

(𝐴 𝐴𝑔𝑒−𝐴 /2) ∙ ∬ 𝑇𝑆𝑟𝑐(𝜃, 𝜑)𝑃(𝜃, 𝜑)
Src

𝑑Ω  where the integral is over the solid angle of the source, 

P is the normalized power pattern for the telescope, and  is the observing wavelength.    As a 

convenience, astronomers often use the assumption the observations are of a disc source with 

uniform temperature, TR
*, where: 𝑇𝐴 = (𝐴 𝐴𝑔𝑒−𝐴 /2) ∙ 𝑇𝑅

∗ ∬ 𝑃(𝜃, 𝜑)
Src

𝑑Ω . 

Also as a convenience, radio observations often report temperatures in units of TMB for extended 

sources, as if it were a disc sources with uniform brightness and with a size that extends to the first 

null in the main beam.   Here, 𝑇𝐴 = (𝐴 𝐴𝑔𝑒−𝐴 /2) ∙ 𝑇𝑀𝐵 ∬ 𝑃(𝜃, 𝜑)
MainBeam

𝑑Ω  where the integral 

is to the first nulls of the beam pattern and easily determined from astronomical observations.  

Alternatively, 𝑇𝐴  = 𝑅𝑀𝐵𝑒−𝐴𝑇𝑀𝐵 where R corrects for the ohmic losses in the antenna (and is 



typically very close to unity) and MB is the main beam efficiency.  Maddalena (2010a) gives a 

theoretical relationship between MB and A, as well as ways in which one can measure directly MB. 

In each of these examples, one requires knowing A., and therefore, in the case of the GBT, the 

dependence of A on the observing elevation, E, and wavelength. 

Current Pipeline Parameterization of A  
By comparing eq. 16 of Langston (2011) to the above equation for the relationship between flux 

density and TA, one can summarize the algorithmic model for A that is currently used by the GBT 

pipeline is of the form: 

ηA
(λ, E) = ηA,∞

(Te) ∙ e−(4πε λ⁄ )2
∙ ∑ Ai(λ) ∙ (90 − E)i

n

i=0

 

To produce this equation, I have extended Langston’s equation 16 to include some missing details 
and repaired a couple of mistakes in the original equation.   
 
As shown above, the relationship between TSrc and S cannot be as simple as Langston’s equation 16.  
Rather, TA, not TSrc was probably the intended unit.  In any case, the inclusion of l, the rear spillover 
efficiency, is also not correct.   I have removed the fbeam;pol:(band) factor as this is actually a 
correction that should to be applied when deriving TA, not in the algorithm which converts TA to 
other units.  I also substituted the Ruze equation.  The equation also didn’t include the important 
dependence on the feed illumination, Te.  I also eliminated the use of the term ‘gain’ as the use in 
Langston is atypical.  Typically ‘gain’ is defined either as 𝐺 = 4𝐴 𝐴𝑔/2 or as the ratio TA/S. 

 
In the above equation,  A,∞ , which is dependent upon depends upon Te (which in turn is dependent 
upon the receiver, polarization, and observing frequency) and can be thought of as the aperture 
efficiency the receiver would have if it were capable of observing at =∞.  The  represents the rms 
surface errors (as defined by Ruze, 1966; see also Goldsmith, 2002; Rohls and Wilson, 2006) at the 
telescope’s rigging angle, which currently has a value of 220 m, as determined by holographic 
observations (Hunter, 2010).  The Ai values are polynomial coefficients that describe how the 
telescope’s efficiency changes with elevation.   Currently, values for Ai are from GBT observations 
whose results are stored on the web page 
https://safe.nrao.edu/wiki/bin/view/GB/Observing/GainPerformance that Frank Ghigo has 
maintained.  Note that the values of Ai have been normalized so that the summation always has a 
maximum value of 1.0. 
 
There are a number of issues with this formulization and the currently planned use of the web-page 
values.  The critical issues are: 

 One can only calibrate for frequencies where one has astronomical observations.  Thus, 
currently the pipeline has no way of calibrating data from the 68-92 GHz receiver, at 48 
GHz, etc. 

 For all but one frequency, the table uses data that were taken when the telescope used a 
gravitational model for the active surface that is no longer applicable.  Thus, all but one set 
of Ai are useless for the current observations. 

https://safe.nrao.edu/wiki/bin/view/GB/Observing/GainPerformance


 We know that the feed illumination pattern for every GBT receiver changes across each 
receiver’s band.  From optical modeling (e.g., Goldsmith 2002), changes in feed illumination 
will alter A,∞ .  The observations that were included in the table are at most at one 
observing frequency per band, and, thus, the table doesn’t include the frequency 
dependence of A,∞ across any receiver’s band. 

 All of the values below 20 GHz embed the degradation in TA from the atmosphere into the Ai 
coefficients.  Since the opacity under which the observations were made is not included, 
there’s no way for analysis software to remove the atmospheric attenuation under which 
the table values were generated.  Thus, the coefficients can only be applied to days under 
which the atmosphere was the same as that which the table observations were made.  Also, 
the elevation dependence of atmospheric attenuation does not follow the power law used 
by the table. 

 Most entries have values for A,∞ that are different for the two receiver polarizations, which 
is not possible for the GBT.  Rather, this indicates there are issues with the calibration of the 
data that are then being embedded into the A,∞ values.  Thus, the values of A,∞ are only 
applicable if the same calibration errors exist at the time of the real observations. 

 
Thus, the usefulness of this table is limited at best, and could be destructive if the pipeline was 
implemented as outlined in Langston (2011).   

Suggested Parameterization of A 

Goldsmith (1987, 2002) provides an alternative parameterization of A that I believe is better 

suited to analysis systems like the GBT pipeline.  Combining equations 30, 40, 43, and 53 of 

Goldsmith (2002) gives: 

ηA
(λ, E) = ηSpillIllumηBlockageηSurface =  

2

α
(1 − e−α)2 ∙ (1 − fb

2)
2

∙ e−(4πε(E) λ⁄ )2
 

The first term is often considered the same as A,∞.  It is the product of the efficiencies from 

spillover and the feed illumination taper, both of which are parameterized by .  As Goldsmith 

shows, the value of  depends upon the effective Gaussian feed illumination taper, Te, in units of dB 

of power density, by =Te(dB)/8.686.  For the GBT receivers, I estimate that the typical effective 

Gaussian feed illumination taper is ~20 dB.   

If the value for illumination didn’t vary between receivers and across receiver bandpasses, the first 

term would have a constant value, probably the 0.71 we typically quote for the GBT.  Since we know 

that this is not the case, for high-accuracy calibration we would need to know how  varied.    An 

analysis system like the GBT pipeline would need to distinguish which receiver took what data, 

which may be problematic for those frequencies that are covered by more than one receiver.   

Astronomical determinations of   are nearly impossible as it’s hard to judge whether a determined 

value has been corrupted by uncertainties in the assumed noise diode values, atmospheric 

attenuation, and so on.   Instead, we should use theoretical determinations of the effective Gaussian 

feed illumination.  Since we have few theoretical values for the first suit of GBT receivers, and none 

for the more recent receivers, some effort should be put into theoretical determinations of .   Since 



we currently lack values for , we may consider using 0.71 for the first term, which is equivalent to 

what Langston (2011) recommends. 

The second term is the efficiency due to blockage, which depends upon the fractional of the dish 

radius, fb, which is blocked.  Since fb=0 for the GBT, the second term is unity for the GBT.  I have 

include this term here for the sake of completeness. 

The third term is the surface efficiency, again the Ruze formula, but here  is no longer the rms 

surface errors value at the rigging angle but are dependent upon the telescope’s orientation (E for 

the GBT).  It’s important to note here that, unlike the web page table, the elevation dependence of 

A is no longer receiver or frequency dependent.  Rather, since all receiver share the same surface 

with the same surface errors, one need only accurately derive or measure (E) whenever the active 

surface parameters are altered.  Then, that determination can be applied to any other frequency.  

Determining (E) from Existing Measurements 
The usefulness of my suggested representation for A depends upon how one can accurately derive 

(E).  Luckily, Ghigo’s web page has embedded in it all that we need. 

The last entry in Ghigo’s table is for observations at 43.1 GHz taken on Oct 4, 2009 with the 40-52 

GHz receiver.  The observations (Ghigo, 2009b) used AutoOOF’s for tweaking up the surface and an 

active surface model that is close to what we currently use.  The calibration used a combination of 

the noise diodes, forecasted models of the atmospheric opacity, and, most importantly the 

receiver’s ‘chopper’ wheel.  We know that our models for atmospheric opacity have a high degree of 

accuracy (Maddalena 2010b).  The observing frequency was high enough that the elevation 

dependence is easily determined and distinguishable from elevation dependence of atmospheric 

attenuation. 

The results of the observations are presented as the variation of A with elevation.  These can be 

translated into (E) by a simple inversion of the above equation for A: 

ε(E) = (
λ

4π
) ∙ √ln [

 ηA
(E)

ηSpillIllum

∙
1

ηBlockage

] 

Using a value of SpillIllum=0.71, and assuming Blockage = 1, Ghigo (2009b) derived an elevation 

model for (E) that had the same shape for the two receiver polarizations, but different scaling 

factors.  The scaling factors determined by Ghigo for the two polarizations (182 and 174 μm), and 

defined to be equivalent to the surface rms at the rigging angle, are substantially better than the 

expected 220 m.  Since (E) cannot be different for the two polarizations, the difference in scaling 

is an artifact of unresolved, small (1%) relative calibration uncertainties between the two 

polarizations.  The low value for the derived rms of the surface implies that the absolute calibration 

may be off by 6%, which is actually rather good.   



To determine a value for (E) that is more consistent with what we expect, I simply scaled Ghigo’s 

estimate for (E) to the expected 220 m.  I also simplified the curve to use elevation, instead of 

zenith distance:   

(E) = 500.954 –  10.4728 ∙ E +  0.09766 ∙ E2  

Using this model for (E), assuming SpillIllum=0.71, and Blockage = 1, for the first time for the GBT one 

can now provide an estimate of A(,E) that is depicted in the figure.

 

Summary 
The definition of A used by the pipeline has some problems as well as a non-traditional 

representation.  Here, I have provided an alternative, traditional representation.  I have removed those 

entities that traditionally should not be included in the definition of A as well as introduced others 

factors that were missing.   The proposed parameterization has the additional benefit in that it 

should be simpler to maintain as the significant contributors to the elevation and frequency 

dependence of A are now encoded into a single model for (E).   The pipeline parameterization 

requires astronomical measurements at all frequencies at which data are to be calibrated.  The 

proposed parameterization requires observations at just a single frequency, thereby saving us 



significant telescope time.  Using the previous work of Ghigo (2009b), I provide a polynomial model 

of (E) that matches the expected and measured performance of the telescope.   

From Ghigo’s memos (2009a, 2009b), one can see that observations with the 40-52 GHz receiver 

have a significant advantage over observations made with any other GBT receiver.  In particular, 

one can make use of the receiver’s calibration wheel to reduce calibration uncertainties far beyond 

what can be done with other receivers.  The observing frequency is high enough that surface errors 

produce a substantial difference in A from its long-wavelength value.  And, it’s at a frequency high 

enough that the elevation dependency of A is easily distinguished from atmospheric attenuation.  

The atmospheric modeling of opacity is also well established at 43 GHz (Maddalena 2010b).   (If the 

calibration problems with the 68-92 GHz are solved, and if we can determine whether our 

atmospheric opacity models work in this frequency range, this receiver might end up be better 

suited than the 40-52 GHZ receiver is).  Thus, I suggest we continue to use the 40-52 GHZ receiver 

after every update to the active surface models in order to update the model used by the pipeline 

for (E), and thereby A(,E).   
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