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The CASA task IMFIT fits elliptical Gaussians to image data. As reported by several users in CASA
tickets (CAS-3476, CAS-5879; see also the parent ticket CAS-6124) parameter uncertainties reported in CASA
v4.2 are currently unsatisfactory in several ways:

1. Uncertainties relating to the position and size of the Gaussian are generally too small;

2. the uncertainty for peak and integrated flux density are in some cases too large;

3. the error estimates appear to be based on the RMS of fit residuals in the designated region of interest
(possibly the main cause of #1).

The errors purport to be

longitude error = (FWHM beam width in longitude direction)/(2*S)
latitude error = (FWHM beam width in latitude direction)/(2*S)
FWHM of major axis error = (FWHM beam along major axis)/sqrt(S)
FWHM of minor axis error = (FWHM beam along minor axis)/sqrt(S)

where S =the fitted component peak amplitude divided by the noise level. Mention is also made of expressions
given in § 2.1.1 of AIPS++ note 224, which only apply for the case of normally distributed, uncorrelated
pixel noise. The basis of the error in the normalization is not clear, and the errors are clearly too large in
some cases. There are several problems with the given expressions: 1) it is claimed that the FWHM errors
are too large by

√
2, and have the wrong scaling with S; 2) they do not appear to explicitly account for

noise correlations; 3) the flux errors are wrong; 4) since the pixel size does not appear, the positional and
size errors given are manifestly incorrect for the uncorrelated pixel noise. In this note I attempt to specify a
satisfactory solution for these issues.

Condon (1997, hereafter C97) has derived expressions which address most of these shortcomings. I use
them as the basis to specify expressions which will give more useful parameter uncertainties in IMFIT . I
mostly follow the notation of C97. These issues have also been discussed in AIPS memos 92 and 97, discussing
what has been implemented1 in the classic AIPS task JMFIT.

1 Assumptions

Key assumptions made at the outset are:

• The given model (elliptical Gaussian, or elliptical Gaussian plus constant) is an adequate representation
of the data.

• An accurate estimate of the pixel noise µ is provided to, or can be derived by, IMFIT . For Gaussian,
uncorrelated noise, the current IMFIT approach should be reasonable. For the case of correlated noise
(e.g., a CLEAN map), the fit region will need to contain many “beams” or an independent value of RMS
will need to be provided to IMFIT . In the future, better methods of direct and automatic estimation
should be implemented.

• The SNR of the Gaussian component is high. This comes about because C97 uses a Taylor series to
linearize the problem; he states that the fractional bias in the fitted amplitude A due to this assumption
is of order 1/ρ2, where ρ is the total SNR of the Gaussian with respect to the given data set (defined
more precisely below). For a 5σ “detection” of the Gaussian, this is a 4% effect.

• All (or practically all) of the flux in the component being fit falls within the region of interest. If a
constant term is free in the fit, the region of interest should be larger still. The derivations of the
expressions summarized in this note assume an effectively infinite region.

1The AIPS *MFIT routines implement an earlier and slightly less comprehensive version of the C97 equations; they do not
account for the effect of fixing parameters on free parameter uncertainties or the effect of a free DC term on the uncertainties
of other parameters.
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Symbols used in this note are as follows: ρ = overall signal to noise ratio of the Gaussian (defined below);
A = normalization of the Gaussian component in question; I is the integrated flux density of the Gaussian
component; h = the angular size of an image pixel along one side; θM = the major axis (FWHM) of the
fitted Gaussian component; θm = the minor axis (FWHM) of the fitted Gaussian component; µ = the RMS
image noise (regardless of whether this noise is correlated or uncorrelated between pixels); xo = the center
of the Gaussian in the hypothetical coordinate axis along the fitted major axis of the Gaussian (not the R.A.
axis!); yo = the center of the Gaussian in the hypothetical coordinate axis along the fitted minor axis of the
Gaussian; φ = the position angle of the Gaussian component; θN the FWHM of the noise correlation (e.g.,
the synthesized beam FWHM). S = A/µ is the estimated peak SNR in terms of surface brightness.

2 Straightforward Approach

2.1 Uncorrelated Pixel Noise

For the case of uncorrelated pixel noise (which should be the default assumption), the overall SNR ρ is found
to be:

ρ =
A

hµ

√
πθMθm

8 ln2
. (1)

This is equation 20 of C97.
The fractional parameter errors for the 6 parameters of the fit (plus the one derived parameter I) are

then given by the following relations:

σ(A)
A

=
σ(I)

I
=

σ(θM )
θM

=
σ(θm)

θm
(2)

=
√

8 ln2
σ(xo)
θM

=
√

8 ln2
σ(yo)
θm

=
σ(φ)√

2

(
θ2

M − θ2
m

θM θm

)
(3)

=
√

2
ρ

(4)

This is equation 21 of C97.
Note: The reported positional uncertainties must be in the coordinate system of the image, not the

hypothetical coordinate system defined by the fitted Gaussian. The proper positional errors are easily derived
from σ(xo) and σ(yo) by propagation of errors using the 2D rotation matrix which enacts the rotation φ.

2.1.1 Heuristic

This section is not part of the specification
It is instructive to evaluate equations 1 and 2-4 in terms of the volume of the Gaussian component

Ωg = 2πσxσy and S = A/µ. The total SNR ρ is

ρ =
√

πσxσy

h2
S =

√
Ωg/2
h2

S =

√
Np

2
S (5)

where Np is the number of pixels encompassed by the volume of the Gaussian component. We find for the
positional error

σ(xo) =
2√
Np

σx

S
=

2√
8 ln2

1√
Np

θM

S
∼ 1√

Np

θM

S
(6)

although the last approximation in this line is only good to 15%. For the major axis width error you find

σ(θM ) =
2√
Np

θM

S
(7)

or approximately 2× the position error (exactly
√

8 ln2 = 2.35× the position error).
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2.2 Correlated Pixel Noise

For the case that the noise is correlated due to smoothing uncorrelated pixel noise by an approximately
Gaussian smoothing kernel of FWHM θN , similar expressions (as Eqs. 2 through 4 above) are used but the
equation for the SNR ρ is modified to:

ρ(αM , αm) =
A

µ

√
θMθm

2θN

[
1 +

(
θN

θM

)2
]αM /2 [

1 +
(

θN

θm

)2
]αm/2

(8)

This is Eq.41 of C97. The power-law exponents αM and αm have empirically calibrated values, and different
values should be used when calculating uncertainties for different fit parameters:

• For the amplitude A and integrated flux density I, use αM = αm = 3/2.

• For θM and xo, use αM = 5/2, αm = 1/2.

• For θm, φ and yo, use αM = 1/2, αm = 5/2.

Then for all parameters except the integrated flux density I, use the relationships in Eq. 2 - 4 along with the
appropriate value of ρ(αM , αm). For integrated flux density, use this:

σ(I)
I

=

√√√√(
σ(A)

A

)2

+
(

θ2
N

θNθm

) [(
σ(θM )

θM

)2

+
(

σ(θm)
θm

)2
]

(9)

Again, positional uncertainties in xo and yo will need to be propagated back to the image native coordinate
system by rotation.

2.2.1 Definition of the Noise Correlation Scale

This section is not part of the specification
For the case that the noise correlations are Gaussian, θN is the FWHM of this noise correlation function.

This is probably a good enough approximation for most cases of interest. According to equations 37 and 38
of C97, however, θN may be defined for the more general case of a noise-smoothing function C(x, y) as:

θN =

√
2 ln2

π

∫ ∫
dx dy C(x, y)√∫ ∫
dx dy C2(x, y)

∼ 1.50 ×
∫ ∫

dx dy C(x, y)√∫ ∫
dx dy C2(x, y)

(10)

2.2.2 Special Case: Point Source

This section is not part of the specification
It is instructive to consider the special case that θM = θm = θN . Then Eq. 8 becomes

ρ =
√

2
A

µ
=
√

2S (11)

for all parameters. The major axis position error is

σ(xo) =
2
ρ
σx =

√
2

S
σx =

√
2

S
√

8 ln2
θM ∼ θM

2 S
(12)

The last approximate equality is the equation currently implemented in IMFIT . Note that the approximation
is only valid to ∼ 20%, and only for a source that has the same apparent size as the noise correlation in the
map (an unresolved source). For θN << θM this expression will considerably overestimate the errors.

The major axis error is seen to be

σ(θM ) =
√

2
S

θM (13)

Note that the overall factor aside, the current IMFIT has a 1/
√

S scaling instead of the correct 1/S scaling.
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2.3 Implementation

• Perform fit by current methods (e.g., Levenberg-Marquardt minimization of χ2).

• The noise estimate µ should be obtained from one of the following methods, in order of preference:

– (most preferred) If a positive, non-zero value for the RMS parameter has been supplied to IMFIT
, set µ equal to to this value. Note it is important that RMS should default to an undefined or
otherwise illegal value.

– If no value has been specified, look in the image header for a keyword CHANRMS; if present with a
legal, non-zero value, then set µ equal to this value2.

– If no RMS parameter has been supplied to IMFIT , and no CHANRMS keyword/value is present
in the image header, then measure it by taking it equal to the RMS of the residual image in the
given region of interest (i.e., default to the current method). Issue a warning.

• There will be a NOISEFWHM parameter in IMFIT which specifies the noise-correlation beam FWHM
θN as an angle with specifiable units. Two example legal values of NOISEFWHM are ’4.5arcsec’ and
’2arcmin’. Its default value is ’’ (i.e., the null string).

• Support use of both the “correlated-noise” expressions (§ 2.2) and the “uncorrelated-noise” expressions
(§ 2.1), according to the following logic:

– If NOISEFWHM has a non-null, positive value, set θN equal to this value and use the correlated noise
equations (§ 2.2).

– If NOISEFWHM is set to a value smaller than the image pixel size (e.g., 0arcsec, -1arcmin, or any
positive value smaller than the geometric mean of the pixel dimensions), then force use of the
uncorrelated noise expressions (§ 2.1). Issue a warning.

– If NOISEFWHM has a null value, look for beam information in the image header by standard means
(BMAJ, BMIN). If beam information is present in the image header, compute θN as the geometric
mean of the given beam major and minor axis FWHM values. Compute parameter uncertainties
as in § 2.2 for correlated noise. If no beam information is in the header, issue a warning and
compute parameter uncertainties using the uncorrelated noise expressions(§ 2.1).

– Note: the units of the image (Jy, K, Jy/bm, Jy/pixel) are irrelevant to the choice of how to
compute the parameter uncertainties.

2.3.1 Summary of Caveats and Limitations

The following caveats will be highlighted in the IMFIT “Help” documentation:

• Fixing Gaussian component parameters will tend to cause the parameter uncertainties reported for free
parameters to be overestimated.

• Allowing a free mean level in the fit will tend to cause the reported parameter uncertainties to be
slightly underestimated.

• The parameter uncertainties will be inaccurate at low SNR (a ∼ 10% effect at SNR= 3).

• If the fitted region is not considerably larger than the largest component that is fit, parameter uncer-
tainties may be mis-estimated.

• An accurate noise measurement µ for the region in question must be supplied. Alternatively, a suffi-
ciently large signal-free region must be present in the region of interest (at least ∼ 25 noise beams in
area) to derive such an estimate.

• If the image noise is not statistically independent from pixel to pixel, a reasonably accurate noise
correlation scale θN must be provided. If the noise correlation function is not approximately Gaussian,
the correlation length can be estimated using Eq. 10.

2The ALMA science archive FITS data products (v1.5 M. Lacy & E. Muller) nominally aim to provide a single number
CHANRMS, in Jy/bm, to characterize the noise in an image or cube. This is similar to the AIPS keyword REALRMS (AIPS
Memo 117) and ACTNOISE (which is used by the *MFIT routines).
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• If fitted model components have significant spatial overlap, the parameter uncertainties are likely to
be mis-estimated (i.e., correlations between the parameters of separate components are not accounted
for).

• If the image being analyzed is an interferometric image with poor uv sampling, the parameter uncer-
tainties may be significantly underestimated.3

3 More General Approach

This section is not currently part of the specification
The expressions given in § 2 assume a) that all six parameters are fitted for; b) no constant term in the

fit. In fact, IMFIT allows any number of the fit parameters to be fixed at some given values, and it also
allows an optional constant term in the fit. The approach of § 2.2 can be generalized to deal with these
cases as follows: express the design matrix of the problem (equation 8 of C97) in terms of ρ, leaving out
rows and columns that correspond to fixed parameters and adding in the mean (ansatz: Condon’s semi-
numerical expressions for the correlated noise case work well when some of the parameters are fixed– Jim
seemed to think this is a reasonable thing to do); numerically invert this matrix to obtain D−1; and obtain
the parameter uncertainties from the square roots of the diagonal elements of this matrix times the given
noise estimate µ. This is analagous to the approach of Brouw (AIPS++ note 224), in whose terminology
µ = σo and D = A. The main difference is in accounting for correlated noise via the tweaked definition of
the SNR ρ.

To proceed with this agenda refactor D (eq. 8 of C97) as D = Γµ2ρ2. Then Γ is found to be:

Γ =


1/A2 0 0 1/(2Aσx) 1/(2Aσy) 0

0 1/(2σ2
x) 0 0 0 0

0 0 1/(2σ2
y) 0 0 0

1/(2Aσx) 0 0 3/(4σ2
x) 1/(4σxσy) 0

1/(2Aσy) 0 0 1/(4σxσy) 3/(4σ2
y) 0

0 0 0 0 0 1/4

 (14)

The rows and columns of this matrix are in the following order: p1 = amplitude; p2 = x position; p3 = y
position; p4 = x size; p5 = y size; p6 = orientation. Rows/columns of fixed parameters should be excluded,
ie, a matrix of smaller dimensionality formed. Then this smaller matrix can be inverted numerically and
individual parameter uncertainties evaluated as:

σ(pi) =
√

(D−1)i,i µ =
√

(Γ−1)i,i
1
ρi

(15)

where ρi is computed according to the prescription in Eq. 8 for the parameter i in question.
Some areas of future work that may be useful are:

• work out the matrix elements involving the constant term in the fit — it would be worth checking to
see if this has already been worked out for JMFIT. I’m not sure if this will break the ability to factor
out ρµ, and therefore make the noise correlation correction of C97 tricky or impossible to implement.
Maybe ignoring the influence of the DC term is not too bad if the region of interest is big enough

• Test the applicability of the generalized noise correlation correction proposed here with Monte-Carlo
simulations of several cases (fix component position; fix component size; fix component size and posi-
tion).

• Test parameter estimate accuracy in the poor uv coverage case, using some approximate dirty beam to
compute a value for θN .

3It would be interesting to see if using the value of θN computed via Eq 10, and using some approximation of the dirty beam,
does better.
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