PAR detector array 2

This is intended to be brief and to the point. Data is available in other files
1: What is right, what is wrong.
1a: Detector aliveness and readout
1b: $\quad \mathrm{T}_{\mathrm{C}}-$ values, spread and alpha
1c: Normal and bias resistors \& cross talk
1d: NEP measurements
1e: Time Constants
1f: Z-Omega plots and what they mean
This is intended as a short summery of our results. The data is in many spreadsheets and is over 1 GB so if people want anything it would be better to ask. More details for many things can be found in the documents Phil wrote and which are posted, under SQUIDS \& electronics on the GBT website: chile1.physics.upenn.edu/GBT

Other system tests have been carried out (response to tilt) but they will be left out of this report.

1a: Detector aliveness.

- Muxs - these were unscreened.

Col 0: DEAD second stage SQUID, behaves like a resistor.
Col 1: Working
Col 2: 4 dead first stage SQUIDs, r0,4,6,7.
Col 3: Working
Col 4: DEAD second stage SQUID, behaves like a resistor.
Col 5: Working
Col 6: Reads out BUT first stage feedback loop heats array.
Col 7: Working
o ALSO r5 in all mux has bad $1^{\text {st }}$ stage curve (flat top)

- TES - pixels clr2 and c5r4 no response to bias. Rows 5 ignored
- Firmware - Bad mapping still exists
- Software - Much work in IRC needed, but basic DAQ and tuning works.

Analysis software need much more.

1b: T_{C}

- 477 mK to 500 mK scatter, pixels c4r3 \& c5r2 possible superconducting short
- trend with location hard to spot
- T_{C} measured with $1 \mu \mathrm{~A}$ bias current $-\left(\ll 1 \times 10^{-15} \mathrm{~W}\right.$ dissipation $)$
- Steep part of transition $\sim 1 \mathrm{mK}$ wide - values of alpha 400-500

Q : Why are these values off and what can we learn?

1c: Bias curves, resistances + more

A huge number of bias curves in the dark and light have been conducted to give:
Col 7 Baseplate 323rk

- Scatter in bias points:
- Ratios of normal to superconducting resistances (from down ramps), bias resistor from noise and normal detector resistance from ratio for $\operatorname{col} 7$:

Row	0	1	2	3	4	5	6	7
LN2 ratio	18.36	17.75	17.91	17.36	17.28	16.59	15.94	17.21
300K ratio bias resistance	17.54	17.36	17.47	16.95	16.81	16.19	15.62	16.70
normal	$0.72 \mathrm{~m} \Omega$	$0.65 \mathrm{~m} \Omega$	$0.72 \mathrm{~m} \Omega$	$0.59 \mathrm{~m} \Omega$	$0.84 \mathrm{~m} \Omega$		$0.77 \mathrm{~m} \Omega$	$0.77 \mathrm{~m} \Omega$
resistance saturation power	$12.52 \mathrm{~m} \Omega$	$10.87 \mathrm{~m} \Omega$	$12.21 \mathrm{~m} \Omega$	$9.67 \mathrm{~m} \Omega$	$13.68 \mathrm{~m} \Omega$	$11.44 \mathrm{~m} \Omega$	$12.55 \mathrm{~m} \Omega$	
	$2.4 \mathrm{E}-11 \mathrm{~W}$	$2.2 \mathrm{E}-11 \mathrm{~W}$	$2.2 \mathrm{E}-11 \mathrm{~W}$	$1.8 \mathrm{E}-11 \mathrm{~W}$	$2.4 \mathrm{E}-11 \mathrm{~W}$	$2.1 \mathrm{E}-11 \mathrm{~W}$	$2.3 \mathrm{E}-11 \mathrm{~W}$	

CROSS TALK in $\mathbf{1}^{\text {st }}$ stages is seen:

- Put all but one DFB card in signal generator mode
- Look at output of this card - cross talk at a 4% level:
- Putting just one DFB card in sig.gen. mode affects channels the same

1d: Noise measurements:

- Noise level at 10 Hz matches ratio of superconduction/normal resistance - Johnston current noise.
- 3 dB roll of frequencies : 200 Hz (superconducting), 5000 Hz Normal (predicted 160 Hz and 3000)
- On the transition we get more noise than either of the above states (when looking at 300 K) phonon noise limited (Photon noise is calculated to be less)
- Also there is a feature at 1.4 Hz - due to temperature fluctuations in the pt $405 \backslash$
- The detectors are also unstable - current oscillations > tens of μ A occur and increase as you move to lower detector bias and lower baseplate temperatures. At normal (280 mK) baseplate temperatures only the top 10% or so of the transition can be used, and to use the array requires heating the baseplate to over 350 mK . Typical oscillation frequencies are 2 3.5 kHz

These graphs are the noise on a pixel when looking at 300 K .

Electrical noise on the transition

1e: Time constants

First the response to a chopped optical source:

Optical Response r1c5

- A very slow response that would be a problem on the GBT
- Slower than $\exp (-\tau t)$ fall-off - drops 3 dB from 10 to 25 Hz , yet only $6 \mathrm{db} 100-200 \mathrm{~Hz}$

Time constants were also measured by step changes in the detector bias

- Between 2 superconducting points the time constant was $\exp (-531 t)$ which matches the L / R time constant assuming $\mathrm{L}=1200 \mathrm{nH}$.
- Between 2 normal points the time constant was $\exp (-10940 \mathrm{t})$ which matches the L / R roll-off assuming the same L
- Both these time constants are much faster than the optical one so it is not the electronics that slows the system down.

1f: Z-Omega

These data were taken using the analogue parts of the system only (and a power spectrum analyzer).

- The data do not fit the ideal TES model
- Enectali Figueroa fit a model that has a distributed hanging heat capacity this works.
- Calculations by Harvey Mosley show that this could be a problem with the bismuth layer (1000 \AA) on top of the 1.4 micron Si membrane.

The data

An example fit (red) to the 6500 count bias line.

Point	GBTpar55_close.I	GBTpar55_close	GBTpar65_close	GBTpar75_close	GBTpar85_close
0	DebugParameter	-999	-999	-999	-999
1					
2	Non-Linear Parameters:				
3					
4	Heat Transfer Parameters:				
5	C01_a [J/K]	$5.79744 \mathrm{e}-12$	$2.73235 \mathrm{e}-13$	$3.71241 \mathrm{e}-13$	5e-13
6	C01_e [J/K]	1e-13	$1.25982 \mathrm{e}-13$	$1.24309 \mathrm{e}-13$	2e-13
7	gamma_a [n/a]	0	0	0	0
8	gamma_e [n/a]	0	0	0	0
9	Gaa01 [W/K]	$1.03357 \mathrm{e}-07$	$6.9696 \mathrm{e}-09$	$6.8056 \mathrm{e}-09$	$8.08636 \mathrm{e}-09$
10	Gae01 [W/K]	$1.03357 \mathrm{e}-07$	$6.9696 \mathrm{e}-09$	$6.8056 \mathrm{e}-09$	$8.08636 \mathrm{e}-09$
11	Gab01 [W/K]	0	0	1e-17	0
12	Geb01 [W/K]	$1.08117 \mathrm{e}-11$	$3.66726 \mathrm{e}-12$	$1.53427 \mathrm{e}-12$	$1.52451 \mathrm{e}-12$
13	Baa [n/a]	0	0	0	0
14	Bae [n/a]	0	0	0	0
15	$\mathrm{Bab}[\mathrm{n} / \mathrm{a}]$	3	3	3	- 3
16	$\mathrm{Beb}[\mathrm{n} / \mathrm{a}$]	2.5	2.5	2.5	2.5
17	Tb [K]	0.39	0.39	0.39	0.39
18	Stray Power [W]	0	0	0	0
19					
20	Circuit Parameters:				
21	RvsT Func Type [n / a]	4	4	4	4
22	Rn [0hm]	0.012	0.012	0.012	0.012
23	Rp [Ohm]	1e-06	1e-06	1e-06	1e-06
24	Tc_A [K]	0.45	0.45	0.45	0.45
25	Tc_B [K]	0.45	0.45	0.45	0.45
26	alpha0_A [n/a]	219.77	71.7266	369.924	500
27	alpha0_B [n/a]	75	75	75	75
28	Ce/C_betai [n/a]	1	1	1	- 1
29	R/Rn_A [\%]	33.2697	47.0464	78.7756	89.3046
30	R/Rn_B [\%]	- 1	- 1	- 1	-1
31					
32	Calculated Parameters:				
33	Vb_A [V]	$4.87246 \mathrm{e}-07$	$3.16928 \mathrm{e}-07$	$2.63753 \mathrm{e}-07$	$2.79296 \mathrm{e}-07$
34	Vb _B [V]	0	0	0	0
35	Getf [W/K]	$1.6305 \mathrm{e}-08$	$1.89065 \mathrm{e}-09$	$1.84983 \mathrm{e}-09$	$1.5957 \mathrm{e}-09$
36	Tau_eff [s]	0.00236801	0.000984921	0.00143753	0.00225946
37	Integrated Pulse A [eV]	6065.51	4662.74	4734.54	4142.89
38	Integrated Pulse B [eV]	0	0	0	0
39	FWHM [eV]	123.243	24.6086	25.4087	93.7276
40					
41	Linear Parameters:				
42					
43	Heat Transfer Parameters:				
44	Ca1 [J/K]	$5.79744 \mathrm{e}-12$	$2.73235 \mathrm{e}-13$	$3.71241 \mathrm{e}-13$	5e-13
45	Ce_A [J/K]	1e-13	$1.25982 \mathrm{e}-13$	$1.24309 \mathrm{e}-13$	2e-13
46	Ge _Ab(Te_A) [W/K]	$4.60746 \mathrm{e}-10$	$1.56852 \mathrm{e}-10$	$6.61028 \mathrm{e}-11$	$6.5757 \mathrm{e}-11$

