

Star Formation/ISM

A.Wootten, NRAO

Advantages of GBT/Total Power

- New instruments may be outfitted more easily on a TP telescope
 - Provides access to new technology
 - Nimbleness
- Interpretation, particularly of extended regions, requires total flux recovery
- Wide field of view: Molecular emission generally is extended and may occur at just about any frequency
 - ALMA has had requests for 1000s of pointings!

Some SF/ISM Questions

- What is the relation between hydrocarbon molecules and carbon grains and PAHs?
- How are complex organic molecules formed? Is the disk chemical composition inherited from the dense core?
- How do grains evolve? How do grain mantles grow? What is the role of mantles in increasing molecule complexity?
- What is the role of magnetic field in the collapse ?
- When do protoplanetary disks form? At what size?
- How is the ionization fraction regulated? What is the impact on the chemistry & on the coupling with B field?
- How does H₂ form? Is the H₂ Ortho to Para ratio at thermal equilibrium?
 - M. Gerin, IAU332

Ammonia Surveys

Integrated Intensity (K km s⁻¹)

-24:12

18

24

30

36

42

48

20.5

-24:12

18

24

30

36

42

48

L1688 log N(H₂)

29:00

Dec (J2000)

L1688 NH₃(1,1)

29:00

21.0

28:00

28:00

21.5

27:00

22.0

27:00

RA (J2000)

RA (J2000)

Dec (J2000)

6

0.10 pc

0.10 pc

16:26:00

23.C

22.5

Friesen et al. 2017

Extend to 3mm: higher resolution, with Argus, Argus+

sociateà Universities inc

Example: Perseus Barnard 1

The Star-forming B1 Core

- Multiple sites of Star formation (IRAM image)
- Focus on three;
- BIc: Class 0, well developed flow, core
 - GBT NH3 images: clearly separated core in an elongated NS structure

mydrostatic Core

BIb: Larger Scale Structure Star-Forming Cores in a Filament

Argus+ could image at similar resolution (6" vs 2.5") with GBT alone.

/=12

Inutsuka, Machida & Matsumoto 2010 ApJ

Masunaga & Inutsuka 2000 ApJ 531, 350

/=8

718. L58

Dense core Collapse

Pre-stellar core ~ isothermal sphere

2nd Collapse & H₂ dissociation 2nd hydrostatic core & (few days)

Coupling rotation, collapse with a magnetic field \rightarrow slow outflows at the FHSC stage \rightarrow jets at the 2nd core stage

Gerin, IAU332

High Frequency T, n

- Marcelino et al Survey of the BIb core shows emission from CH₃CN and CH₃CCH 80 GHz lines at tenth K level.
 Temperature fit suggests ~15K, agrees with NH₃
- J=5-4 and J=4-3 can be observed simultaneously with other lines with broadband receivers
- Relative intensities of different J lines provide a measure of density over a range 10⁴ to 10⁶ cm⁻³; they lie near excitation peak

Transformative Science Detober 200 The with GBT

Flexibility

 Ability to confirm a cornerstone molecule with a difficult spectrum: CH₂D⁺ the cornerstone molecule of carbon chemistry and key to warm deuterium chemistry

Focus on Particular Molecules: Deuterium ices, Snow lines

Disk Deuteration regimes in the Herbig Ae star HD163296

- HD163296 is a well-placed disk showing a multi-ring structure in dust (
- Central planes of circumstellar disks are cold, well-traced by D-bearing isotopologues
 - These offer temperature probes, as different chemistries enhance D at different temperatures
 - Also probe 'snow lines', where molecules freeze out of the gas, at different temperatures
- Different chemistries determine distributions
 - 'Warm' deuterium chemistry dominates DCN production through $\rm CH_2D^+$ reactions which may also form some DCO^+
 - 'Cold' deuterium chemistry dominates $N_2D^{\scriptscriptstyle +}$ and much DCO+ chemistry originating with $H_2D^{\scriptscriptstyle +}$
- Conclusions
 - CO snowline is at r~100AU
 - Inner depression of DCO+, DCN arises from dust opacity, not warm deuteration pathway
 - Three ring DCO+ may relate to small grain structures
 - 70 AU and 150 AU rings may link to differing deuteration pathways
 - Outer ring at 260 AU may reflect lowering UV opacity, desorption of CO

Salinas et al A&A in press

Above: Integrated intensity maps of deuterated molecular emission with (lower panels) and without (upper panels) a Keplerian mask as explained in the Appendix of the paper.

Fundamental Molecules: CH₂D⁺

- Light molecule, widely spaced levels, sparse lines
- Inconveniently placed
- Four low-lying millimeter lines

NRAC

13

 Two reasonable ones in 1mm band with predicted v

The 201.7 GHz Line

N.B. Could be blended with high excitation Methyl Formate line

Transformative Science October 2017

NRAO

14

ssociated Universities Inc

The 278.7 GHz Line

Left: CH_2D^+ at 278.7 GHz (IRAM 20m)

C 4.97028 km/s 21" 24' 27' UNDUIGAN ANAZI 30. 000 Declinet 2 35' 2 36' 2 39 2 42' 5°22'45 -5°22' 05^h35^m1.5^h.2 14.6 14.4 14'.0 13.8 J2000 Right Ascension

Right: DCN J=3-2 (color) (ALMA)

30m)

Transformative Science October 2017

15

NRAO

SF/ISM on the GBT

- Flexibility: sensitively covers full spectral range; provides access to critical emission
- Widefield coverage to provide context for star formation
- Sensitivity needed for complete flux recovery of VLA, ALMA, NOEMA images

Unexpected Chemistries

Molecular Emission from SN1987A

- ALMA spectral survey shows:
 - Cold (20–170 K) CO, ²⁸SiO, HCO⁺ and SO, with weaker lines of ²⁹SiO from ejecta.
 - Low ²⁹Si and ³⁰Si abundances are consistent with nucleosynthesis models that show inefficient formation of neutron-rich isotopes in a low-metallicity environment, such as the Large Magellanic Cloud
- ALMA image shows:
 - Central molecular void, possible owing to heating by radioactive nickel
 - Cold molecular gas whose 3D distributions differ
 - Clumpy mixed structure seen, expected from asymmetric explosion but previously unseen
 - Molecules form torus or shell perpendicular to equatorial ring (blue on right)
 - SiO has greater extent than CO from the center, therefore non-spherical instabilities occurred

Molecular Emission Blue ring is HST H α Red/Green CO/ SiO

