Galaxy Cluster Science: 5-10 year view of the GBT's Role

Brian Mason (NRAO) Green Bank Observatory Transformational Science Workshop October 16, 2017

x-ray bremmstrahlung

Galaxy Clusters

Galaxies + Hot Intra-Cluster Plasma + Dark Matter

* Excellent view of density variations * Some Spectral Information — but not useful in lowdensity regions (outside cluster core) or hi-z

Sunyaev-Zel'Dovich Effect (SZE)

 * Outstanding sensitivity to hot gas
 * Redshift-independent: effective / tool at high-z
 * requires sensitive detectors

Abell 1689: HST + Chandra

We can learn about our cosmology by studying the abundance and properties of these extreme halos as functions of Mass and z.

Max Planck inst. Springel et al 2005; Dark Matter Only

Atacama Cosmology Telescope (Cerro Toco)

South Pole Telescope (SPT)

SZ Selected Clusters

2008: zero

2011:ACT (23) + SPT (26) + PLANCK (169+20)= 238 1/2 to 3/4 of the clusters found by ACT & SPT were previously unknown (missed by Abell, RASS, etc.).

Atacama Cosmology Telescope (Cerro

pe (SPT)

SZ Selected Clusters

2008: zero

Like nearly all SZ instruments these have low resolution (~1') and cannot usefully resolve the ICM.

The GBT @ 3mm (9") can

2011:ACT (23) + SPT (26) + PLANZZO)= 238 1/2 to 3/4 of the clusters found by ACT & SPT were previously unknown (missed by Abell, RASS, etc.).

MACS 0744+3927 [z=0.69, M-Y outlier]

Korngut et al. 2011

14" SZE Imaging reveals an M ~1.5 shock *evident in x-ray data a posteriori

Other MUSTANG SZ results

SZE reveals high-pressure structure not seen in previous x-ray data.

100 ksec XMM follow-up observation + 3hr ALMA Cycle4 observations obtained

MACS 1206-0847

RXJ1347-1145

Mason et al 2010 Romero et al. 2017

CSO+BOLOCAM SZE observations @140 & 268 GHz (Sayers et al. 2013) show cluster B to be a "line of sight Bullet cluster" [+3200 km/s]

First detection of the kinematic SZE in an individual object

Mroczkowski et al. 2012 VanWeeren et al. 2015

-0.1

-0.2

-0.3

-0.4

-0.5

-0.6

-0.7

-0.8

-0.9

Other MUSTANG SZ results

SZE reveals high-pressure structure not seen in previous x-ray data.

100 ksec XMM follow-up observation + 3hr ALMA Cycle4 observations obtained

CSO+BOLOCAM SZE observations @140 & 268 GHz (Sayers et al. 2013) show cluster B to be a "line of sight Bullet cluster" [+3200 km/s]

First detection of the kinematic SZE in an individual object

Mroczkowski et al. 2012 VanWeeren et al. 2015

2017	Dark Energy Survey
2018	5,000 sq.deg. optical
2019	Survey
2020	Chandra
2021	(degrading)
2022	
2023	
2024	XARM
2025	ASTRO-H/ Hitomi roplocomont
2026	Πιοπιτεριαcement
2027	
2028	
2029	
	Athena?
KEY:	X-ray Optical SZE

Advanced ACTpol & SPT3G

10k-pixel class millimeter survey cameras

Simons Observatory

100k-pixel class millimeter survey cameras

eROSITA

1st X-ray all-sky survey since ROSAT 30x deeper

eROSITA currently in Moscow being integrated with SRG spacecraft

 GOAL: characterize dark energy by mapping massive halo density to z~1.5

detect > 2k massive galaxy clusters @ z > 0.8
25" FWHM, ~100 photons/cluster @ z=1

High-z clusters are very hard to study with x-ray or optical data — resolved SZE provides dynamical state, pressure profiles, masses

Ferrari et al. (2011)

MUSTANG SZE + GMRT 600 MHz show a strong connection between shockheated thermal & nonthermal ICM phases

Astrophysics with the SZE

ALMA Cycle 4 Lacy et al.

Possible outflow SZE

MUSTANG-2

U.Penn (Devin, Dicker, Stanchfield+)

NRAO (DAQ & control software; analysis software; receiver rotator, dewar)

NIST (detectors & MUX)

Detectors funded by NSF-ATI in 2015

- 64 pixels -> 215 pixels
- 42" FOV —> > 4' FOV
- greater sensitivity per beam

Available in Feb I GBO call for proposals (shared-risk in collab. w/PI)

OMC 2/3 Orion "Integral shaped Filament"

5' x 15'

MUSTANG-2

MUSTANG-2 Commissioning observation of SZE in

(winter 16/17)

2h integration time on source

40 minutes onsource (commissioning winter 16/17) <image><text>

Available in Feb I GBO call for proposals (shared-risk in collab. w/PI)

MUSTANG-2 SZ Science

From accepted proposals currently in the GBT observing Queue:

*more accurately determine the **masses and ICM pressure profiles in high redshift (z>1) clusters** which are very difficult and expensive to study with x-rays (17A-358, 17B-218)

*provide 10" resolution imaging of SZ-selected clusters discovered in ACT equatorial survey, **observationally quantifying scatter and bias in M-Y relationship**. (17B-334)

* cluster astrophysics: detect unknown shocks in the intra-cluster medium; probe shock mechanics (17B-266); probe AGN bubble composition (17A-340); study thermal/non-thermal ICM phase connections (17B-314)

* measure ICM pressure profiles in Weak-Lensing selected cluster sample (17B-101

* measure **ICM turbulence** from SZE pressure fluctuations (17B-082)

Summary

- SZE imaging has moved beyond single #s or detailed study of only the most extreme single cluster. We can trust our images and start learning from them!
- X-rays alone provide an incomplete view of the Intra-cluster medium and clusters' dynamical state
 - high resolution SZ data will provide essential information for maximizing the cosmological returns from existing & ongoing cluster surveys
- Looking to the future: there is abundant SZ science at 10" resolution
 - ALMA Band I in the south
 - Large cameras on Large mm single dishes: GBT@3mm
 - having a robust, sensitive, high-resolution SZ imaging capability routinely available will transform the field.

end