

Fundamental Physics Over 27 Orders of Magnitude With Pulsars

Ryan Lynch Green Bank Observatory

Image Credit: ESO

Pulsars are clocks...

...that create some of the most extreme environments in the Universe...

...which makes them natural laboratories for studying fundamental physics

Pulsar Timing

- Track every rotation of a pulsar
- Predict pulse arrival times
 - Deviations from the expected arrival time of a pulse contain useful information

Time (weeks to years)

Power of Pulsar Timing

• Spin period can be measured to $\sim \delta/N_{rot}$

- For MSPs observed over many years, $N_{rot} \sim 10^9$

• At 2017-10-17 09:10 EDT the frequency of PSR J0437-4715 is/was

173.701580684374 ± 0.000000000003 Hz

Power of Pulsar Timing

 $a = 10^{11} \text{ cm} (1.44 \text{ R}_{sun})$ $a-b = 18.59 \pm 0.01 \text{ cm}$

Orbit at D = 139 pcmeasured to 10^{-13} !!!

Table 1 PSR J0437–4715 physical parameters

Right ascension, α (J2000)	04 ^h 37 ^m 15 ^s 7865145(7)		
Declination, δ (J2000)	-47°15'08"461584(8)		
μ_{α} (mas yr ⁻¹)	121.438(6)		
μ_{δ} (mas yr ⁻¹)	-71.438(7)		
Annual parallax, π (mas)	7.19(14)		
Pulse period, P (ms)	5.757451831072007(8)		
Reference epoch (MJD)	51194.0		
Period derivative, \dot{P} (10 ⁻²⁰)	5.72906(5)		
Orbital period, Pb (days)	5.741046(3)		
x (s)	3 36669157(14)		
Orbital eccentricity, e	0.000019186(5)		
Epoch of periastron, T ₀ (WJD)	51194.6239(8)		
Longitude of periastron, ω (°).	1.20(5)		
Longitude of ascension, Ω (°).	238(4)		
Orbital inclination, i (°)	42.75(9)		
Companion mass, m_2 (M _{\odot})	0.236(17)		
$\dot{P}_{\rm b}(10^{-12})$	3.64(20)		
ώ (°yr ⁻¹)	0.016(10)		
Orbital eccentricity, e Epoch of periastron, T_0 (MJD) Longitude of periastron, ω (°) . Longitude of ascension, Ω (°) . Orbital inclination, i (°) Companion mass, m_2 (M _{\odot}) $\dot{P}_{\rm b}(10^{-12})$	0.000019186(5) 51194.6239(8) 1.20(5) 238(4) 42.75(9) 0.236(17) 3.64(20)		

Effects of the Interstellar Medium

 Two frequency-dependent effects: dispersion and scattering

• Both smear out pulses and are worse at low frequencies

They are also timing varying!

Slide courtesy of Tim Dolch

20 June 2013

Slide courtesy of Tim Dolch

Millisecond Pulsar Timing Arrays

- GWs will cause a quadirpolar angular correlation signature
- Requirements: 10-100s ns residuals, full sky coverage, lots of pulsars, precise ISM measurements

GW Sources

- Coalescing Super-Massive Black Holes
 - Basically all galaxies have them
 - Masses of 106 109 M \odot
 - Galaxy mergers lead to BH mergers
 - When BHs within 1pc, GWs are main energy loss
 - For total mass M/(1+z), distance dL, and SMBH orbital freq f, the induced timing residuals are:

$$\Delta \tau \sim 10 \, \mathrm{ns} \, \left(\frac{1 \, \mathrm{Gpc}}{\mathrm{d_L}}\right) \left(\frac{\mathrm{M}}{10^9 \, \mathrm{M_{\odot}}}\right)^{5/3} \left(\frac{10^{-7} \, \mathrm{Hz}}{f}\right)^{1/3}$$

Cosmic strings (if they exist) also in this GW frequency range

Observational Signatures

- Different source classes have different structure in residuals
- Sensitive to $f_{GW} \sim nHz$ / $\lambda_{GW} \sim 10^{17}$ m

Complementary Gravitational Wave Detectors

The big picture of gravitational wave astronomy

NANOGrav

- North American PTA
 - Senior/affiliated researchers at over two dozen institutions (US, Canada, Europe)
- Funded by NSF Physics Frontier Center (\$14.5M over 5 years)
 - Portion of funding supports GBT operations
- Currently time 45 pulsars at GBT and Arecibo
 - 500 (GBT) + 800 (AO) = 1300 hrs/year
 - Does not include pulsar searches!
 - Each contributes 50% of overall GW sensitivity
- International collaboration through IPTA

NANOGrav Data Releases

- 5 Year (2013)
 - ASP + GASP
 - 16 MSPs, 1,095
 observations, ~16K TOAs
- 9 Year (2015)
 - Transitioned to [GP]UPPI
 - 39 MSPs, 4,138
 observations, ~170K
 TOAs
- 11 Year (2017)
 - 45 MSPs, 6,737 observations, ~310K TOAs

327 MHz
 430 MHz
 800 MHz
 1400 MHz
 2100 MHz

		1				
	1 1		A0/430 A0/1400	J0023+0923		
8 8888 888 8	88 8880000 88		AO/430 AO/1400	J0030 + 0451		
			GBT/800 GBT/1400	J0340 + 4130		
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	888###################################		GBT/800 GBT/1400	J0613 - 0200		
		6	GBT/800 GBT/1400	J0636 + 5128		
			GBT/800 GBT/1400	J0645 + 5158		
		a	GBT/800 GBT/1400	J0740 + 6620		
			GBT/800 GBT/1400	J0931 - 1902		
88 88 000000000000000000000000000000000			GBT/800 GBT/1400	J1012 + 5307		
	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		GBT/1400	J1024-0719		
		e e e e e e e e e e e e e e e e e e e	GBT/800 GBT/1400	J1125 + 7819		
		88	A0/430 A0/1400	J1453 + 1902		
8 8 8888 888 8			GBT/1400	J1455 – 3330		
			GBT/800 GBT/1400	J1600 – 3053		
	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		GBT/800 GBT/1400	J1614 – 2230		
	888 88 88 888 888 88		AO/430 AO/1400	J1640 + 2224		
8 88 000000000			GBT/800 GBT/1400	J1643 – 1224		
o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			GBT/800 AO/1400 GBT/1400 AO/2100	J1713 + 0747		
	88		AO/1400 AO/2100	J1738+0333		
	8888 8 8	8	AO/430 AO/1400 AO/2100	J1741 + 1351		
88 888888		~	GBT/800 GBT/1400	J1744 – 1134		
			GBT/800 GBT/1400	J1747-4036		
			GBT/800 GBT/1400	J1832-0836		
			A0/430 A0/1400	J1853 + 1303		
8000 8000000000000000000000000000000000	888 888 8 888 888 8		A0/430 A0/1400	B1855 + 09		
			8 8 8 8 8 8 AO/1400 AO/2100	J1903 + 0327		
8 888 8888 8	8888888 888 888 888 888 888 888 888 88		GBT/800 GBT/1400	J1909 - 3744		
	8 888 888 8	88888 8 88888 8888 8	A0/1400 A0/2100	J1910 + 1256		
		88	@ AO/430 AO/1400	J1911 + 1347		
88 8 6666			GBT/800 GBT/1400	J1918-0642		
			AO/430	J1923 + 2515		
66 00 6000000			GBT/800 AO/1400 GBT/1400 GBT/1400 AO/2100	B1937 + 21		
			AO/430 AO/1400	J1944 + 0907		
			AO/430 AO/1400	B1953+29		
			GBT/800 GBT/1400	J2010-1323		
			AO/430 AO/1400	J2017+0603		
			A0/2100	J2033+1734		
		8888	A0/1400 A0/1400	J2043 + 1711		
866 8 6668 666	888 8 8 8 888		GBT/1400	J2145 - 0750		
		88 ************************************	A0/1400 A0/2100	J2214 + 3000		
		8 88	A0/430 A0/1400	J2229 + 2643		
		88	A0/430 A0/1400	J2234 + 0611		
			AO/430 AO/1400 AO/2100	J2234 + 0944		
			GBT/1400	J2302 + 4442		
	9999 99 00000 900	(m)() (((((((((((((((((A0/327 A0/430 A0/1400	J2302 + 112 J2317 + 1439		
				52517 - 1737		
2004 2006	2008 2010	2012 2014	2016			
Date [yr]						

"Current" Results

Subatomic Physics

Most highly cited GBT paper (1,550+)

Subatomic Physics

Rules out most or all EOSs with exotic material in the cores

Strong Field GR Tests

- Double Pulsar is the premier system for studying strong-field GR
 - Light from one pulsars passes within 10,000 km of the other
- Seeing 2nd order post-Newtonian effects

Courtesy of Michael Kramer

Testing the Strong Equivalence Principle

- PSR J0337+1717: First MSP in a stellar triple system
 - Discovered in GBT survey
- Three body dynamical effects cause secular changes in orbital parameters
 - Allow us to precisely solve for the geometry and masses of all stars and orbits

- All bodies fall at the same rate (?)
- MSP & inner WD falling in gravity of outer WD

Image credit: Ransom et al. (2014, Nature, 505, 520)

Testing the Strong Equivalence Principle

 Violations parameterized by differential acceleration

Currently dominated by systematics

Sensitive to Solar wind DM variations

Testing TeVeS Gravity Theories

- J0348+0432: Relativistic MSP/WD binary
 - Discovered by GBT
- Pulsar + WD spectroscopy \rightarrow double-line binary
- Get masses + system geometry
- Pulsar is 2 M_{sun} most massive known (by a hair)
 - Does not significantly improve on EOS constraints
- But...

Antoniadis et al. (2013, Science, 340, 448)

Testing TeVeS Gravity Theories

- Relativistic orbit and mass asymmetry provide unique test of tensor-vector-scalar gravity theories
 - Differeing "compactness" would produce dipolar GWs

Antoniadis et al. (2014, Science, 340,

 Significant parameter space for scalar coupling constants ruled out thanks to high binding energy and relativistic orbit

Fig: Paul Demorest

- Daily observations of all NANOGrav MSPs w/ CHIME
 - All pulsars with ~ few weeks cadence
- Large FOV
- No moving parts digital telescope
- Relatively inexpensive way to get collecting area

- Stochastic GW background detected by 2022
 - Assumes steady growth in current observing program
- Not just a number!
 - Spectral shape encodes information about supermassive BH environments
 - Find the solution to the last parsec problem
- Detect single GW sources?
- Burst events?
 - Bursts with memory provide deep test of GR
- Constrain (detect?) cosmic strings
- Eventually measure anisotropies in GW background

- More pulsars! Always more pulsars!
 - Every time we find new pulsars, we find true gems
 - Take advantage of new capabilities (PAFs, UWB Rx)
- Next generation surveys (FAST, MeerKAT, SKA) will find many thousands of new pulsars
 - Eventually all the pulsars
- 3 M_{sun} neutron stars? Sub-millisecond pulsars?
 - Solve the NS EOS?
- Pulsar BH binary? ("Holy Grail" for gravity tests), Pulsars around Sgr A*
 - Test no-hair theorem
 - Maybe, finally, find breakdown of GR?

Summary

- NANOGrav is on track to detect GWs in the next 5 years
 Opening the full GW spectrum
- We are on the cusp of a new wave of pulsar discoveries
 - There will undoubtedly be unique and powerful physical laboratories among them
- The GBT (and Arecibo) are the best instruments in the world for precision pulsar timing
 - Wideband systems could make them even better
 - Can leverage new telescopes to maximize scientific return