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Abstract. Whether an astronomer performs his or her own observa-
tions, or uses previously observed data extracted from an archive, the
question ”Can I meet my scientific objectives using this data?” must be
answered. To do this, four categories of quality should be evaluated: ob-
serving system quality, observability, raw data quality and derived data
quality. Devices and individual software modules must be operating prop-
erly to complete the observation when it is scheduled. The raw data must
meet global standards for completeness and accuracy, and specific stan-
dards set by the astronomer. Additionally, the datasets must be accessible
and sufficiently complete for the science to be performed. A framework for
managing quality based on data quality rules is presented, derived from
an 18-month prototyping exercise at the Robert C. Byrd Green Bank
Telescope (GBT) in Green Bank, WV. A primary goal was to retain the
astronomer’s control over his or her evaluations. These quality manage-
ment principles could be extended to any telescope or data production
facility for which an interpretation of data is critical.

1. Introduction

Data quality is a pivotal issue for telescopes, influencing various practices in-
cluding service observing, automated data processing, proposal planning, time
allocation, and archive-based research. When data is taken on behalf of an
observer, it must meet specified quality objectives to be a valuable use of the
observer’s allocated time. Producing automated ”science quality” data products
depends on accurate characterization and assessment of data quality objectives.
A telescope’s capacity to produce data with desired characteristics impacts the
content of a proposal, the time requested, and the time ultimately allocated.

A researcher using an archive may have a different scientific intent than the
original observer, and must be able to assess the quality of a dataset according
to his or her own objectives. As a result, a dataset may be high quality to one
researcher, but low quality to another. According to Silva & Peron (2004), ”the
usefulness and quality of any given science data product is in the eye of the
beholder, ie. it strongly depends on the technical needs and science objectives
of the end-user astronomer or data analysis team.”
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Despite their fundamental role, quality issues are typically addressed in
a fragmented manner; control system trending and data quality assessment,
for example, are treated independently. Quality management takes the needed
systemic approach to reduce variation, improve productivity, and streamline
processes, applying quality principles simultaneously to telescope operations and
observational datasets. Data quality is relative to the researcher’s intent, and
impacts many parts of the ”end to end” process from proposal preparation
through offline processing. From the perspective of operations, how do we gather
and use this information in the most effective and value-adding way?

2. Goals

The definition of quality as ”fitness for use” (Juran & Gryna 1988) was employed
because it relates to operational goals: ensuring that the dataset is fit for use by
the observer and that the telescope was fit for use at the scheduled time. Fur-
thermore, the dataset should potentially be fit for use from the perspective of
a future researcher using an archive. Operationally, quality assessments should
feed back into the planning process to help satisfy additional goals, including
increasing the operational availability of the telescope (recovering from faults
quickly by identifying and repairing root causes of problems efficiently). By ad-
dressing root cause problems instead of symptoms, support resources are used
more effectively. Lending objectivity to downtime metrics also helps prioritize
fixes. The cycle time for implementing the most value-adding updates to the in-
strument’s hardware and software can be shortened, and the time to deliver new
scientific capabilities can be minimized. The researcher must be able to charac-
terize and assess data quality according to many different objectives, possibly
trying on different strategies to assess the same dataset. Automated assessments
must not take control away from the scientist, who may not be able to succinctly
define or describe complex quality characteristics.

3. Quality Categorization

In the case of a perfectly operating instrument (ie. no unnecessary latencies), the
ultimate measure of its scientific productivity will be a) throughput of observa-
tions and b) the quality of the output data. If a dataset can meet the objectives
of many observers (in addition to the original observer) its value as a data prod-
uct is enhanced. To evaluate whether a dataset will satisfy the scientist’s intent,
quality measures in four areas must be evaluated. A similar taxonomy outlined
by Hanuschik et al. (2002) did not include the observability category.

1. Observing Systems Quality All equipment needed for the observation
must be installed, fully operable, and communications paths must be oper-
ational between the hardware and the software. This is a system dependent
criterion, and is resolved by a) maximizing operational availability while
b) minimizing the time required to identify and solve root causes of faults.

2. Observability Even if the system is equipped to execute an observation at
a particular time, this is immaterial if the source is not above the horizon,
if pointing is inadequate (as in the case of high winds), etc. This is a
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time dependent criterion, and is resolved by a) holding an appropriately-
sized inventory of executable observations and b) scheduling policies and
algorithms that execute these observations at times that they will produce
data at the desired quality level.

3. Raw Data Quality This information is needed to control software be-
havior, e.g. not launching a pipeline process if the data is insufficient.
Availability, completeness, and precision are all characteristics of the raw
data. Evaluations are device or observing-mode specific, and stewardship
of the quality requirements can remain with the telescope scientific staff.

4. Derived Data Quality These criteria all involve scientific evaluation of
the data, for example, rms of spectra, signal to noise, and dynamic range.
Quality checks at this level are crafted based on the observer’s intent.

4. A Data Quality Management Framework

The discipline of quality management involves establishing the structures, poli-
cies and guidelines that enable an organization to meet its quality goals. The
following structures for a telescope quality management program were identified:

1. Establish Data Quality Policies. For example, a policy describing
what data should be irreversibly blanked, what should be masked or re-
versibly blanked, what should be reversibly flagged, and at which stages
of the raw data production process each type of editing should be applied.

2. Understand Dependencies in the Data Production Process. To
solve the right operational problems at the most appropriate times, a
framework for root cause analysis should be in place. For this GBT, this
involved constructing a two-dimensional model of component dependencies
versus dependencies in classifications of problems encountered.

3. Implement a Data Store for Quality Information. Many software
applications require quality checks, especially of the raw data, to deter-
mine appropriate behaviors. In many telescope systems, quality checks are
duplicated in the software. This redundancy is eliminated when quality
information is centrally managed. A quality database should be indepen-
dent of any databases used during the observing process to minimize fault
potential.

4. Provide Continuous Monitoring of Critical Infrastructure and
Control System Monitor Points. By detecting instrument or observ-
ing mode failures before they occur, and adjusting schedules or scheduling
algorithms appropriately, a loss of telescope availability can be prevented.
Several ESO telescopes already implement this practice successfully.

5. Apply Rulesets for Evaluating the Quality of Data During Pro-
duction. The end result of this step is that a dataset exists for which a set
of global and observation-specific assessments are true. Pipeline heuristics
fall in this category; they seek to automatically translate observer intent
into data quality rules (Loshin 2001).

6. Allow Researcher to Apply Additional Rulesets Based on In-
tent/Apply Algorithms to Assess Derived Data Quality. A library
of additional rules (based on a science data model) should be available to
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enable viewing the data through different filters of quality, enabling the
subjective assessments that will always be required from experts.

7. Close the Loop Between Data & the Production Process. In ad-
dition to revealing faults in the production process, quality knowledge will
continually increase throughout the lifetime of an instrument and its ob-
serving modes. The goal of an autonomic system whereby knowledge of
how to improve quality is automatically learned and applied to the produc-
tion process represents a leap forward in continuous quality improvement.

5. Conclusions and Future Research

Quality control involves applying data quality attributes to datasets to deter-
mine their viability; quality management measures, controls, and automates
the continuous improvement process to generate higher quality science products
more readily. Data quality is a systemwide issue, not limited to the science
products or raw datasets. The control system must be functioning properly and
the raw data must meet quality objectives to ensure accurate software behavior.
Systemic management of data quality can yield operational efficiencies; in
software, this is the ability to code less (because quality checks are performed
centrally) and fix bugs faster (because the root causes of errors are more readily
determined). Data quality assessment has a subjective component, which can
be addressed by designing multiple tiers of rulesets. Some of these will be ap-
plied by the system (e.g. by the pipeline) and some manually by the researcher.
Raw data diagnostics should be implemented first because the quality of oper-
ations can often be inferred by indicators within the raw data. Ongoing work
is examining a) the benefits realized from feedback between raw data quality
diagnostics and its production by the control system, and b) the utility of strat-
ifying rules (global, observation dependent, and user-defined). Quantitatively
understanding the interactions between quality information in the control sys-
tem, pipeline, and archive is the goal. By shifting the focus from quality control
to quality management, the next wave of innovations for optimizing the scientific
productivity of a telescope could be identified.
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