Pulsar Observations

J. M. Cordes, Cornell University NAIC/NRAO Summer School 12 August 2003

Basics

- Propagation effects
- Dispersion, scattering, scintillations
- Dedispersion techniques
- Searching
- Timing
- Polarization
- Pulsar distances and astrometry
- Examples of forthcoming surveys

Pulsar Science

- Extreme matter physics
 - 10x nuclear density
 - High-temperature superfluid & superconductor
 - B ~ B_q = 4.4 x 10¹³ Gauss
 - Voltage drops ~ 10¹² volts
 - $F_{EM} = 10^9 F_g = 10^9 \times 10^{11} F_{gEarth}$
- Relativistic plasma physics (magnetospheres)
- Tests of theories of gravity
- Gravitational wave detectors
- Probes of turbulent and magnetized ISM (& IGM)
- End states of stellar evolution

Realities & Necessities

- Pulses serve as markers of the spin phase of the NS, which can be used as a clock
- Pulses are strongly affected by propagation in the ISM
- Search & timing programs must minimize propagation effects to achieve the highest sensitivity and precision
- RFI can mimic pulsar signals

Fig. 6. Low level interference on right compared with scruff (pulsar) on left.

100 pulse average

PSR J1740+1000

• amplitude & phase jitter is all intrinsic to the pulsar

 single pulse phase jitter contributes to arrival-time variations ~ W / N^{1/2} for an N-pulse average

INTERSTELLAR DISPERSION

 $DM = \int_0^D ds n_e(s)$ PSR B1534+12 P = 38 ms DM = 11.61 pc cm⁻³

10 MHz bandwidth @ 0.43 GHz **Refractive indices for cold, magnetized plasma**

$$\mathbf{n_{l,r}} \sim \mathbf{1} - \mathbf{v_p}^2 / 2\mathbf{v}^2 \quad \mp \quad \mathbf{v_p}^2 \quad \mathbf{v_{B||}} \quad 2\mathbf{v}^3$$

$$\mathbf{v} \gg \mathbf{v_p} \sim 2 \text{ kHz} \qquad \mathbf{v} \gg \mathbf{v_{B||}} \sim 3 \text{ Hz}$$
Group velocity \Rightarrow group delay = Δ (time of arrival)

$$t = t_{DM} \pm t_{RM}$$
 birefringence

$$t_{DM} = 4.15 \text{ ms } DM \text{ } v^{-2}$$

$$t_{RM} = 0.18 \text{ ns } RM \text{ } v^{-3}$$

$$DM = \int ds n_e \qquad pc \text{ cm}^{-3}$$

$$RM = 0.81 \int ds n_e \quad B_{||} \qquad rad \text{ m}^{-2}$$

P

Refractive indices for cold, magnetized plasma

$$\mathbf{n_{l,r}} \sim \mathbf{1} - \mathbf{v_p}^2 / 2\mathbf{v}^2 \quad \mp \quad \mathbf{v_p}^2 \quad \mathbf{v_{B||}} 2\mathbf{v}^3$$

$$\mathbf{v} \gg \mathbf{v_p} \sim 2 \, \mathbf{kHz} \qquad \mathbf{v} \gg \mathbf{v_{B||}} \sim 3 \, \mathbf{Hz}$$
Group velocity \Rightarrow group delay = Δ (time of arrival)

$$t = t_{DM} \pm 10^{-2}$$

$$t_{DM} = 4.15 \text{ ms} \text{ mm} \text{ v}^{-2}$$

 $\tau_{RM} = 0.18 \text{ ns RM V}^{-5}$ $DM = \int ds n_e \qquad pc \text{ cm}^{-3}$ $RM = 0.81 \int ds n_e \quad B_{||} \qquad rad \text{ m}^{-2}$

INTERSTELLAR DISPERSION

$\mathbf{D}\mathbf{M} = \overline{\int_0^{\mathbf{D}} \mathrm{ds} \ \mathbf{n}_e(\mathbf{s})}$

Dedispersed Sum

TIME

Scattering from δn_e

- Pulsar velocities >> ISM, observer velocities
- Scattering is strong for frequencies < 5 GHz
- Electron density irregularities exist on scales from ~ 100's km to Galactic scales

Pulse broadening (recent WAPP results, R. Bhat et al) $\tau \sim D\theta^2/2c \propto v^{-4}$

PSR 1737+13 0.430 GHz MJD 44830 2251117

2D Autocorrelation Function ⇒ Characteristic DISS frequency and time scales

Dynamic Spectrum (Diffractive Interstellar Scintillations)

PSR 1737+13 0.430 GHz MJD 44830 2251117

Dedispersion

Basic data unit = a dynamic spectrum

64 to 1024 channels

Frequency

 $10^{6} - 10^{8}$ samples x 64 µs

time

Fast-dump spectrometers:

- Analog filter banks
- Correlators
- FFT (hardware)
- FFT (software)
- Polyphase filter bank

E.g. WAPP, AOFTM, GBT correlator + spigot card

Dispersed Pulse

Coherently dedispersed pulse

Coherent Dedispersion pioneered by Tim Hankins, c. 1971

Dispersion delays represent a phase perturbation of the Fourier components of the electric field:

 $E_{\text{meas}}(\omega) = E_{\text{emitted}}(\omega) e^{ik(\omega)z}$ $[k(\omega)z \rightarrow \int dz k(\omega)]$

Coherent dedispersion involves multiplication of Fourier amplitudes by the inverse function, $e^{-ik(\omega)z}$, which is known to high precision for known pulsars.

See section 2.1 of I. Stairs paper

Postdetection dedispersion (align outputs of channels) leaves residual dispersion across channels

 $\begin{array}{l} \Delta t = quadratic \ sum \ of \\ \Delta t_{DM} \ \propto \ \Delta \nu \\ \Delta t_{f} \sim 1 \ / \ \Delta \nu \end{array}$

 \Rightarrow Optimal channel bandwidth Δv that minimizes Δt

Dedispersion at a single known DM

Dedispersion over a set of DMs

Pulsar Periodicity Search

Single Pulse Studies & Searches

Giant pulse from the Crab pulsar S ~ 160 x Crab Nebula ~ 200 kJy

Detectable to ~ 1.5 Mpc with Arecibo

2-ns giant pulses from the Crab: (Hankins et al. 2003)

Giant Pulses seen from B0540-69 in LMC (Johnston & Romani 2003)

Nano-giant pulses (Hankins et al. 2003)

Arecibo 5 GHz 0.5 GHz bw coherent dedispersion

Giant pulse searches

Giant pulses from M33

Arecibo observations (Mclaughlin & Cordes, ApJ in press; astro-ph)

Pulsar Periodicity Searches

Harmonic Sum

The FFT of periodic pulses consists of a series of spikes (harmonics) separated by 1/P.

To improve S/N, sum harmonics.

How many? The answer depends on the pulse "duty cycle" = (pulse width / P) \Rightarrow need to use trial values of N_h.

 S_{min1} = m x rms radiometer noise, m ≈ 10

 $S_{min} = S_{min1} / h(N_h)$ $h(N_h) = N_h^{-1/2} \sum R_j$, where $R_j = |FFT(j) / FFT(0)|$

FFT

Harmonic sum

Survey Selection Against Binaries

Why more pulsars?

P > 8 sec

- Discover rare, extreme objects (odds $\propto N_{psr}$)
 - P < 1 ms
 - P_{orb} < hours
 - V > 1000 km s⁻¹ strange star
 - NS-NS and NS-BH binaries, planets
 - Extragalactic pulsars
 - Galactic center pulsars orbiting Sgr A* black hole
- Large $N_{psr} \Rightarrow$ Galactic tomography of B + δ B, n_e + δ n_e

Branching ratios for compact object formation:

- NS (normal, isolated)
- NS (recycled, binaries)
- NS (magnetar)
- BH (hypernovae)
- Strange stars?

 $B >> 10^{13} G$ (link to magnetars?)

Large N \Rightarrow Galactic tomography

Arecibo Galactic-Plane Survey (using ALFA = Arecibo L-band Feed Array) 32 deg < I < 80 deg b < 5 deg,</p> 1.4 GHz total bandwidth = 300 MHz ۲ polyphase filter backend (1024 channels) multibeam system (7 feeds) 300 s integrations, 2000 hours total Can see 2.5 to 5 times further than Parkes (period dependent) Expect at least 1000 new pulsars

II. GBT Galactic Center Survey

- Many NS expected in central star cluster
- Payoffs:
 - stellar evolution in GC
 - ISM in GC
 - probe central black hole (if lucky)
 - Pulse broadening ~ 300 s at 1 GHz
 - $P \sim 0.2$ requires v > 8 GHz
- Millisecond pulsars not possible
- Search ~ 0.5 deg² with long integrations
- Full binary searches

Image processing at the Naval Research Laboratory using DoD High Performance Computing Resources

Tornado (SNR?)

III. High Galactic Latitude Surveys

Search for:

- Millisecond pulsars (z scale height ~ 0.5 kpc)
 - High-velocity pulsars (~50% escape) (scale height = ∞)
- NS-NS binaries (max z ~ 5 kpc)
- NS-BH binaries (max z ~ few kpc ?)

Pulse Timing

- Goals:
 - Spin properties of pulsar (P, P)
 - Precise DM (from TOAs at widely spaced frequencies)
 - Detection of orbital companions
 - MS stars, WD, NS, planets (BH?)
 - As gravitational wave detectors (long periods)

Times of Arrival (TOAs)

 Time tagging of data samples to ~ 100 ns precision (transfer of UTC via GPS)

- Obtain TOA by matched filtering a 'template' pulse to a sample average profile
 - Transform the TOA to the solar system barycenter (≈ an intertial frame) (Eq. 23 of IHS)

Analyze in terms of pulse phase

Pulse Phase Model

t = TOA Spin-down model = low-order polynomial:

 $\varphi(t) = \varphi(0) + ft + \frac{1}{2} ft^2 + \frac{1}{6} ft^3 + \dots$

Additional contributions to φ are from 'timing noise' (intrinsic spin noise), from pulsar motion, parallax, orbital motion, etc.

Pulsar Distances

Туре	Number	Comments
Parallaxes: Interferometry timing optical	~13 ~ 5 ~ 1	1 mas @ 1 kpc 1.6 μs @ 1 kpc HST, point spread function
Associations	SNRs 8 GCs 16 LMC,SMC ~8	false associations
HI absorption	74	bright pulsars, galactic rotation model
DM + n _e model	all radio pulsars (~ 1400)	ISM perturbations

NE2001 (uses data through 2001)

Electron density projected onto the Galactic plane: Two disk components, spiral arms, Galactic center, clumps and voids Paper I = the model (astro-ph/0207156) Paper II = methodology & particular lines of sight (astro-ph/0301598) Code + driver files + papers:

www.astro.cornell.edu/~cordes/NE2001

But ... if you want a good distance, measure the parallax !

e.g. Arecibo + GBT + VLA $_{\phi}$

VLBA

will be a powerful parallax and proper motion machine

Very Long Baseline Array

PSR B0919+06 S. Chatterjee et al. (2001) $\mu = 88.5 \pm 0.13$ mas/yr $\pi = 0.83 \pm 0.13$ mas

Proper motion and parallax using the VLBA (Brisken et al. 2001)

Chatterjee et al. 2003

Polarimetry

Predetection approach:
 Record voltages ∝ E_L, E_R or E_x, E_y
 Dedisperse and compute cross products to get Stokes parameters

Postdetection approach:

 Use a correlator to obtain auto-and-cross products of voltages

CORRELATOR POLARIMETRY

Pulsar B1929+10 90% linear polarization polarized flux over entire period (atypical) • position angle vs. ϕ measures projection of magnetic field as NS rotates (model curves with dipolar fields fit very well).

Stokes V here is uncorrected for instrumental polarization (TBD)

PSR B0525+21, 1.41 GHz, Effelsberg

Line of Sight

Quick Summary

 Pulsar astronomy has many exciting payoffs in the next 5 yr (AO & GBT surveys)

For pulsars, you can ignore all that was said about confusion limits and beam switching

Iearn VLBI too